Browse > Article

AN EFFICIENT SECOND-ORDER NON-ITERATIVE FINITE DIFFERENCE SCHEME FOR HYPERBOLIC TELEGRAPH EQUATIONS  

Jun, Young-Bae (Department of Applied Mathematics, Kumoh National Institute of Technology)
Hwang, Hong-Taek (Department of Applied Mathematics, Kumoh National Institute of Technology)
Publication Information
The Pure and Applied Mathematics / v.17, no.4, 2010 , pp. 289-298 More about this Journal
Abstract
In this paper, we propose a second-order prediction/correction (SPC) domain decomposition method for solving one dimensional linear hyperbolic partial differential equation $u_{tt}+a(x,t)u_t+b(x,t)u=c(x,t)u_{xx}+{\int}(x,t)$. The method can be applied to variable coefficients problems and singular problems. Unconditional stability and error analysis of the method have been carried out. Numerical results support stability and efficiency of the method.
Keywords
second-order accuracy; domain decomposition; finite difference method; hyperbolic telegraph equation; unconditional stability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Jun: A stable noniterative Prediction/Correction domain decomposition method for hyperbolic problems. Appl. Math. Comput. 216 (2010), 2286-2292.   DOI   ScienceOn
2 R.K. Mohanty: An unconditinally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficnents. Appl. Math. Comput. 165 (2005), 229-236.   DOI   ScienceOn
3 J.J. Benito, F. Urena & L. Gravete: Solving parabolic and hyperbolic equations by the generalized finite difference method. J. Comput. Appl. Math. 209 (2007), 208-233.   DOI   ScienceOn
4 X. He & T. Lu: A finite element splitting extrapolation for second order hyperbolic equations. SIAM J. Sci. Comput. 31 (2009/10), 4244-4265.
5 A. Mohebbi & M. Dehghan: High order compact solution of the one-space-dimensional linear hyperbolic equation. Numer. Methods Partial Differential Equations 24 (2008), 1222-1235.   DOI   ScienceOn
6 Y. Liu & H. Li: $H^{1}$-Galerkin mixed finite element methods for pseudo-hyperbolic equations. Appl. Math. Comput. 212 (2009), 446-457.   DOI   ScienceOn
7 Y. Jun & T.Z. Mai: Rectangular domain decomposition method for parabolic problems. J. Korea Soc. Math. Educ. Ser. B: Pure and Appl. Math. 13 (2006), 281-294.   과학기술학회마을
8 Y. Jun: An efficient domain decomposition decomposition method for three-dimensional parabolic problems. Appl. Math. Comput. 215 (2009), 2815-2825.   DOI   ScienceOn
9 Y. Jun & T.Z. Mai: ADI method - Domain decomposition. Appl. Numer. Math. 56 (2006), 1092-1107.   DOI   ScienceOn
10 M.J. Gander & L. Halpern: Absorbing boundary conditions for the wave equation and parallel computing. Math. Comp. 74 (2005), 153-176.
11 R.K Mohanty: Stability interval for explicit difference schemes for multi-dimensional second-order hyperbolic equations with significant first-order space derivative terms. Appl. Math. Comput. 190 (2007), 1683-1690.   DOI   ScienceOn
12 H. Ding & Y. Zhang: A new unconditionally stable compact difference scheme of O$({\tau}^2+h^4)$ for the ID linear hyperbolic equation. Appl. Math. Comput. 207 (2009), 236-241.   DOI   ScienceOn
13 R. Codina: Finite element approximation of the hyperbolic wave equation in mixed form. Comput. Methods Appl. Mech. Engrg. 197 (2008), 1305-1322.   DOI   ScienceOn
14 Z. Zhang & D. Deng: A new alternating-direction finite element method for hyperbolic equation. Numer. Methods Partial Differential Equations 23 (2007), 1530-1559.   DOI   ScienceOn
15 C.N. Dawson & T.F. Dupont: Noniterative domain decomposition for second order hyperbolic problems. Contemp. Math. 157 (1994), 45-52.
16 R.L. Burden & J.D. Faires: Numerical Analysis, Thomson Brooks/Cole, 2005.
17 M. Ramezani, M. Dehghan & M. Razzaghi: Combined finite difference and spectral methods for the numerical solution of hyperbolic equation with an integral condition. Numer. Methods Partial Differential Equations 24 (2008), 1-8.   DOI   ScienceOn
18 K.K. Sharma & P. Singh: Hyperbolic partial differential-difference equation in the mathematical modeling of neuronal firing and its numerical solution. Appl. Math. Comput. 201 (2008), 229-238.   DOI
19 W.F. Ames: Numerical methods for partial differential equations. Academic Press, 1992.