Acknowledgement
Supported by : National Natural Science Foundation of China, Central Universities
References
- V. Araujo, M. Pacifico, E. Pujals, and M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc. 361 (2009), no. 5, 2431-2485. https://doi.org/10.1090/S0002-9947-08-04595-9
- C. Bonatti and A. da Luz, Weak hyperbolic structures and robust properties of diffeomorphisms and flows, Proceedings of 7ECM, 2016.
- R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations 12 (1972), 180-193. https://doi.org/10.1016/0022-0396(72)90013-7
- S. Gan and D. Yang, Morse-Smale systems and horseshoes for three dimensional singular flows, to appear in Ann. Ec. Norm. Super. Arxiv:1302.0946.
- J. Guckenheimer, A strange, strange attractor, In The Hopf bifurcation theorem and its applications, 368-381, Springer Verlag, 1976.
- A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.
- M. Komuro, Expansive properties of Lorenz attractors, in The theory of dynamical systems and its applications to nonlinear problems (Kyoto, 1984), 4-26, World Sci. Publishing, Singapore, 1984.
- S. Liao, Qualitative Theory of Differentiable Dynamical Systems, translated from the Chinese, Science Press Beijing, Beijing, 1996.
- E. N. Lorenz, Deterministic nonperiodic flow, J. Atmosph. Sci. 20 (1963), 130-141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
- R. Mane, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540. https://doi.org/10.2307/2007021
- C. A. Morales, M. J. Pacifico, and E. R. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2) 160 (2004), no. 2, 375-432. https://doi.org/10.4007/annals.2004.160.375
- M. Oka, Expansiveness of real flows, Tsukuba J. Math. 14 (1990), no. 1, 1-8. https://doi.org/10.21099/tkbjm/1496161314
- X. Wen and L. Wen, A rescaled expansiveness of flows, to appear in Transactions of the American Mathematical Society. Arxiv:1706.09702.