• Title/Summary/Keyword: singular hyperbolic

Search Result 12, Processing Time 0.023 seconds

EVALUATION OF SINGULAR INTEGRALS BY HYPERBOLIC TANGENT BASED TRANSFORMATIONS

  • Yun, Beong-In
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.133-146
    • /
    • 2011
  • We employ a hyperbolic tangent function to construct nonlinear transformations which are useful in numerical evaluation of weakly singular integrals and Cauchy principal value integrals. Results of numerical implementation based on the standard Gauss quadrature rule show that the present transformations are available for the singular integrals and, in some cases, give much better approximations compared with those of existing non-linear transformation methods.

EVENTUAL SHADOWING FOR CHAIN TRANSITIVE SETS OF C1 GENERIC DYNAMICAL SYSTEMS

  • Lee, Manseob
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1059-1079
    • /
    • 2021
  • We show that given any chain transitive set of a C1 generic diffeomorphism f, if a diffeomorphism f has the eventual shadowing property on the locally maximal chain transitive set, then it is hyperbolic. Moreover, given any chain transitive set of a C1 generic vector field X, if a vector field X has the eventual shadowing property on the locally maximal chain transitive set, then the chain transitive set does not contain a singular point and it is hyperbolic. We apply our results to conservative systems (volume-preserving diffeomorphisms and divergence-free vector fields).

EQUIVALENT DEFINITIONS OF RESCALED EXPANSIVENESS

  • Wen, Xiao;Yu, Yining
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.593-604
    • /
    • 2018
  • Recently, a new version of expansiveness which is closely attached to some certain weak version of hyperbolicity was given for $C^1$ vector fields as following: a $C^1$ vector field X will be called rescaling expansive on a compact invariant set ${\Lambda}$ of X if for any ${\epsilon}$ > 0 there is ${\delta}$ > 0 such that, for any $x,\;y{\in}{\Lambda}$ and any time reparametrization ${\theta}:{\mathbb{R}}{\rightarrow}{\mathbb{R}}$, if $d({\varphi}_t(x),\,{\varphi}_{{\theta}(t)}(y)){\leq}{\delta}{\parallel}X({\varphi}_t(x)){\parallel}$ for all $t{\in}{\mathbb{R}}$, then ${\varphi}_{{\theta}(t)}(y){\in}{\varphi}_{(-{\epsilon},{\epsilon})}({\varphi}_t(x))$ for all $t{\in}{\mathbb{R}}$. In this paper, some equivalent definitions for rescaled expansiveness are given.

REAL HYPERSURFACES IN THE COMPLEX HYPERBOLIC QUADRIC WITH CYCLIC PARALLEL STRUCTURE JACOBI OPERATOR

  • Jin Hong Kim;Hyunjin Lee;Young Jin Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.309-339
    • /
    • 2024
  • Let M be a real hypersurface in the complex hyperbolic quadric Qm*, m ≥ 3. The Riemannian curvature tensor field R of M allows us to define a symmetric Jacobi operator with respect to the Reeb vector field ξ, which is called the structure Jacobi operator Rξ = R( · , ξ)ξ ∈ End(TM). On the other hand, in [20], Semmelmann showed that the cyclic parallelism is equivalent to the Killing property regarding any symmetric tensor. Motivated by his result above, in this paper we consider the cyclic parallelism of the structure Jacobi operator Rξ for a real hypersurface M in the complex hyperbolic quadric Qm*. Furthermore, we give a complete classification of Hopf real hypersurfaces in Qm* with such a property.

ASYMPTOTIC STUDY OF MIXED ROTATING MHD SYSTEM

  • Selmi, Ridha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.231-249
    • /
    • 2010
  • Asymptotic behavior of three-dimensional mixed, periodic and rotating magnetohydrodynamic system is investigated as the Rossby number goes to zero. The system presents the difficulty to be singular and mixed, that is hyperbolic in the vertical direction and parabolic in the horizontal one. The divergence free condition and the spectral properties of the penalization operator are crucial in the proofs. The main tools are the energy method, the Schochet's method and products laws in anisotropic Sobolev spaces.

ADAPTIVE GRID SIMULATION OF HYPERBOLIC EQUATIONS

  • Li, Haojun;Kang, Myungjoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.279-294
    • /
    • 2013
  • We are interested in an adaptive grid method for hyperbolic equations. A multiresolution analysis, based on a biorthogonal family of interpolating scaling functions and lifted interpolating wavelets, is used to dynamically adapt grid points according to the physical field profile in each time step. Traditional finite-difference schemes with fixed stencils produce high oscillations around sharp discontinuities. In this paper, we hybridize high-resolution schemes, which are suitable for capturing singularities, and apply a finite-difference approach to the scaling functions at non-singular points. We use a total variation diminishing Runge-Kutta method for the time integration. The computational cost is proportional to the number of points present after compression. We provide several numerical examples to verify our approach.

AN EFFICIENT SECOND-ORDER NON-ITERATIVE FINITE DIFFERENCE SCHEME FOR HYPERBOLIC TELEGRAPH EQUATIONS

  • Jun, Young-Bae;Hwang, Hong-Taek
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.289-298
    • /
    • 2010
  • In this paper, we propose a second-order prediction/correction (SPC) domain decomposition method for solving one dimensional linear hyperbolic partial differential equation $u_{tt}+a(x,t)u_t+b(x,t)u=c(x,t)u_{xx}+{\int}(x,t)$. The method can be applied to variable coefficients problems and singular problems. Unconditional stability and error analysis of the method have been carried out. Numerical results support stability and efficiency of the method.

A GEOMETRIC REALIZATION OF (7/3)-RATIONAL KNOT

  • D.A.Derevnin;Kim, Yang-Kok
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.345-358
    • /
    • 1998
  • Let (p/q,n) denote the orbifold with its underlying space $S^3$ and a rational knot or link p/q as its singular set with a cyclic isotropy group of order n. In this paper we shall show the geometrical realization for the case (7/3,n) for all $n \geq 3$.

  • PDF