Acknowledgement
The author wishes to express grateful to Xiao Wen for the hospitality at Beihang University in China.
References
- F. Abdenur, C. Bonatti, and S. Crovisier, Global dominated splittings and the C1 Newhouse phenomenon, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2229-2237. https://doi.org/10.1090/S0002-9939-06-08445-0
- C. Bonatti and L. J. Diaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. (2) 143 (1996), no. 2, 357-396. https://doi.org/10.2307/2118647
- C. Bonatti, L. J. Diaz, and E. R. Pujals, A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2) 158 (2003), no. 2, 355-418. https://doi.org/10.4007/annals.2003.158.355
- C. M. Carballo, C. A. Morales Rojas, and M. J. Pacifico, Maximal transitive sets with singularities for generic C1 vector fields, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 3, 287-303. https://doi.org/10.1007/BF01241631
- L. J. Diaz, E. R. Pujals, and R. Ures, Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999), no. 1, 1-43. https://doi.org/10.1007/BF02392945
- J. Guckenheimer, A strange, strange attractor, The Hopf Bifurcation Theorem and its Applications, Springer-Verlag, New York, 1976.
- M. Li, S. Gan, and L. Wen, Robustly transitive singular sets via approach of an extended linear Poincare flow, Discrete Contin. Dyn. Syst. 13 (2005), no. 2, 239-269. https://doi.org/10.3934/dcds.2005.13.239
- S. T. Liao, Obstruction sets. I, Acta Math. Sinica 23 (1980), no. 3, 411-453.
- S. T. Liao, Obstruction sets. II, Acta Sci. Natur. Univ. Pekinensis 2 (1981), 1-36.
- E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), no. 2, 130-141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
- R. Mane, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540. https://doi.org/10.2307/2007021
- R. Mane, A proof of the C1 stability conjecture, Publ. Math. IHES 66 (1988), 161-210. https://doi.org/10.1007/BF02698931
- C. A. Morales and M. J. Pacifico, A dichotomy for three-dimensional vector fields, Ergod. Th. & Dynam. Syst. 23 (2003), 1575-1600. https://doi.org/10.1017/S0143385702001621
- C. A. Morales, M. J. Pac'ifico, and E. R. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2) 160 (2004), no. 2, 375-432. https://doi.org/10.4007/annals.2004.160.375
- J. Palis Jr. and W. de Melo, Geometric theory of dynamical systems, translated from the Portuguese by A. K. Manning, Springer, New York, 1982.
- Y. Shi, S. Gan, and L. Wen, On the singular-hyperbolicity of star flows, J. Mod. Dyn. 8 (2014), no. 2, 191-219. https://doi.org/10.3934/jmd.2014.8.191
- L. Wen, On the C1 stability conjecture for flows, J. Differential Equations 129 (1996), no. 2, 334-357. https://doi.org/10.1006/jdeq.1996.0121
- L. Wen, Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc. (N.S.) 35 (2004), no. 3, 419-452. https://doi.org/10.1007/s00574-004-0023-x
- X. Wen, L. Wen, and D. Yang, A characterization of singular hyperbolicity via the linear Poincare flow, J. Differential Equations 268 (2020), no. 8, 4256-4275. https://doi.org/10.1016/j.jde.2019.10.029