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REAL HYPERSURFACES IN THE COMPLEX HYPERBOLIC

QUADRIC WITH CYCLIC PARALLEL STRUCTURE JACOBI

OPERATOR

Jin Hong Kim, Hyunjin Lee, and Young Jin Suh

Abstract. Let M be a real hypersurface in the complex hyperbolic
quadric Qm∗, m ≥ 3. The Riemannian curvature tensor field R of M

allows us to define a symmetric Jacobi operator with respect to the

Reeb vector field ξ, which is called the structure Jacobi operator Rξ =
R( · , ξ)ξ ∈ End(TM). On the other hand, in [20], Semmelmann showed

that the cyclic parallelism is equivalent to the Killing property regarding
any symmetric tensor. Motivated by his result above, in this paper we

consider the cyclic parallelism of the structure Jacobi operator Rξ for a

real hypersurface M in the complex hyperbolic quadric Qm∗. Further-
more, we give a complete classification of Hopf real hypersurfaces in Qm∗

with such a property.

Introduction

As a typical example of the Hermitian symmetric spaces of rank 2, we can
give the complex quadric Qm = SOm+2/SOmSO2, which is a complex hyper-
surface in the complex projective space CPm+1. It can be also regarded as a
kind of a real Grassmannian manifold of compact type with rank 2 (see [2], [6],
[8], and [19]). The characterization problems of real hypersurfaces of such a
real Grassmannian manifold have been studied from various geometrical per-
spectives (see [1], [9], [10], [12], [16], [17], [21], [22], [25], and so on).

In this paper we investigate a classification problem of real hypersurfaces
in the Hermitian symmetric space of non-compact type, so-called the com-
plex hyperbolic quadric Qm∗ = SO0

2,m/SO2SOm. It is a dual space of the
complex quadric Qm. By virtue of the study due to Klein and Suh given
in [7], the complex hyperbolic quadric Qm∗ admits both a complex structure J
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and an S1-subbundle A of the endomorphism bundle End(TQm∗), consist-
ing of real structures on the tangent spaces of Qm∗. That is, A is given by
A = {λA |λ ∈ S1}, where A stands for a real structure of Qm∗. Such two
geometric structures of Qm∗ satisfy the anti-commuting property AJ = −JA.
The complex hyperbolic quadric Q1∗ is isometric to the real hyperbolic space
RH2 = SO0

1,2/SO2, and Q2∗ is isometric to the Hermitian product CH1×CH1

of complex hyperbolic spaces. For this reason, in this paper we will assume
m ≥ 3. Then for m ≥ 3 the triple (Qm∗, J, g) is a Hermitian symmetric space
of non-compact type with rank 2 whose minimal sectional curvature is equal
to −4 (see [2] and [7]).

It is well known that J and A are parallel with respect to the Levi-Civita
connection ∇̄ of Qm∗, which means that J and A ∈ A satisfy (∇̄UJ)V = 0
and (∇̄UA)V = q(U)JAV , respectively, where q denotes a certain real-valued
1-form on TQm∗ and U , V are any tangent vector fields of Qm∗ (see [7]).
Since A ∈ A is a self-adjoint involution, it holds A2U = U for any U ∈ TQm∗.
From this, the tangent vector space TpQ

m∗ at any point p ∈ Qm∗ splits into two
orthogonal, maximal totally real subspaces of TpQ

m∗. We denote by TpQ
m∗ =

V (A) ⊕ JV (A), where V (A) and JV (A) are the (+1)-eigenspace and (−1)-
eigenspace of A, respectively. So, a unit tangent vector W ∈ TpQ

m∗ can
be expressed as W = cos(t)Z1 + sin(t)JZ2 for orthonormal unit vectors Z1,
Z2 ∈ V (A). Here, t ∈ [0, π

4 ] is uniquely determined by W (see [19]). We say
that the vector W is singular if and only if either t = 0 or t = π

4 holds. In
particular, the vectors with t = 0 are called A-principal, whereas the vectors
with t = π

4 are called A-isotropic.
Let M be a real hypersurface with unit normal vector field N in a Kähler

manifold Qm∗. Let (ϕ, ξ, η, g) be the almost contact metric structure on M
induced by the complex structure of Qm∗. We define the Reeb vector field ξ =
−JN and the structure tensor field ϕ = J|TM − N ⊗ η, where η is a 1-form
defined by η(X) = g(X, ξ) for any tangent vector field X of M in Qm∗. We
denote by S the shape operator of M given as ∇̄XN = −SX. The real hy-
persurface M is said to be Hopf if the Reeb vector field ξ is principal, that is,
Sξ = αξ, α = g(Sξ, ξ).

When the shape operator S of M in Qm∗ commutes with the structure
tensor ϕ, that is, Sϕ = ϕS, we say that the Reeb flow on M is isometric
(or M has isometric Reeb flow). With respect to this concept, a remarkable
classification for real hypersurfaces in complex hyperbolic quadric Qm∗ was
introduced in [23], as follows.

Theorem A. Let M be a real hypersurface in the complex hyperbolic quadric
Qm∗, m ≥ 3. The Reeb flow on M is isometric if and only if M is locally
congruent to an open part of the following real hypersurfaces in the complex
hyperbolic quadric Qm∗:

(T ∗
A) A tube with radius r ∈ R+ around the complex totally geodesic embed-

ding of the complex hyperbolic space CHk into Q2k∗, m = 2k.
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(H∗
A) A horosphere whose center at infinity is singular and of type A-isotropic.

Indeed, [23], it is known that the normal vector field N of a real hypersurface
in Theorem A is always A-isotropic.

On the other hand, as a typical characterization for real hypersurfaces with
the A-principal normal vector field in Qm∗, we introduce the following result
due to Klein and Suh given in [7]. We say that M is a contact hypersurface of a
Kähler manifold if there exists an everywhere nonzero smooth function ρ such
that dη(X,Y ) = 2ρg(ϕX, Y ) holds on M . It can be easily verified that a real
hypersurface M is contact if and only if there exists an everywhere nonzero
constant function ρ on M such that Sϕ+ ϕS = 2ρϕ.

Theorem B. Let M be a real hypersurface with constant mean curvature in
the complex hyperbolic quadric Qm∗, m ≥ 3. Then M is a contact hypersurface
if and only if M is congruent to an open part of one of the following real
hypersurfaces in Qm∗:

(T ∗
B1

) A tube with radius r ∈ R+ around the complex totally geodesic embed-

ding of the complex hyperbolic quadric Qm−1∗ into Qm∗.
(T ∗

B2
) A tube with radius r ∈ R+ around the totally real totally geodesic em-
bedding of the real hyperbolic quadric RHm into Qm∗.

(H∗
B) A horosphere in Qm∗ with A-principal center at infinity.

In addition to the above-mentioned theorems, a number of results have been
given from the classification or characterization studies on a real hypersurface
of Qm∗ regarding various symmetric operators (see [5], [18], [24], [26], [29],
and [31] etc.). Motivated by these results, in this paper we want to give a
classification result of real hypersurfaces in Qm∗ with the symmetric operator
named the structure Jacobi operator. To do so, we first introduce the structure
Jacobi operator Rξ of M which is defined as the Jacobi operator with respect
to the Reeb vector field ξ, as we explain below.

In general, the Jacobi operator on a Riemannian manifold with respect to X
is defined by RX = R( · , X)X, where R denotes the Riemannian curvature
tenor of M in Qm∗. Specially, we will call the Jacobi operator on a real hyper-
surface M in Qm∗ with respect to the Reeb vector field ξ the structure Jacobi
operator of M . Then it satisfies g(RξX,Y ) = g(X,RξY ) for any X, Y ∈ TM ,
which means that the linear operator Rξ ∈ End(TM) is symmetric. As a char-
acterization of M in Qm∗ under the condition of Rξ, it is well known that there
are no Hopf real hypersurfaces with parallel structure Jacobi operator ∇Rξ = 0
in Qm∗ (see [28]). Moreover, as a weaker condition of parallel structure Jacobi
operator, the notion of Reeb parallelism and Codazzi type regarding Rξ were
studied in [10] and [27], respectively.

Motivated by the results mentioned above, it is natural to investigate real
hypersurfaces in Qm∗ by using another condition (on the derivative of Rξ),
so-called cyclic parallel structure Jacobi operator. Here, the structure Jacobi
operator Rξ of a real hypersurface M in Qm∗ is said to be cyclic parallel if it
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satisfies

g
(
(∇XRξ)Y, Z

)
+ g

(
(∇Y Rξ)Z,X

)
+ g

(
(∇ZRξ)X,Y

)
= 0(†)

for any X, Y , Z ∈ TM . By using the linearization, the equation (†) of cyclic
parallel structure Jacobi operator is equivalent to g

(
(∇XRξ)X,X

)
= 0 for any

X ∈ TM . According to the definition of the Killing tensor introduced in [3]
and [20], it means that the structure Jacobi operator being cyclic parallel should
be Killing. From such viewpoints, we can give its geometric meaning, as follows:
Let γ be any geodesic curve on M such that γ(0) = p and γ̇(0) = X as the
initial conditions. Then the structure Jacobi curvature Rξ(γ̇, γ̇) := g(Rξγ̇, γ̇) is
constant along the geodesic γ of the vector field X. Here we denote by Rξ the
structure Jacobi tensor of type (0,2) defined by Rξ(X,Y ) = g(RξX,Y ) for any
tangent vectors X, Y ∈ TpM at any point p of M (see Lemma 2.8 in [20]). On
real hypersurfaces in complex Grassmannian manifolds with rank 1 or 2, the
classification problems in terms of cyclic parallel structure Jacobi operator have
been studied in [4], [13] and [14], respectively. Recently, in [11], Lee and Suh
classified Hopf real hypersurfaces with cyclic parallel structure Jacobi operator
in the complex quadric Qm, as follows.

Theorem C. Let M be a Hopf real hypersurface in the complex quadric Qm,
m ≥ 3. Then, the structure Jacobi operator Rξ on M is cyclic parallel if and
only if M is locally congruent to an open part of the following hypersurfaces in
the complex quadric Qm:

(i) A tube of radius r = π
4 around a totally geodesic CP k in Q2k, m = 2k.

(ii) A tube of radius 0 < r < π
2
√
2
around the m-dimensional sphere Sm

satisfying tan2(
√
2r) = 2.

Based on what has been mentioned above, in this paper we want to give
a classification of Hopf real hypersurfaces with cyclic parallel structure Jacobi
operator in the complex hyperbolic quadric Qm∗. In order to do this, we first
prove that the unit normal vector field N of M in Qm∗ is singular, where M
is a Hopf real hypersurface with constant mean curvature ε = 1

2m−1TrS, as
follows:

Theorem 1. Let M be a Hopf real hypersurface with constant mean curvature
in the complex hyperbolic quadric Qm∗, m ≥ 3. If the structure Jacobi oper-
ator Rξ of M is cyclic parallel, then the unit normal vector field N of M in
Qm∗ is singular.

As a consequence of Theorem 1 together with Propositions 3.3 and 4.6, we
can prove the following:

Theorem 2. There does not exist a Hopf real hypersurface in the complex hy-
perbolic quadric Qm∗, m ≥ 3, with constant mean curvature and cyclic parallel
structure Jacobi operator.
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Each section of this paper covers the following topics: In Section 1, we re-
call the Riemannian geometry of a real hypersurface in the complex hyperbolic
quadric Qm∗ and introduce some fundamental equations which play an impor-
tant role in proving our theorems. The formula for the structure Jacobi oper-
ator Rξ and its covariant derivative ∇Rξ will be shown explicitly in Section 1.
In Sections 2, we will give some general information about Hopf real hypersur-
faces in Qm∗ with cyclic parallel structure Jacobi operator (see Lemma 2.3).
Moreover, in the same section by using this fact we will give a complete proof
of Theorem 1. According to two kinds of singular normal vector fields of M ,
so-called A-isotropic and A-principal, in Sections 3 and 4 we will consider a
classification problem of Hopf real hypersurfaces in Qm∗ with cyclic parallel
structure Jacobi operator. Consequently, combining Sections 2, 3, and 4, we
give a complete proof of Theorem 2.

1. Preliminaries

Throughout this paper, all manifolds, vector fields, and so on are considered
of class C∞. Let M be a connected real hypersurface in the complex hyperbolic
quadric Qm∗, m ≥ 3, and denote by (ϕ, ξ, η, g) the induced almost contact
metric structure. As mentioned before, the ambient space Qm∗ is equipped
with a Kähler structure J and a parallel rank two vector bundle A. By the
Kähler structure J , we shall write

JX = ϕX + η(X)N and JN = −ξ,(1.1)

where N is a (local) unit normal vector field of M and η the corresponding
1-form defined by η(X) = g(ξ,X) for any tangent vector field X on M . The
tangent bundle TM of M splits orthogonally into TM = C ⊕ C⊥, where C =
Ker(η) is the maximal holomorphic subbundle of TM . Let us denote by ∇
and S the Levi-Civita connection and the shape operator of M , respectively.
Then, by using ∇̄XY = ∇XY + g(SX, Y )N and ∇̄XN = −SX, the properties
J2 = −I and ∇̄J = 0 gives us

ϕ2Y = −Y + η(Y )ξ, (∇Xϕ)Y = η(Y )SX − g(SX, Y )ξ(1.2)

and

∇Xξ = ϕSX,(1.3)

where ∇̄ is the Levi-Civita connection of Qm∗ and I stands for the identity
mapping of TQm∗.

For any real structure A ∈ A of the complex hyperbolic quadric Qm∗, we
can decompose AX for any X ∈ TM into the tangential and the normal parts
as follows:

AX = BX + g(AX,N)N,(1.4)

where BX is the tangential component of AX. Since A is symmetric, that is,
g(AX,Y ) = g(X,AY ), we see that B is also symmetric.
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At each point p ∈ Qm∗, the real structure A ∈ Ap induces a splitting
TpQ

m∗ = V (A) ⊕ JV (A) into two orthogonal, maximal totally real subspaces
of the tangent space TpQ

m∗. Here V (A) (resp. JV (A)) is the (+1)-eigenspace
(resp. the (−1)-eigenspace) of A (see [7]). It then follows that we can choose a
real structure A ∈ Ap such that

N = cos(t)Z1 + sin(t)JZ2(1.5)

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π
4 . By using

JN = −ξ and JA = −AJ , it implies JN = cos(t)JZ1 − sin(t)Z2 (i.e., ξ = sin(t)Z2 − cos(t)JZ1),
AN = cos(t)Z1 − sin(t)JZ2,
Aξ = cos(t)JZ1 + sin(t)Z2,

(1.6)

and therefore g(Aξ,N) = g(AN, ξ) = 0 and g(Aξ, ξ) = −g(AN,N) = − cos(2t)
on M . So, we see that the unit vector Aξ is always tangent to M . Furthermore,
the anti-commuting property JA = −AJ regarding the real structure A and
the Kähler structure J provides

AN = AJξ = −JAξ = −ϕAξ − g(Aξ, ξ)N,(1.7)

and

ϕBX + g(X,ϕAξ)ξ = JAX = −AJX = −BϕX + η(X)ϕAξ(1.8)

for any tangent vector field X of M . In addition, from the property of A2 = I,
we get

B2X = X − g(ϕAξ,X)ϕAξ, BϕAξ = g(Aξ, ξ)ϕAξ,(1.9)

together (1.4) and (1.7). In [7], the Riemannian curvature tensor R̄ of Qm∗ is
introduced, as follows.

R̄(U, V )W = −g(V,W )U + g(U,W )V − g(JV,W )JU

+ g(JU,W )JV + 2g(JU, V )JW − g(AV,W )AU

+ g(AU,W )AV − g(JAV,W )JAU + g(JAU,W )JAV(1.10)

for arbitrary A ∈ A and U , V , W ∈ TQm∗. By using the Gauss and Weingarten
formulas, it is easy to see that the left side of (1.10) becomes

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z

= R(X,Y )Z − g(SY,Z)SX + g(SX,Z)SY

+ g((∇XS)Y, Z)N − g((∇Y S)X,Z)N

for any X, Y , Z ∈ TM . Using this fact and JAX = ϕBX + g(ϕAξ,X)ξ +
g(Aξ,X)N , together with (1.1), (1.4) and (1.7), we can obtain the following
two equations as the tangential and normal parts of (1.10), which are called
the equations of Gauss and Codazzi, respectively, for a real hypersurface M
in Qm.

R(X,Y )Z = −g(Y,Z)X + g(X,Z)Y − g(ϕY,Z)ϕX + g(ϕX,Z)ϕY
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+ 2g(ϕX, Y )ϕZ − g(BY,Z)BX + g(BX,Z)BY

− g(ϕBY,Z)ϕBX − g(ϕBY,Z)g(X,ϕAξ)ξ

+ g(ϕBX,Z)ϕBY + g(ϕBX,Z)g(Y, ϕAξ)ξ

− g(Y, ϕAξ)η(Z)ϕBX + g(X,ϕAξ)η(Z)ϕBY

+ g(SY,Z)SX − g(SX,Z)SY(1.11)

and

(∇XS)Y − (∇Y S)X = −η(X)ϕY + η(Y )ϕX + 2g(ϕX, Y )ξ

+ g(ϕAξ,X)BY − g(ϕAξ, Y )BX

− g(Aξ,X)ϕBY − g(ϕAξ, Y )g(Aξ,X)ξ

+ g(Aξ, Y )ϕBX + g(ϕAξ,X)g(Aξ, Y )ξ,(1.12)

where R and S denote the Riemannian curvature tensor and the shape operator
of M , respectively. In this paper, the right-hand side of (1.12) is denoted by
Ξ(X,Y ) for the sake of convenience. By means of this notation, (1.12) is written
as Ξ(X,Y ) = (∇XS)Y − (∇Y S)X, which will be used in Section 4.

Now let us focus our attention on a Hopf real hypersurface in the complex
hyperbolic quadric Qm∗. The Reeb vector field ξ of a real hypersurface M
in Qm∗ is said to be Hopf if it is invariant under the shape operator S of M .
The 1-dimensional foliation of M by the integral manifolds of the Reeb vector
field ξ is said to be the Hopf foliation of M . We say that M is Hopf real
hypersurface in Qm∗ if and only if the Hopf foliation of M is totally geodesic.
By using the fact of ϕξ = 0, together with (1.2) and (1.3), it can be easily seen
that a real hypersurface M in Qm∗ is Hopf if and only if the Reeb vector field ξ
is Hopf. From this point of view, the fact of M being Hopf means that the
Reeb vector field ξ satisfies Sξ = αξ, where α = g(Sξ, ξ). Hereafter, we call
the smooth function α = g(Sξ, ξ) the Reeb curvature function of M . Then, by
differentiating Sξ = αξ and using the equation of Codazzi (1.12), we get the
following:

Lemma 1.1 ([23]). Let M be a Hopf real hypersurface in Qm∗, m ≥ 3. Then
we obtain

Y α = (ξα)η(Y ) + 2g(Aξ, ξ)g(ϕAξ, Y )(1.13)

and

2SϕSY = α(Sϕ+ ϕS)Y − 2ϕY + 2g(Aξ, ξ)g(ϕAξ, Y )ξ

− 2η(Y )g(Aξ, ξ)ϕAξ − 2g(ϕAξ, Y )Aξ + 2g(Aξ, Y )ϕAξ(1.14)

for any tangent vector field Y on M .

On the other hand, as mentioned above, from (1.6) we obtain g(Aξ,N) = 0.
It means that the vector field Aξ is tangent to M in Qm, that is, Aξ ∈ TpM ,
p ∈ M . Taking the covariant derivatives of this formula with respect to the
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Levi-Civita connection ∇ and using the formula (∇̄XA)Y = q(X)JAY for any
tangent vector fields X and Y on M , we get

∇X(Aξ) = ∇̄X(Aξ)− g(SX,Aξ)N

= (∇̄XA)ξ +A(∇̄Xξ)− g(SX,Aξ)N

= q(X)JAξ +A(∇Xξ) + g(SX, ξ)AN − g(SX,Aξ)N

= q(X)
{
ϕAξ + g(Aξ, ξ)N

}
+BϕSX + g(AϕSX,N)N

− g(SX, ξ)
{
ϕAξ + g(Aξ, ξ)N

}
− g(SX,Aξ)N.

Then, by comparing the tangential and the normal components of the above
equation, we get

∇X(Aξ) = q(X)ϕAξ +BϕSX − g(SX, ξ)ϕAξ(1.15)

and

q(X)g(Aξ, ξ) = −g(ϕSX,AN) + g(SX, ξ)g(Aξ, ξ) + g(SX,Aξ)

= g(ϕSX, ϕAξ) + g(SX, ξ)g(Aξ, ξ) + g(SX,Aξ)

= g(SX,Aξ)− g(Aξ, ξ)g(SX, ξ)

+ g(SX, ξ)g(Aξ, ξ) + g(SX,Aξ)

= 2g(SX,Aξ).(1.16)

In particular, if M is Hopf, then (1.15) and (1.16), respectively, become

∇X(Aξ) =
(
q(X)− αη(X)

)
ϕAξ +BϕSX = κ(X)ϕAξ +BϕSX(1.17)

and

q(ξ)g(Aξ, ξ) = 2αg(Aξ, ξ),(1.18)

where κ(X) = q(X)− αη(X) for any X ∈ TM .
Let us consider the Hessian tensor of the Reeb curvature function α =

g(Sξ, ξ) which is defined by

Hess(α)(X,Y ) = g(∇Xgradα, Y )

for any X and Y tangent to M . Then, it satisfies

Hess(α)(X,Y ) = Hess(α)(Y,X),

that is, g(∇Xgradα, Y ) = g(∇Y gradα,X). Related to this property, in [30]
Woo-Lee-Suh gave:

Lemma 1.2 (see Lemma 3.5 in [30]). Let M be a Hopf real hypersurface in
the complex hyperbolic quadric Qm∗, m ≥ 3. Then we obtain

Y β = ∇Y

(
g(Aξ, ξ)

)
= −2g(SϕAξ, Y )

and

Y (ξα) = 2βg(SAξ, Y ) + ξ(ξα)η(Y )− 2αβg(Aξ, Y ),(1.19)
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where α = g(Sξ, ξ) and β = g(Aξ, ξ). Moreover, by using these formulas, the
Hessian property which is given by g(∇Xgradα, Y ) = g(∇Y gradα,X) can be
rearranged as

2βg(SAξ,X)η(Y )− 2αβg(Aξ,X)η(Y ) + (ξα)g(ϕSX, Y )

− 4g(SϕAξ,X)g(ϕAξ, Y )− 4g(SAξ,X)g(Aξ, Y ) + 2βg(BSX, Y )

= 2βg(SAξ, Y )η(X)− 2αβg(Aξ, Y )η(X) + (ξα)g(ϕSY,X)

− 4g(SϕAξ, Y )g(ϕAξ,X)− 4g(SAξ, Y )g(Aξ,X) + 2βg(BSY,X),

where BX = (AX)T denotes the tangential part of AX.

Now, let us define the structure Jacobi operator Rξ of a real hypersurface M
in Qm∗. Indeed, the structure Jacobi operator Rξ is a Jacobi operator with
respect to the structure vector field ξ given byRξY = R(Y, ξ)ξ for any Y ∈ TM .
Bearing in mind (1.11), it follows

RξY = −Y + η(Y )ξ − g(Aξ, ξ)BY + g(Aξ, Y )Aξ

+ g(ϕAξ, Y )ϕAξ + αSY − g(Sξ, Y )Sξ,(1.20)

where we have used Aξ = Bξ ∈ TM and α = g(Sξ, ξ). In particular, if M is
Hopf, then (1.20) becomes

RξY = −Y + η(Y )ξ − g(Aξ, ξ)BY + g(Aξ, Y )Aξ

+ g(ϕAξ, Y )ϕAξ + αSY − α2η(Y )ξ(1.21)

for any tangent vector field Y of M . Moreover, by taking the covariant deriv-
ative of (1.21) along the direction of Z ∈ TM , we can obtain

(∇ZRξ)Y = ∇Z(RξY )−Rξ(∇ZY )

= (1− α2)g(Y, ϕSZ)ξ + (1− α2)η(Y )ϕSZ

+ 2g(SϕAξ, Z)BY − β(∇ZB)Y + g(BϕSZ, Y )Aξ

+ g(Aξ, Y )BϕSZ + βg(SY,Z)ϕAξ − η(Y )g(SAξ, Z)ϕAξ

+ βκ(Z)η(Y )ϕAξ − g(BϕSZ, ϕY )ϕAξ

+ βg(ϕAξ, Y )SZ − g(ϕAξ, Y )g(SAξ, Z)ξ

+ βκ(Z)g(ϕAξ, Y )ξ + g(ϕAξ, Y )ϕBϕSZ

+ (Zα)SY + α(∇ZS)Y − 2α(Zα)η(Y )ξ,(1.22)

where we have used (1.2), (1.3) and (1.17).
On the other hand, by using (1.1), (1.4) and (1.7), together with (∇̄ZA)Y =

q(Z)JAY and JAY = ϕBY + g(ϕAξ, Y )ξ + g(Aξ, Y )N , we get

(∇ZB)Y = ∇Z(BY )−B(∇ZY )

= ∇̄Z(BY )− g(SZ,BY )N −B(∇ZY )

= ∇̄Z

(
AY − g(AY,N)N

)
− g(SZ,BY )N −B(∇ZY )

= (∇̄ZA)Y +A(∇̄ZY )− g
(
(∇̄ZA)Y +A(∇̄ZY ), N

)
N
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− g(AY, ∇̄ZN)N − g(AY,N)∇̄ZN − g(SZ,BY )N −B(∇ZY )

= q(Z)JAY +A(∇ZY ) + g(SZ, Y )AN − q(Z)g(JAY,N)N

− g(∇ZY,AN)N − g(SZ, Y )g(N,AN)N + g(AY, SZ)N

+ g(AY,N)SZ − g(SZ,BY )N −B(∇ZY )

= q(Z)ϕBY + q(Z)g(ϕAξ, Y )ξ − g(SZ, Y )ϕAξ − g(Y, ϕAξ)SZ,(1.23)

where we have used ∇̄XY = ∇XY + g(SX, Y )N and ∇̄XN = −SX for any
tangent vector fields X and Y of M (we call them the Gauss and Weingarten
formulas, respectively). In addition, the equation of Codazzi (1.12) gives

(∇ZS)Y = (∇Y S)Z − η(Z)ϕY + η(Y )ϕZ + 2g(ϕZ, Y )ξ

+ g(ϕAξ, Z)BY − g(ϕAξ, Y )BZ

− g(Aξ,Z)ϕBY − g(ϕAξ, Y )g(Aξ,Z)ξ

+ g(Aξ, Y )ϕBZ + g(ϕAξ, Z)g(Aξ, Y )ξ.(1.24)

Substituting (1.23) and (1.24) into (1.22) and using κ(Z) = q(Z) − αη(Z),
together with (1.13) and (1.16), it can be rearranged as

(∇ZRξ)Y

= (1− α2)g(Y, ϕSZ)ξ + (1− α2)η(Y )ϕSZ + 2g(SϕAξ, Z)BY

− 2g(SAξ, Z)ϕBY + βg(SZ, Y )ϕAξ + 2βg(Y, ϕAξ)SZ

+ g(BϕSZ, Y )Aξ + g(Aξ, Y )BϕSZ + βg(SY,Z)ϕAξ

+ η(Y )g(SAξ, Z)ϕAξ − αβη(Z)η(Y )ϕAξ − g(BϕSZ, ϕY )ϕAξ

− g(ϕAξ, Y )g(SAξ, Z)ξ − αβη(Z)g(ϕAξ, Y )ξ + g(ϕAξ, Y )ϕBϕSZ

+ (ξα)η(Z)SY + 2βg(ϕAξ, Z)SY + α(∇Y S)Z − αη(Z)ϕY

+ αη(Y )ϕZ + 2αg(ϕZ, Y )ξ + αg(ϕAξ, Z)BY − αg(ϕAξ, Y )BZ

− αg(Aξ,Z)ϕBY − αg(ϕAξ, Y )g(Aξ,Z)ξ + αg(Aξ, Y )ϕBZ

+ αg(ϕAξ, Z)g(Aξ, Y )ξ − 2α(ξα)η(Z)η(Y )ξ − 4αβg(ϕAξ, Z)η(Y )ξ(1.25)

for any tangent vector fields Y and Z of M .
With the help of these facts and formulas, in the remaining part of this

paper we will give a complete proof of our results given in the Introduction.

2. Proof of Theorem 1
- The singularity of unit normal vector field -

Let M be a Hopf real hypersurface in the complex hyperbolic quadric Qm∗,
m ≥ 3. In this section, we will prove that if M has a constant mean curvature
and its structure Jacobi operator Rξ is cyclic parallel, then the unit normal
vector field N of M is singular. In order to do this, let us denote α := g(Sξ, ξ)
and β := g(Aξ, ξ). The following facts are known for such smooth functions α
and β. Hereafter, let V be any open set of M .



CYCLIC PARALLEL STRUCTURE JACOBI OPERATOR 319

Remark 2.1. By (1.6), the fact that β = g(Aξ, ξ) identically vanishes on an
open set V gives the unit normal vector field N is A-isotropic on V. In fact,
bearing in mind (1.6), our assumption of β = 0 follows

0 = g(Aξ, ξ) = g
(
cot(t)JZ1 + sin(t)Z2, sin(t)Z2 − cos(t)JZ1

)
= − cos(2t),

where 0 ≤ t ≤ π
4 . That is, it implies t = π

4 . So, by (1.5), the unit normal
vector field N becomes

N = cos
(π
4

)
Z1 + sin

(π
4

)
JZ2 =

1√
2

(
Z1 + JZ2

)
for some orthonormal vectors Z1 and Z2 ∈ V (A) = {Z ∈ TQm∗ |AZ = Z},
which means that N is A-isotropic.

Remark 2.2. On Hopf real hypersurface M in Qm∗, the fact that the geodesic
Reeb flow α = g(Sξ, ξ) is either constant or vanishing on V implies that N is
singular on V. In fact, by means of (1.13), we get βϕAξ = 0 for these two cases
regarding α. If β = 0, by virtue of Remark 2.1, then N is A-isotropic. On the
other hand, if β ̸= 0, then we obtain ϕAξ = 0. Applying the structure tensor
field ϕ to this formula and using (1.2), it follows that

Aξ = βξ.(2.1)

As mentioned in the Introduction, it is known that the real structure A ∈ A is
an anti-linear involution on TQm∗, that is, A2X = X for any X ∈ TQm∗. So,
using this fact and (2.1) again, we get

ξ = A2ξ = βAξ = β2ξ,

that is, β2 = 1. Now, by our assumption β ̸= 0, the smooth function β satisfies
β = g(Aξ, ξ) = − cos(2t), 0 ≤ t < π

4 . Thus, we consequently have t = 0 for the
case of β ̸= 0. From this, the unit normal vector field N is rewritten as

N = cos(0)Z1 + sin(0)JZ2 = Z1 ∈ V (A),

which means that N is A-principal. Combining the discussions mentioned in
above two cases, it gives a complete proof of Remark 2.2.

Now, we want to derive some basic equations regarding the cyclic parallelism
of the structure Jacobi operator Rξ of M . As it is well known, our assumption
that the structure Jacobi operator Rξ of M in Qm∗ is cyclic parallel means
that Rξ satisfies

0 = g((∇XRξ)Y,Z) + g((∇Y Rξ)Z,X) + g((∇ZRξ)X,Y )(†)
for any tangent vector fields X, Y and Z of M . Taking X = Y = Z in the
above (†) becomes g((∇ZRξ)Z,Z) = 0. From this, we get

g((∇X+Y Rξ)(X + Y ), (X + Y )) = 0,

which gives

0 = g((∇Y Rξ)X,X) + g((∇XRξ)Y,X) + g((∇Y Rξ)Y,X)
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+ g((∇XRξ)X,Y ) + g((∇Y Rξ)X,Y ) + g((∇XRξ)Y, Y )

= g((∇Y Rξ)X,X) + 2g((∇XRξ)X,Y ) + 2g((∇Y Rξ)Y,X)

+ g((∇XRξ)Y, Y ).(2.2)

Actually, the structure Jacobi operator Rξ of M is symmetric. From this, we
get g((∇XRξ)Y, Z) = g(Y, (∇XRξ)Z). By virtue of this property, we get

g((∇XRξ)X,Y ) = g((∇XRξ)Y,X)

and

g((∇Y Rξ)X,Y ) = g((∇Y Rξ)Y,X).

So, the second equality in (2.2) holds. Using this formula, we prove:

Lemma 2.3. Let M be a Hopf real hypersurface with cyclic parallel structure
Jacobi operator in the complex hyperbolic quadric Qm∗, m ≥ 3. Then, we get

(ξα)(h− α) = 0,

where h is the trace of the shape operator S of M , that is, h := TrS.

Proof. By our assumption that the structure Jacobi operator Rξ of M is cyclic
parallel, (2.2) gives

g((∇ξRξ)X,X) + 2g((∇XRξ)X, ξ)

+ 2g((∇ξRξ)ξ,X) + g((∇XRξ)ξ, ξ) = 0(2.3)

for Y = ξ and X ∈ TM . Using (1.24), we get

(∇ξRξ)X = −3αβϕBX + 2αβη(X)ϕAξ + (ξα)SX − α(ξα)η(X)ξ

+ αβg(ϕAξ,X)ξ + α2ϕSX − αSϕSX − αϕX

− αg(ϕAξ,X)Aξ + αg(Aξ,X)ϕAξ(2.4)

and

(∇XRξ)ξ = (1− α2)ϕSX + g(SϕAξ,X)Aξ − 2g(SAξ,X)ϕAξ

+ αβη(X)ϕAξ + βBϕSX + g(SAξ,X)ϕAξ + α(ξα)η(X)ξ

− αβg(ϕAξ,X)ξ + α(∇ξS)X + αϕX + αg(ϕAξ,X)Aξ

− αg(Aξ,X)ϕAξ + αβϕBX − 2α(ξα)η(X)ξ.

From these two formulas and (1.12), we obtain the following four equations.

g((∇ξRξ)X,X) = −3αβg(ϕBX,X) + 2αβη(X)g(ϕAξ,X)

+ (ξα)g(SX,X)− α(ξα)η(X)η(X)

+ αβg(ϕAξ,X)η(X) + α2g(ϕSX,X)

− αg(SϕSX,X)− αg(ϕX,X)

− αg(ϕAξ,X)g(Aξ,X) + αg(Aξ,X)g(ϕAξ,X),(2.5)
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2g((∇XRξ)X, ξ) = 2g((∇XRξ)ξ,X)

= 2(1− α2)g(ϕSX,X) + 2g(SϕAξ,X)g(Aξ,X)

− 2g(SAξ,X)g(ϕAξ,X) + 2αβη(X)g(ϕAξ,X)

+ 2βg(BϕSX,X) + 2α2g(ϕSX,X)

− 2αg(SϕSX,X)− g(ϕAξ,X)g(Aξ,X)

− 2αβg(ϕBX,X) + 2αg(Aξ,X)g(ϕAξ,X)

+ 2αg(ϕAξ,X)g(Aξ,X)− 2αg(Aξ,X)g(ϕAξ,X)

+ 2αβg(ϕBX,X),(2.6)

2g((∇ξRξ)ξ,X) = g((∇ξRξ)X, ξ) = 0,(2.7)

and

g((∇XRξ)ξ, ξ) = αg((∇ξS)X, ξ)− α(ξα)η(X)

= αg((∇ξS)ξ,X)− α(ξα)η(X) = 0.(2.8)

By means of (2.7) and (2.8), the equation (2.3) is rewritten as

g((∇ξRξ)X,X) + 2g((∇XRξ)X, ξ) = 0.(2.9)

Let {e1, e2, . . . , e2m−1 := ξ} be a basis of the tangent vector space TpM of M
at p ∈ M . From (2.5) and (2.6), contracting X on M , (2.9) gives (ξα)(h−α) =

0, where we have used that h := Tr(S) and Tr(C) =
∑2m−1

i=1 g(Cei, ei) = 0 for
any skew-symmetric operator C of M . Here we say that a tensor C is skew-
symmetric if C satisfies g(CX, Y ) = −(CY,X) for any tangent vector fields X
and Y of M . It completes a proof of our lemma. □

By virtue of Remarks 2.1 and 2.2, we know that when the smooth function α
(or β, respectively) identically vanishes on M , the unit normal vector field N
of M in Qm∗ is singular. So, in the following lemmas, let us consider for a Hopf
real hypersurface satisfying α ̸= 0 and β ̸= 0. With this understood, we first
prove:

Lemma 2.4. Let M be a Hopf real hypersurface with cyclic parallel structure
Jacobi operator in the complex hyperbolic quadric Qm∗, m ≥ 3. If the smooth
functions β = g(Aξ, ξ) and α = g(Sξ, ξ) satisfying ξα = 0 are non-vanishing
on V, then the unit normal vector field N of V in Qm∗ is singular.

Proof. By our assumptions that (ξα) = 0 and β ̸= 0, (1.19) gives

SAξ = αAξ.(2.10)

Putting Y = Aξ in (1.14) and using (2.10), we get αSϕAξ = (α2 − 2β2)ϕAξ.
Because the Reeb function α satisfies α ̸= 0 on V, it follows that

SϕAξ =
α2 − 2β2

α
ϕAξ =: σϕAξ.(2.11)
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On the other hand, putting ξ instead of Y in (1.21) gives Rξξ = 0. From
this and (1.3), we get

(∇XRξ)ξ = ∇X(Rξξ)−Rξ(∇Xξ) = −RξϕSX

for any tangent vector field X of M . Using this formula and the symmetric
property of Rξ, the cyclic parallelism of Rξ for Y = ξ becomes

0 = g((∇XRξ)ξ, Z) + g((∇ξRξ)Z,X) + g((∇ZRξ)X, ξ)

= g((∇XRξ)ξ, Z) + g((∇ξRξ)Z,X) + g((∇ZRξ)ξ,X)

= −g(RξϕSX,Z) + g((∇ξRξ)Z,X)− g(RξϕSZ,X)

= g(−RξϕSX + (∇ξRξ)X + SϕRξX,Z),

which yields

−RξϕSX + (∇ξRξ)X + SϕRξX = 0.(2.12)

By using (2.4), the previous equation (2.12) becomes

SϕRξX −RξϕSX − 2αβϕBX + 2αβη(X)ϕAξ + (ξα)SX

− α(ξα)η(X)ξ + αβg(ϕAξ,X)ξ + α2ϕSX − αSϕSX

− αϕX − αg(ϕAξ,X)Aξ − αβϕBX + αg(Aξ,X)ϕAξ = 0.(2.13)

Moreover, by using (1.21) and ϕ2Aξ = −Aξ + βξ, we get

SϕRξX = −SϕX − βSϕBX + g(Aξ,X)SϕAξ

− g(ϕAξ,X)SAξ + αβg(ϕAξ,X)ξ + αSϕSX

and

RξϕSX = −ϕSX − βBϕSX + g(Aξ, ϕSX)Aξ

+ g(Aξ, SX)ϕAξ − αβη(X)ϕAξ + αSϕSX.

So, (2.13) can be rearranged as

− SϕX − βSϕBX + g(Aξ,X)SϕAξ − g(ϕAξ,X)SAξ

+ αβg(ϕAξ,X)ξ + ϕSX + βBϕSX − g(Aξ, ϕSX)Aξ

− g(Aξ, SX)ϕAξ + αβη(X)ϕAξ − 2αβϕBX

+ 2αβη(X)ϕAξ + (ξα)SX − α(ξα)η(X)ξ + αβg(ϕAξ,X)ξ

+ α2ϕSX − αSϕSX − αϕX − αg(ϕAξ,X)Aξ

− αβϕBX + αg(Aξ,X)ϕAξ = 0.(2.14)

Bearing in mind (2.10) and (2.11), putting X = Aξ in (2.14) gives

(4αβ2 + α3 − α2σ)ϕAξ = 0,

where we have used BAξ = ξ, g(Aξ,Aξ) = 1, g(ϕAξ,Aξ) = 0, BϕAξ = βϕAξ,
and ξα = 0. From our assumptions α ̸= 0 and β ̸= 0 on V, together with
ασ = α2 − 2β2 given in (2.11), it follows ϕAξ = 0. By using the proof given in
Remark 2.2, we see that the unit normal vector field N is A-principal. □
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In fact, combining the above discussions and remarks mentioned in this
section, we are ready to give a complete proof of our Theorem 1 as follows.

Proof of Theorem 1. For the proof, we first assume that the structure Jacobi
operator Rξ of a Hopf real hypersurface M with constant mean curvature
in Qm∗ is cyclic parallel. And, as an open subset of M , we take

U = {p ∈ M |α(p) ̸= 0}.
Then, we have M = U ∪ Int(M\U) ∪ ∂(M\U). Here, Int(M\U) and ∂(M\U)
stand for the interior and boundary sets of M\U , respectively, where M\U
denotes the orthogonal complement of the set U in M .

Case 1. On U ⊂ M

Let W = {p ∈ U |β(p) ̸= 0}. Then, W is an open subset of U . So, we can
consider the following three cases.

• Subcase 1-1. p ∈ W ⊂ U
At any point p ∈ W, it holds that α(p) ̸= 0 and β(p) ̸= 0. It follows
from Lemma 2.3 that the cyclic parallelism of the structure Jacobi
operator Rξ gives

(ξα)(p) · (h− α)(p) = 0.(2.15)

So, we may put an open set Γ := {p ∈ W | (ξα)(p) ̸= 0}, which means
that W = Γ∪ Int(W\Γ)∪ ∂(W\Γ). With this set-up, we now consider
the following three cases:

– Subcase 1-1-(i). p ∈ Γ ⊂ W
At any point p ∈ Γ, it holds that α(p) ̸= 0, β(p) ̸= 0 and (ξα)(p) ̸=
0. Thus, (2.15) says that the Reeb curvature function α = g(Sξ, ξ)
satisfies α = h on Γ. By our assumption that M has constant
mean curvature h, it implies that α is constant on Γ. From this
and Remark 2.2, we can see that the unit normal vector Np is
singular. Hence, the normal vector field N is singular on Γ.

– Subcase 1-1-(ii). p ∈ Int(W\Γ) ⊂ W
At p ∈ Int(W\Γ), it holds that α(p) ̸= 0, β(p) ̸= 0, and (ξα)(p) =
0. Then, by virtue of Lemma 2.4, we see that the unit normal
vector Np is A-principal. Consequently, the unit normal vector
field N is singular on Int(W\Γ).

– Subcase 1-1-(iii). p ∈ ∂(W\Γ) ⊂ W
Given a point p ∈ ∂(W\Γ), there is a sequence (sn) such that
sn → p for each point sn ∈ (W\Γ). Then, for each sn we obtain
α(sn) ̸= 0, β(sn) ̸= 0, and (ξα)(sn) = 0. By virtue of the proof of
Lemma 2.4, we get ϕAξ(sn) = 0 for any sn. Thus, the continuity
of vector field ϕAξ gives

0 = lim
n→∞

ϕAξ(sn) = ϕAξ( lim
n→∞

sn) = ϕAξ(p).



324 J. H. KIM, H. LEE, AND Y. J. SUH

Applying the proof used in Remark 2.2, it means that β(p) = −1.
So, we see that the unit normal vector Np is A-principal, which
means that the unit normal vector field N is singular on ∂(W\Γ).

By combining Subcase 1-1-(i)–(iii) altogether, we can see that the unit
normal vector field N is singular on W = {p ∈ U |β(p) ̸= 0}.

• Subcase 1-2. p ∈ Int(U\W) ⊂ U
We get β(p) = 0 for all p ∈ Int(U\W). By using Remark 2.1, we obtain
that the unit normal vector field N is A-isotropic. So, we see that N
is singular on Int(U\W).

• Subcase 1-3. p ∈ ∂(U\W) ⊂ U
Since p is a boundary point of U\W, there is a sequence (pn) such that
pn → p, where each point pn belongs to U\W. It means that β(pn) = 0
for each pn. From this fact and the continuity of β = g(Aξ, ξ), we get

0 = lim
n→∞

β(pn) = β( lim
n→∞

pn) = β(p).

By using again the proof of Remark 2.1, we see that the unit normal
vector Np at p ∈ ∂(U\W) is A-isotropic. So, we can assert that the
unit normal vector field N on ∂(U\W) is singular.

Summing up above three cases, we conclude that the unit normal vector field N
is singular on U = {p ∈ M |α(p) ̸= 0}.
Case 2. On Int(M\U)

Let p be a point of Int(M\U). Then, it holds α(p) = 0 for all p. It means
that the Reeb curvature function α = g(Sξ, ξ) vanishes on Int(M\U). So, by
virtue of Remark 2.2 we conclude that the unit normal vector field N is singular
on Int(M\U).
Case 3. On ∂(M\U)

Given a point p ∈ ∂(M\U), there is a sequence (qn) such that qn → p for
each point qn ∈ M\U . From this, we obtain α(qn) = 0 for all qn. So, by (1.13)
we see that (βϕAξ)(qn) = 0 for all qn. By the continuity of β and ϕAξ on M ,
it follows that

0 = lim
n→∞

(βϕAξ)(qn) = lim
n→∞

(
β(qn)ϕAξ(qn)

)
= β( lim

n→∞
qn)ϕAξ( lim

n→∞
qn)

= β(p)ϕAξ(p)

= (βϕAξ)(p).

By using the same proof of Remark 2.2, we obtain that the normal vector Np

at p is singular, which means that the unit normal vector field N on ∂(M\U)
is also singular.

Summarizing the above Cases 1, 2 and 3, we give a complete proof of our
Theorem 1 mentioned in the Introduction. □
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3. Proof of Theorem 2
- with the unit A-isotropic normal vector field -

Let M be a Hopf real hypersurface with constant mean curvature in the
complex hyperbolic quadric Qm∗, m ≥ 3, whose the structure Jacobi opera-
tor Rξ is cyclic parallel. By virtue of Theorem 1, we have known that the unit
normal vector field N of M is singular. That is, N becomes either A-isotropic
or A-principal.

So, in this section, we consider the case that the normal vector field N of a
Hopf real hypersurface M with cyclic parallel structure Jacobi operator in Qm∗

is A-isotropic. It means that N is expressed as N = 1√
2
(Z1 + JZ2) for some

orthonormal unit vector fields Z1, Z2 which belong to the distribution V (A) =
{Z ∈ TQm∗ |AZ = Z}. Bearing in mind the property of real structure A ∈ A,
it gives t = π

4 in (1.5). Applying this fact to (1.6) and using them, we get

g(Aξ,N) =
1

2
g
(
JZ1 + Z2, Z1 + JZ2

)
= 0,

g(Aξ, ξ) =
1

2
g
(
JZ1 + Z2, Z2 − JZ1

)
= 0,

g(AN,N) =
1

2
g
(
Z1 − JZ2, Z1 + JZ2

)
= 0.

By such equations, (1.4) and (1.7) assure that the vector fields Aξ and AN are
tangent to M , that is, Aξ = Bξ and AN = −ϕAξ. Furthermore, taking the
covariant derivative to g(Aξ,N) = 0 and g(AN,N) = 0 with respect to the
Levi-Civita connection ∇̄ and using the Weingarten and Gauss formulas, we
obtain

SAξ = 0 and SAN = −SϕAξ = 0.(3.1)

So, the tangent vector space TpM at any point p ∈ M is composed of three
distributions Span{ξ}, Span{Aξ, ϕAξ} and Q, that is, TpM = Span{ξ} ⊕
Span{Aξ, ϕAξ} ⊕ Q. Here, Q is a (2m − 4)-dimensional distribution given
by Q = {X ∈ TpM |X⊥ξ, Aξ, ϕAξ}.

On the other hand, by (1.21), the structure Jacobi operator Rξ of a Hopf
real hypersurface M with A-isotropic unit normal vector field N in Qm∗ and
its derivative are given as

RξY = −Y + η(Y )ξ + g(Aξ, Y )Aξ + g(ϕAξ, Y )ϕAξ + αSY − α2η(Y )ξ(3.2)

and

(∇XRξ)Y = ∇X(RξY )−Rξ(∇XY )

= g(Y, ϕSX)ξ + η(Y )ϕSX + g(∇X(Aξ), Y )Aξ

+ g(Aξ, Y )∇X(Aξ) + g((∇Xϕ)Aξ, Y )ϕAξ

− g(∇X(Aξ), ϕY )ϕAξ + g(ϕAξ, Y )(∇Xϕ)Aξ

+ g(ϕAξ, Y )ϕ(∇XAξ) + (Xα)SY + α(∇XS)Y
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− 2α(Xα)η(Y )ξ − α2g(Y, ϕSX)ξ − α2η(Y )ϕSX(3.3)

for any X and Y ∈ TM , respectively.
In Section 2, we obtained that regardless of the singularity of the unit nor-

mal vector field N of M the cyclic parallelism of Rξ gives (2.14) for Y = ξ.
Accordingly, applying our assumption that N is A-isotropic, that is, (3.1) and
β := g(Aξ, ξ) = 0, (2.14) becomes

− SϕX + ϕSX + (ξα)SX − α(ξα)η(X)ξ + α2ϕSX

− αSϕSX − αϕX − αg(ϕAξ,X)Aξ + αg(Aξ,X)ϕAξ = 0.(3.4)

On the other hand, as N is A-isotropic, (1.14) gives

2SϕSX = αSϕX + αϕSX − 2ϕX − 2g(ϕAξ,X)Aξ + 2g(Aξ,X)ϕAξ.

From this, (3.4) can be arranged as

(α2 + 2)ϕSX + 2(ξα)SX − (α2 + 2)SϕX − 2α(ξα)η(X)ξ = 0(3.5)

for any tangent vector field X of M .
Now, let us take some unit tangent vector field X0 ∈ Q such that SX0 =

λX0. Here, the distribution Q is given by Q = {X ∈ TM |X⊥ξ, Aξ, ϕAξ}.
Then, for such an X0 ∈ Q the equation (3.5) becomes

(α2 + 2)SϕX0 = λ(α2 + 2)ϕX0 + 2λ(ξα)X0,

which is the same as

SϕX0 = λϕX0 + 2(ξα)
λ

α2 + 2
X0.(3.6)

Moreover, putting Y = X0 in (1.14) and using SX0 = λX0, we get

(2λ− α)SϕX0 = (αλ− 2)ϕX0.(3.7)

Substituting (3.6) into (3.7) provides

(2λ− α)
{
λϕX0 + 2(ξα)

λ

α2 + 2
X0

}
= (αλ− 2)ϕX0.(3.8)

Taking the inner product of (3.8) with X0 yields

2λ(ξα)
(2λ− α)

α2 + 2
= 0,

which implies

(ξα)λ(2λ− α) = 0.(3.9)

Let us denote U = {p ∈ M | (ξα)(p) ̸= 0}, which is an open subset of M .
For this open set U , let us consider three cases as follows.

Case I. On U ⊂ M

Since (ξα)(p) ̸= 0 at every point p ∈ U , (3.9) gives us

αλ = 2λ2.(3.10)
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On the other hand, taking the inner product of (3.8) with ϕX0 and using the
fact of g(ϕX0, ϕX0) = 1, we get

λ2 − αλ+ 1 = 0.

Substituting (3.10) into this formula becomes λ2 = 1, that is, λ = ±1. From
this and (3.10), we obtain α = ±2. It means that α := g(Sξ, ξ) is constant
on U .

Case II. On Int(M\U)
Now, M is a Hopf real hypersurface with A-isotropic unit normal vector

field N in Qm∗. By (1.13), we obtain

Y α = (ξα)η(Y )(3.11)

for any tangent vector field Y of M .

On the other hand, it holds that (ξα)(p) = 0 at any point p ∈ Int(M\U).
By virtue of this fact, (3.11) assure that the smooth function α := g(Sξ, ξ) is
constant on Int(M\U).

Case III. On ∂(M\U)
Let p be a point of ∂(M\U), where ∂(M\U) denotes the boundary set

of M\U in M . Then, there is a sequence (pn) such that pn → p, that is,
(ξα)(pn) = 0 for each point pn ∈ M\U . So, (3.11) yields (Y α)(pn) = 0. From
this and the continuity of Y α on M , we get

0 = lim
n→∞

(Y α)(pn) = (Y α)( lim
n→∞

pn) = (Y α)(p),

which means that α is constant on ∂(M\U).
Summing up above three cases, we assert:

Lemma 3.1. Let M be a Hopf real hypersurface with cyclic parallel structure
Jacobi operator in the complex hyperbolic quadric Qm∗, m ≥ 3. If the unit
normal vector field N of M is A-isotropic, then a smooth function α = g(Sξ, ξ)
is constant on M .

By virtue of Lemma 3.1, the equation (3.5) is rearranged as

(α2 + 2)(ϕSX − SϕX) = 0(3.12)

for any X ∈ TM . From this and Theorem A, we obtain:

Lemma 3.2. Let M be a Hopf real hypersurface with cyclic parallel structure
Jacobi operator in the complex hyperbolic quadric Qm∗, m ≥ 3. If the unit
normal vector field N of M is A-isotropic, then M has an isometric Reeb flow.
Moreover, M is locally congruent to an open part of the following Hopf real
hypersurfaces in Qm∗:

(T ∗
A) (only if m = 2k is even) A tube with radius r ∈ R+ around the com-

plex totally geodesic embedding of the complex hyperbolic space CHk

into Q2k∗.
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(H∗
A) A horosphere in Qm∗ whose center at infinity is singular and of type

A-isotropic.

We call such model spaces given in Lemma 3.2 the real hypersurfaces of
Type (A) in Qm∗, which is denoted by MA. We introduce some characteriza-
tions of MA, as follows.

Proposition A ([23]). Let MA be the real hypersurfaces of Type (A) in Qm∗,
m ≥ 3. Then the following holds:

(i) A real hypersurface MA is Hopf.
(ii) The unit normal vector field N of MA is singular and A-isotropic.
(iii) The shape operator S of MA commutes with the structure tensor field ϕ,

that is, Sϕ = ϕS. It means that MA has isometric Reeb flow.
(iv) MA has constant principal curvatures, and in particular constant mean

curvature. Then the principal curvatures of MA with respect to the unit
normal vector field N and the corresponding principal curvature spaces are
given in Table 1. Here, C and Q are the maximal holomorphic subbundle
and the maximal A-invariant subbundle of TMA, respectively. In addi-
tion, TCHk and νCHk stand for the tangent and normal bundle of CHk,
respectively.

Table 1. Principal curvatures of model spaces of MA

Type Eigenvalues Eigenspace Multiplicity

(T ∗
A) α=2 coth(2r) Tα=RJN mα=1

β=0 Tβ=C⊖Q=Span{Aξ,ϕAξ} mβ=2

λ=tanh(r) Tλ=TCHk⊖(C⊖Q) mλ=2k−2

µ=coth(r) Tµ=νCHk⊖CνMA mµ=2k−2

(H∗
A) α=2 Tα=RJN mα=1

β=0 Tβ=C⊖Q=Span{Aξ,ϕAξ} mβ=2

σ=1 Tσ=Q mσ=2m−4

In particular, on a model space (T ∗
A) it holds

(v) B(Tλ) = Tµ and B(Tµ) = Tλ, that is, SBX = µBX for X ∈ Tλ and
SBX = λBX for X ∈ Tµ.

(vi) ϕ(Tλ) = Tλ and ϕ(Tµ) = Tµ, that is, SϕX = λϕX for X ∈ Tλ and
SϕX = µϕX for X ∈ Tµ.

By using the information of MA given in Proposition A, in the remaining
part of this section, we consider the converse statement of Lemma 3.2, that is,
whether a real hypersurface of Type (A) in Qm∗ satisfies all conditions given in
Lemma 3.2 or not? In fact, by (i) and (ii) in Proposition A, we see that a real
hypersurface MA is Hopf with A-isotropic unit normal vector field N in Qm∗,
m ≥ 3. So, from now on, we want to show whether or not the model space MA

has the cyclic parallel structure Jacobi operator.
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In order to do this, let us assume that the structure Jacobi operator Rξ of
MA is cyclic parallel. Then, it holds that

g((∇XRξ)Y,Z) + g((∇Y Rξ)Z,X) + g((∇ZRξ)X,Y ) = 0(†)

for any X, Y and Z ∈ TMA = Span{ξ} ⊕ Span{Aξ, ϕAξ} ⊕ Q.
Putting Y = Aξ in (3.3) and using SAξ = SϕAξ = 0 gives

(∇XRξ)Aξ = g(∇X(Aξ), Aξ)Aξ +∇X(Aξ)

− g(∇X(Aξ), ϕAξ)ϕAξ + α(∇XS)Aξ

= BϕSX − αSBϕSX,(3.13)

where we have used ∇X(Aξ) = (q(X) − αη(X))ϕAξ + BϕSX, (∇Xϕ)Aξ = 0,
BAξ = B2ξ = ξ, BϕAξ = 0 and

(∇XS)Aξ = ∇X(SAξ)− S(∇XAξ)

= −(q(X)− αη(X))SϕAξ − SBϕSX = −SBϕSX.(3.14)

And, substituting X = Aξ and Y = Z into (3.3) we get

(∇AξRξ)Z = α(∇AξS)Z,(3.15)

where we have used ∇Aξ(Aξ) = q(Aξ)ϕAξ and (∇Aξϕ)Aξ = 0. From (3.13)
and (3.15), the cyclic parallelism of Rξ for Y = Aξ and X,Z ∈ TMA gives

0 = g((∇XRξ)Aξ,Z) + g((∇AξRξ)Z,X) + g(X, (∇ZRξ)Aξ)

= g(BϕSX − αSBϕSX,Z) + g(α(∇AξS)Z,X) + g(X,BϕSZ − αSBϕSZ)

= g(BϕSX − αSBϕSX + α(∇AξS)X − SϕBX + αSϕBSX,Z),

which is the same as

BϕSX − αSBϕSX + α(∇AξS)X − SϕBX + αSϕBSX = 0.(3.16)

In addition, by using (1.12) and (3.14), together with BAξ = ξ and g(Aξ, ξ) =
0, we get

(∇AξS)X = (∇XS)(Aξ) + η(X)ϕAξ − ϕBX

= −SBϕSX + η(X)ϕAξ − ϕBX.

From this, (3.16) can be rearranged as

BϕSX − 2αSBϕSX + αη(X)ϕAξ − αϕBX − SϕBX + αSϕBSX=0(3.17)

for any tangent vector field X of MA.
Now, let us take X0 instead of X in (3.17), where X0 is a unit vector field

X0 belonging to Q = {X ∈ TMA |X⊥ξ, Aξ, ϕAξ}. Then, by virtue of Propo-
sition A, we can put SX0 = τX0, where

τ =

 λ for X0 ∈ Tλ ⊂ Q ⊂ T (T ∗
A),

µ for X0 ∈ Tµ ⊂ Q ⊂ T (T ∗
A),

σ for X0 ∈ Q ⊂ T (H∗
A).
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By using (1.8), we get ϕBX0 = −BϕX0. So, (3.17) gives

−(α+ τ)ϕBX0 + (3ατ − 1)SϕBX0 = 0.(3.18)

As X0 ∈ Q, together with (1.9) and BAξ = B2ξ, the tangent vector field BX0

ofMA satisfies g(BX0, BX0) = g(B2X0, X0) = 1 and g(BX0, ξ)=g(BX0, ϕAξ)
= g(BX0, Aξ) = 0. It implies that BX0 is a unit tangent vector field belongs
to Q. From this and Proposition A, we see that BX0 also becomes a principal
vector field. Therefore, we may write SBX0 = δBX0. Moreover, from this fact
and (iii) in Proposition A, we obtain

SϕBX0 = ϕSBX0 = δϕBX0.

Hence, (3.18) which is the cyclic parallelism of Rξ with respect to X0 ∈ Q and
Y = Aξ is rearranged as

(−α− τ + 3ατδ − δ)ϕBX0 = 0,(3.19)

where SX0 = τX0 and SBX0 = δBX0.

• On (H∗
A)

By using the information of principal curvatures of (H∗
A), we get SX = X

and SBX = BX for any X ∈ Q. Since X0 and BX0 belong to Q, it follows
that SX0 = τX0 = X and SBX0 = δBX0 = BX0, that is, τ = δ = 1. Using
these facts, (3.19) provides

2(α− 1)ϕBX0 = 0.(3.20)

On the other hand, by (1.2) and (1.9), together with Aξ = Bξ, we know that
ϕBX0 is a unit tangent vector field belongs to Q ⊂ T (H∗

A). So, (3.20) tells
us α = 1, which makes a contradiction for α = 2. Hence, we assert that the
structure Jacobi operator Rξ of (H∗

A) is not cyclic parallel.

• On (T ∗
A)

Since the distribution Q of (T ∗
A) can be decomposed as Q = Tλ ⊕ Tµ and

B(Tλ) = Tµ (see (v) in Proposition A), we get τ = λ and δ = µ for X0 ∈ Tλ ⊂
Q ⊂ T (T ∗

A). Bearing in mind ϕBX0 ̸= 0, the equation (3.19) gives

α = 0,

where we have used α = λ + µ and λµ = 1. It makes a contradiction for
α = 2 coth(2r), r ∈ R+. Therefore, we conclude that the structure Jacobi
operator Rξ of (T ∗

A) does not satisfy the property of cyclic parallel.

Summing up the discussions mentioned in Section 3, we conclude:

Proposition 3.3. There does not exist any Hopf real hypersurface M with
cyclic parallel structure Jacobi operator and A-isotropic unit normal vector field
in Qm∗, m ≥ 3.

Remark. Theorem 1 and Proposition 3.3 assure that the unit normal vector
field N of M in Qm∗ is A-principal if M is a Hopf real hypersurface with
constant mean curvature in the complex hyperbolic quadric Qm∗, m ≥ 3,
whose structure Jacobi operator is cyclic parallel.



CYCLIC PARALLEL STRUCTURE JACOBI OPERATOR 331

4. Proof of Theorem 2
- with unit A-principal normal vector field -

Let M be a Hopf real hypersurface with cyclic parallel structure Jacobi
operator in the complex hyperbolic quadric Qm∗, m ≥ 3. In this section, we
consider the case that a unit normal vector field N of M in Qm∗ is A-principal.
By virtue of the definition of an A-principal tangent vector field of Qm∗, the
unit normal vector field N of M is expressed as N = Z1 ∈ V (A), that is, t = 0
in (1.5). Moreover, by (1.6), it gives

Aξ = JZ1 = −ξ and AN = Z1 = N.(4.1)

From these facts, we obtain some useful equations regarding A-principal normal
vector field, as follows.

Lemma 4.1 (see Lemma 5.1 in [30]). Let M be a real hypersurface with A-
principal unit normal vector field N in the complex hyperbolic quadric Qm∗,
m ≥ 3. Then, the following facts hold on M .

(i) AX = BX where BX is a tangential part of AX,
(ii) AϕX = −ϕAX,
(iii) AϕSX = −ϕSX and q(X) = 2g(SX, ξ),
(iv) ASX = SX − 2g(SX, ξ)ξ and SAX = SX − 2η(X)Sξ

for any tangent vector field X of M .

Furthermore, it is well known that a Hopf real hypersurface with A-principal
unit normal vector field in Qm∗ becomes a contact real hypersurface with con-
stant mean curvature (see Proposition 5.3 in [30]). Therefore, by this fact and
Theorem B mentioned in Section 1, we obtain the following:

Proposition 4.2. Let M be a Hopf real hypersurface with cyclic parallel struc-
ture Jacobi operator in the complex hyperbolic quadric Qm∗, m ≥ 3. If the unit
normal vector field N of M in Qm∗ is A-principal, then M is locally congruent
to an open part of the following contact real hypersurfaces in Qm∗:

(T ∗
B1

) A tube of radius r > 0 around the (m− 1)-dimensional complex hyper-

bolic quadric Qm−1∗ which is embedded in Qm∗ as a totally geodesic
complex hypersurface.

(T ∗
B2

) A tube of radius r > 0 around the m-dimensional real hyperbolic space
RHm which is embedded in Qm∗ as a real space form of Qm∗.

(H∗
B) A horosphere in Qm∗ whose center at infinity is the equivalence class

of an A-principal geodesic in Qm∗.

We call such contact hypersurfaces the real hypersurfaces of Type (B) in Qm∗,
which is denoted by MB . For the model spaces MB , we give their geometric
structures in detail, as follows.

Proposition B ([7]). Let MB be a tubes (T ∗
B1

), (T ∗
B2

) and a horosphere (H∗
B)

in Qm∗, m ≥ 3. For MB the following statements hold:
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(i) Every unit normal vector N of MB is A-principal.
(ii) MB is a Hopf hypersurface, that is, Sξ = αξ.
(iii) The shape operator S and the structure tensor field ϕ satisfy Sϕ+ϕS = 2

αϕ
(it means that MB is contact).

(iv) A contact hypersurface MB has constant principal curvatures, and in par-
ticular constant mean curvature. Then the principal curvatures of MB

with respect to the unit normal vector field N and the corresponding prin-
cipal curvature spaces are given in Table 2.

Table 2. Principal curvatures of model spaces of MB

Type Eigenvalues Eigenspace Multiplicity

(T ∗
B1

) α=−
√
2 coth(

√
2r) Tα=RJN mα=1

λ=0 Tλ=JV (A)∩C={X∈C |AX=

−X}

mλ=m−1

µ=−
√
2 tanh(

√
2r) Tµ=V (A)∩C={X∈C |AX=X} mµ=m−1

(T ∗
B2

) α=−
√
2 tanh(

√
2r) Tα=RJN mα=1

λ=0 Tλ=JV (A)∩C={X∈C |AX=

−X}

mλ=m−1

µ=−
√
2 coth(

√
2r) Tµ=V (A)∩C={X∈C |AX=X} mµ=m−1

(H∗
B) α(=µ)=−

√
2 Tα(=Tµ)=(V (A)∩C)⊕RJN mα(=mµ)=m

λ=0 Tλ=JV (A)∩C mλ=m−1

Remark 4.3. The fact of MB being contact assures that the structure tensor ϕ
maps Tλ onto Tµ, and vice versa. That is, ϕ(Tλ) = Tµ and ϕ(Tµ) = Tλ. On the
other hand, the fact of (iv) in Lemma 4.1 tells us that the eigenspaces Tλ and Tµ

are invariant under the real structure A, i.e., A(Tλ) = Tλ and A(Tµ) = Tµ.

Now, by using the information of MB given in Proposition B, in the re-
maining part of this section, let us check whether or not the structure Jacobi
operator Rξ of MB is cyclic parallel.

In fact, by (i) in Proposition B, a contact real hypersurface MB has an
A-principal unit normal vector field N in Qm∗. So, bearing in mind (1.21)
and (4.1), the structure Jacobi operator Rξ of MB is

RξY = −Y + 2η(Y )ξ +BY + αSY − α2η(Y )ξ.(4.2)

Taking the covariant derivative of (4.2) in the direction of Z and using
Lemma 4.1, together with (1.23) and Zα = 0, we get

(∇ZRξ)Y = 2g(Y, ϕSZ)ξ + 2η(Y )ϕSZ + (∇ZB)Y

+ α(∇ZS)Y − α2g(Y, ϕSZ)ξ − α2η(Y )ϕSZ

= (2− α2)g(ϕSZ, Y )ξ + (2− α2)η(Y )ϕSZ
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+ 2αη(Z)ϕBY + α(∇ZS)Y.(4.3)

By the symmetric property of Rξ and (4.3), the left-side of cyclic parallelism
of structure Jacobi operator satisfies

g
(
(∇XRξ)Y,Z

)
+ g

(
(∇Y Rξ)Z,X

)
+ g

(
(∇ZRξ)X,Y

)
= g

(
(∇XRξ)Y, Z

)
+ g

(
(∇Y Rξ)X,Z

)
+ g

(
(∇ZRξ)Y,X

)
= g

(
(∇XRξ)Y, Z

)
+ g

(
(∇Y Rξ)X,Z

)
− (2− α2)g(SϕY,Z)η(X)− (2− α2)η(Y )g(SϕX,Z)

+ 2αη(Z)g(ϕBY,X)− αg((∇ZS)Y,X)

= g
(
(∇XRξ)Y, Z

)
+ g

(
(∇Y Rξ)X,Z

)
− (2− α2)g(SϕY,Z)η(X)− (2− α2)η(Y )g(SϕX,Z)

+ 2αη(Z)g(ϕBY,X) + αg((∇Y S)X,Z)

− αη(Z)g(ϕY,X) + αη(Y )g(ϕZ,X) + 2αg(ϕZ, Y )η(X)

+ αg(ϕBY,X)η(Z) + αη(Y )g(BϕX,Z),(4.4)

where we have used

g((∇ZS)Y,X) = g((∇Y S)Z,X) + g(Ξ(Z, Y ), X)

= g((∇Y S)X,Z)− η(Z)g(ϕY,X) + η(Y )g(ϕZ,X)

+ 2g(ϕZ, Y )η(X) + g(ϕBY,X)η(Z) + η(Y )g(BϕX,Z)

for any tangent vector fields X, Y , and Z on M . Deleting Z from (4.4) and
using (∇Y S)X = (∇XS)Y + Ξ(Y,X), we get

ΘXY := (∇XRξ)Y + (∇Y Rξ)X

− (2− α2)η(X)SϕY − (2− α2)η(Y )SϕX − 2αg(BϕX, Y )ξ

+ α(∇Y S)X + αg(ϕX, Y )ξ − αη(Y )ϕX − 2αη(X)ϕY

− αg(BϕX, Y )ξ + αη(Y )BϕX

= (2− α2)g(ϕSX, Y )ξ + (2− α2)η(Y )ϕSX + 2αη(X)ϕBY

+ 3α(∇XS)Y − (2− α2)g(SϕX, Y )ξ + (2− α2)η(X)ϕSY

+ 2αη(Y )ϕBX + 2αΞ(Y,X)− (2− α2)η(X)SϕY

− (2− α2)η(Y )SϕX − 2αg(BϕX, Y )ξ + αg(ϕX, Y )ξ

− αη(Y )ϕX − 2αη(X)ϕY − αg(BϕX, Y )ξ + αη(Y )BϕX.(4.5)

We denote this formula by ΘXY for any tangent vector fields X and Y of MB .
In order to give a complete classification of cyclic parallel structure Jacobi

operator, we want to consider each step in detail, as follows. By virtue of
Proposition B, we take

B = {e1, e2, . . . , em−1︸ ︷︷ ︸
∈V (A)∩C

, em, . . . , e2m−2︸ ︷︷ ︸
∈JV (A)∩C

, e2m−1 = ξ}
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as a basis of the tangent vector space TpMB of MB at any point p ∈ MB . We
put

E+1 := V (A) ∩ C = {X ∈ C |AX = X} = Span{ei | i = 1, 2, . . . ,m− 1}
and

E−1 := JV (A) ∩ C = {X ∈ C |AX = −X} = Span{ei | i = m, . . . , 2m− 2},
which means TpMB = Span{ξ}∪E+1 ∪E−1. By using such construction of B,
let us calculate ΘXY regarding the subspace containing X and Y .

First, taking X = ξ in (4.5) and using (1.12), we get

ΘξY = 2αϕBY + 3α(∇ξS)Y + (2− α2)ϕSY

+ 2αΞ(Y, ξ)− (2− α2)SϕY − 2αϕY

= 3αϕBY − 3αSϕSY − 3αϕY + 2(α2 + 1)ϕSY − (2− α2)SϕY,(4.6)

where we have used Aξ = −ξ, Ξ(Y, ξ) = ϕY − ϕBY and

(∇ξS)Y = (∇Y S)ξ + Ξ(ξ, Y )

= (Y α)ξ + αϕSY − SϕSY − ϕY + ϕBY

= αϕSY − SϕSY − ϕY + ϕBY (∵ α : constant on MB).

By using this equation, we get:

Lemma 4.4. Let MB be a real hypersurface of Type (B) in Qm∗, m ≥ 3. Then
we have

ΘξY =

 0 for Y = ξ,
(−6α− 2µ+ α2µ)ϕY for Y ∈ E−1,

(2µα2 + 2µ)ϕY for Y ∈ E+1.

Proof. Putting Y = ξ in (4.6) and using M being Hopf with A-principal unit
normal vector field, it follows

Θξξ = 0.

Let us take Y ∈ E−1 = JV (A) ∩ C. By virtue of Proposition B, we obtain
E−1 = Tλ. From this and Remark 4.3, the following facts hold that

η(Y ) = 0, AY = BY = −Y, SY = λY (λ = 0), SϕY = µϕY

for any Y ∈ E−1. Applying these facts to (4.6) becomes

ΘξY (∈ E−1) = (α2µ− 2µ− 6α)ϕY.

Now, let us take Y ∈ E+1 = V (A)∩C. From Proposition B and Remark 4.3,
we get η(Y ) = 0, AY = BY = Y , SY = µY , and SϕY = λY (λ = 0). By
using these facts, (4.6) can be arranged as

ΘξY (∈ E+1) = (2µα2 + 2µ)ϕY.

It completes the proof of our lemma. □

Now, let us consider the case of X ∈ C = E−1 ∪ E+1. Then:
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Lemma 4.5. On MB, we get

ΘX∈E−1Y =

{
(−6α− 2µ+ α2µ)ϕX for Y = ξ,

(−6α− 2µ+ α2µ)g(ϕX, Y )ξ for Y ∈ C

and

ΘX∈E+1Y =

{
(2α2µ+ 2µ)ϕX for Y = ξ,

(2α2µ+ 2µ)g(ϕX, Y )ξ for Y ∈ C.

Proof. Let us consider the tensor field ΘXY for any X ∈ E−1 ⊂ TMB and
Y ∈ TMB . By means of Proposition B, we get E−1 = JV (A) ∩ C = Tλ.
From this and Remark 4.3, it follows that η(X) = 0, AX = BX = −X,
SX = λX = 0 and SϕX = µϕX. By using these facts, (4.5) can be rearranged
as

ΘX(∈E−1)Y = 3α(∇XS)Y − µ(2− α2)g(ϕX, Y )ξ + 2αη(Y )ϕBX

+ 2αΞ(Y,X)− µ(2− α2)η(Y )ϕX − 3αg(BϕX, Y )ξ

+ αg(ϕX, Y )ξ − αη(Y )ϕX + αη(Y )BϕX

= 3α(∇XS)Y + (−6α− 2µ+ α2µ)g(ϕX, Y )ξ

+ (−6α− 2µ+ α2µ)η(Y )ϕX,(4.7)

where we have used BϕX = −ϕBX = ϕX and Ξ(Y,X) = −2η(Y )ϕX −
2g(ϕX, Y )ξ.

Similarly, for the case of X ∈ E+1 = V (A) ∩ C and Y ∈ TMB , together
with Proposition B and Remark 4.3, we get E+1 = Tµ. This fact means that
η(X) = 0, AX = BX = X, SX = µX and SϕX = λϕX = 0. So, (4.5)
becomes

ΘX(∈E+1)Y = µ(2− α2)g(ϕX, Y )ξ + µ(2− α2)η(Y )ϕX

+ 3α(∇XS)Y + 2αη(Y )ϕBX + 2αΞ(Y,X)

− 3αg(BϕX, Y )ξ + αg(ϕX, Y )ξ

− αη(Y )ϕX + αη(Y )BϕX

= 3α(∇XS)Y + (2µ− α2µ)g(ϕX, Y )ξ

+ (2µ− α2µ)η(Y )ϕX,(4.8)

where we have used BϕX = −ϕBX = −ϕX and Ξ(Y,X) = −2g(ϕX, Y )ξ.
On the other hand, Theorem 1.4 in [15] assures that the shape operator S

of a real hypersurface MB in Qm∗, m ≥ 3, is η-parallel, which means that the
shape operator S of MB satisfies

g((∇XS)Y, Z) = 0 for any X,Y, Z ∈ C.

For any X,Y ∈ C = E+1 ∪E−1, by virtue of η-parallelism regarding the shape
operator of a Hopf real hypersurface MB , a vector field (∇XS)Y ∈ TMB is
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expressed as

(∇XS)Y =

2m−2∑
i=1

g((∇XS)Y, ei)ei + g((∇XS)Y, ξ)ξ

= g((∇XS)ξ, Y )ξ = αg(ϕSX, Y )ξ − g(SϕSX, Y )ξ

with respect to a basis B = {e1, e2, . . . , em−1︸ ︷︷ ︸
∈E+1

, em, . . . , e2m−2︸ ︷︷ ︸
∈E−1

, e2m−1 = ξ}. Ac-

cording to X ∈ E+1 ∪ E−1, it yields

(∇XS)Y =

{
0 for X ∈ E−1 = Tλ, Y ∈ C,

αµg(ϕX, Y )ξ for X ∈ E+1 = Tµ, Y ∈ C.(4.9)

By (4.9), the equations (4.7) and (4.8) become

ΘX(∈E−1)Y = (−6α− 2µ+ α2µ)g(ϕX, Y )ξ(4.10)

and

ΘX(∈E+1)Y = (2µ+ 2α2µ)g(ϕX, Y )ξ(4.11)

for any Y ∈ C.
On the other hand, if Y = ξ, then we get (∇XS)ξ = αϕSX−SϕSX together

with our assumption of MB being Hopf with constant principal curvatures.
This implies

(∇XS)ξ =

{
0 for X ∈ E−1 = Tλ,

αµϕX for X ∈ E+1 = Tµ.

So, (4.7) and (4.8) give

ΘX(∈E−1)ξ=(−6α− 2µ+α2µ)ϕX and ΘX(∈E+1)ξ=(2µ+2α2µ)ϕX.(4.12)

By combining (4.10), (4.11) and (4.12), we complete a proof of Lemma 4.5. □

Since the structure Jacobi operator Rξ of MB is cyclic parallel, it holds that
ΘXY = 0 for all X,Y ∈ TMB . So, we obtain α2µ = 2µ+ 6α and 2α2µ = −2µ
from Lemmas 4.4 and 4.5. By the direct calculations, it gives

2α = −µ.(4.13)

That is, if the principal curvatures α and µ of a contact real hypersurface MB

satisfies (4.13), then Rξ of MB becomes cyclic parallel.
On the other hand, the cases of (T ∗

B1
), (T ∗

B2
), and (H∗

B) do not occur. In

fact, the principal curvatures α and µ of (T ∗
B1

) are α = −
√
2 coth(

√
2r) and

µ = −
√
2 tanh(

√
2r). So, (4.13) gives tanh2(

√
2r) = −2, which makes a con-

tradiction.
On (T ∗

B2
), by virtue of Proposition B, the principal curvatures α and µ are

α = −
√
2 tanh(

√
2r) and µ = −

√
2 coth(

√
2r). So, (4.13) becomes tanh2(

√
2r)

= − 1
2 . It makes a contradiction. On the other hand, for (H∗

B), bearing in mind

Proposition B, we get α = µ = −
√
2. It arises a contradiction with (4.13).
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Summing up above discussions, we can assert that the structure Jacobi op-
erator Rξ of MB is not cyclic parallel. From this and Proposition 4.2, we
obtain:

Proposition 4.6. There does not exist any Hopf real hypersurface M with
cyclic parallel structure Jacobi operator and A-principal unit normal vector
field in Qm∗, m ≥ 3.

Finally, combining Theorem 1 and Propositions 3.3 and 4.6 gives a complete
proof of our Theorem 2 in the introduction.

Acknowledgement. The authors would like to express their hearty thanks to
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