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SINGULAR HYPERBOLICITY OF C1 GENERIC THREE

DIMENSIONAL VECTOR FIELDS

Manseob Lee

Abstract. In the paper, we show that for a generic C1 vector field X

on a closed three dimensional manifold M , any isolated transitive set of
X is singular hyperbolic. It is a partial answer of the conjecture in [13].

1. Introduction

The transitivity is a symbol of chaotic property for differential dynamical
systems. The C1 robust transitivity for diffeomorphisms are well investigate in
a series of works [2,3,5], and then we have a good characterization on isolated
transitive sets of C1 generic diffeomorphisms at the same time. From the main
result of [1] we know that if every isolated transitive set of a C1 generic diffeo-
morphism admit a nontrivial dominated splitting, then it is volume hyperbolic.

It is well known that a singularity-free flow, for an instance, a suspension of a
diffeomorphism, will take similar phenomenona of diffeomorphisms. However,
once the recurrent regular points can accumulates a singularity, such as the
Lorenz-like systems, we will meet something new. For instance, in [14], one
have to use a new notion of singular hyperbolicity to characterize the robustly
transitive sets of a 3-dimensional flow. Here the singular hyperbolicity is a
generalization of hyperbolicity so that we can give the Lorenz attractor and
Smale’s horseshoe a unified characterization. In this article, we will show that
an isolated transitive set of C1 generic vector field on 3-dimensional manifold
will be singular hyperbolic. That means, every isolated transitive set of a C1

generic vector field looks like a Lorenz attractor [6, 10].
Let us be precise now. Denote by M a compact d(≥ 2)-dimensional smooth

Riemannian manifold without boundary and by X1(M) the set of C1 vector
fields on M endowed with the C1 topology. Every X ∈ X1(M) generates
a flow Xt : M × R → M that is a C1 map such that Xt : M → M is a
diffeomorphism for all t ∈ R and then X0(x) = x and Xt+s(x) = Xt(Xs(x))
for all s, t ∈ R and x ∈ M . An orbit of X corresponding a point x ∈ M is the
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set Orb(x) = {Xt(x) : t ∈ R}. A point x ∈ M is called singular if Xt(σ) = σ
for all t ∈ R, and p ∈ M is called periodic if XT = p for some T > 0. Let
Sing(X) denotes the set of singularities of X and Per(X) is the set of periodic
orbits of X. Denote by Crit(X) = Sing(X) ∪ Per(X) the set of all critical
points of X.

Let Λ ⊂ M be a closed Xt-invariant set. We say that Λ is a hyperbolic set of
X if there are constants C > 0, λ > 0 and a DXt-invariant continuous splitting
TΛM = Es ⊕ ⟨X⟩ ⊕ Eu such that

∥DXt|Es
x
∥ ≤ Ce−λt and ∥DX−t|Eu

x
∥ ≤ Ce−λt

for t > 0 and x ∈ Λ, where ⟨X(x)⟩ denotes the space spanned by X(x), which
is 0-dimensional if x is a singularity or 1-dimensional if x is not a singularity.
For any critical point x ∈ Crit(X), if its orbit is a hyperbolic set, we denote
by index(x) = dimEs

x.
Now let us recall the singular hyperbolicity firstly given by Morale, Paćıfico

and Pujals [14] which is an extension of hyperbolicity. We say that a compact
invariant set Λ is positively singular hyperbolic for X (see [16]) if there are
constants K ≥ 1 and λ > 0, and a continuous invariant TΛM = Es ⊕Ecu with
respect to DXt such that

(i) Es is (K,λ)-dominated by Ecu, that is,

∥DXt|Es(x)∥ · ∥DX−t|Ec(Xt(x))∥ ≤ Ke−λt, ∀x ∈ Λ and t ≥ 0.

(ii) Es is contracting, that is,

∥DXt|Es(x)∥ ≤ Ke−λt, ∀x ∈ Λ and t ≥ 0.

(iii) Ecu is sectional expanding, that is, for any x ∈ Λ and any 2-dimensional
subspace L ⊂ Ec(x),

|det(DXt|L)| ≥ K−1eλt, ∀t ≥ 0.

We say that Λ is negatively singular hyperbolic forX if Λ is positively singular
hyperbolic for −X, and then say that Λ is singular hyperbolic forX if it is either
positively singular hyperbolic for X, or negatively singular hyperbolic for X.
Definitely, we can see that if Λ is singular hyperbolic for X and it does not
contain singularities, then it is hyperbolic (see [14, Proposition 1.8] for a proof).
In the paper, we consider the relation between transitivity and hyperbolicity
for an isolated compact invariant set. We say that Λ is transitive if there is
x ∈ Λ such that ω(x) = Λ, where ω(x) is the omega limit set of x. We say
that a closed Xt-invariant set Λ is isolated (or locally maximal) if there exists
a neighborhood U of Λ such that

Λ = ΛX(U) =
⋂
t∈R

Xt(U).

Here U is said to be isolated neighborhood of Λ.
For the 3-dimensional case, Morales, Paćıfico and Pujals [14] proved that

if Λ is a robustly transitive set containing singularities, then it is a singular
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hyperbolic set for X. Here we will consider C1 generic vector fields. We say
that a subset G ⊂ X1(M) is residual if it contains a countable intersection of
open and dense subsets of X1(M). A property is called C1 generic if it holds
in a residual subset of X1(M). We give the following characterization of the
isolated transitive sets of a C1 generic vector field on 3-dimensional Riemannian
manifold.

Theorem A. For C1 generic X ∈ X1(M), an isolated transitive set Λ is
singular hyperbolic.

2. Transitivity and locally star condition

Let M be a three dimensional smooth Riemannian manifold and let X ∈
X1(M) be the set of C1 vector fields on M endowed with the C1 topology. Here
we collect some known generic properties for C1 vector fields.

Proposition 2.1. There is a residual set G1 ⊂ X1(M) such that for any X ∈
G1, X satisfies the following properties:

(1) X is a Kupka-Samle system, that is, every periodic orbits and singu-
larity of X is hyperbolic, and the corresponding invariant manifolds
intersect transversely.

(2) if there is a sequence of vector fields {Xn} with critical orbit {Pn} of
Xn such that Xn → X, index(Pn) = i and Pn →H Λ, then there is
a sequence of critical orbit {Qn} of X such that index(Qn) = i and
Qn →H Λ, where →H is the Hausdorff limit.

The item 1 is from the famous Kupka-Smale theorem (see [15]) and item 2
is a vector field version of [18, Lemma 3.5]

From item 1 of Proposition 2.1, we can see that if Λ is a trivial transitive
set, that is, Λ is a periodic orbit or a singularity, then it should be hyperbolic
and automatically singular hyperbolic. To prove Theorem A, we just need
to consider the nontrivial case. Hereafter, we assume that Λ is a nontrivial
transitive set of X. One can see that if Λ is a nontrivial transitive set, then Λ
contains no hyperbolic sinks or sources.

Let U be an isolated neighborhood of Λ. Then for Y C1 close to X, denote
by

ΛY (U) =
⋂
t∈R

Y t(U)

the maximal invariant set of Y in U .

Lemma 2.2. Let G1 ⊂ X1(M) be the residual set given in Proposition 2.1. For
any X ∈ G1, if Λ is an isolated nontrivial transitive set of X, then there are
a C1 neighborhood U(X) of X and a neighborhood U of Λ such that for any
Y ∈ U(X), we have every γ ∈ ΛY (U)∩Per(Y ) is hyperbolic and index(γ) = 1.

Proof. Let G1 be the residual set in Proposition 2.1 and let Λ be an isolated
transitive set of X ∈ G1. Arguing by contradiction, we assume that for any C1
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neighborhood U(X) of X and any neighborhood U of Λ, there is Y ∈ U(X)
such that Y has a periodic orbit Q whose index is not 1. Then we have three
cases: (i) Q is not hyperbolic, (ii) Q is hyperbolic but index(Q) = 0 or (iii)
index(Q) = 2. Note that if the periodic orbit Q is not hyperbolic for Y , then
we can take a vector field Z C1 arbitrary close to Y such that either Q is a
sink for Z or Q is a source for Z. Then we also have the case cases (ii) or (iii)
happening. Thus we can take sequences Yn → X and a periodic orbit Pn of Yn

such that index(Pn) = 0 or 2 and

lim
n→∞

Pn = Γ ⊂ Λ.

Then we can take a sequence of vector fields Xn tends to X and periodic orbits
{Qn} of Xn with index(Qn) = 0 or 2 such that

lim
n→∞

Qn = Γ ⊂ Λ.

Without loss of generality, we can assume that all Qn have the same index 0
or 2 once we take a subsequence. By the item 2 of Proposition 2.1, we know
that there is a sequence Pn of periodic orbit of X with index 0 or 2 converging
into Λ. Since Λ is isolated, for sufficiently large n, we have Pn ⊂ Λ. This is a
contradiction since Λ is a nontrivial transitive set. □

Let Λ be a closed Xt-invariant set. We say Λ is locally star if there are a C1

neighborhood U(X) of X ∈ X1(M) and a neighborhood U of Λ such that for
any Y ∈ U(X), every periodic orbit of Y in ΛY (U) =

⋂
t∈R Y t(U) is hyperbolic

and has same indices.

Corollary 2.3. There is a residual set R ⊂ X1(M) such that for any X ∈ R,
if Λ is an isolated transitive set of X which is not an orbit, then Λ is a local
star.

Proof. Let X ∈ R = G1 and let Λ be an isolated transitive set. By Lemma 2.2,
there are a C1 neighborhood U(X) of X and a neighborhood U of Λ such that
for any Y ∈ U(X), every periodic orbit γ ∈ ΛY (U)∩Per(Y ) is hyperbolic and
index(γ) = 1. Thus Λ is a local star. □

3. Transitivity and Lyapunov stability

Suppose σ ∈ Sing(X) is hyperbolic. Then we denote by

W s(σ) = W s(σ,X) = {y ∈ M : d(Xt(σ), Xt(y)) → 0 as t → ∞},

Wu(σ) = Wu(σ,X) = {y ∈ M : d(Xt(σ), Xt(y)) → 0 as t → −∞},
where W s(σ,X) is said to be the stable manifold of σ and Wu(σ,X) is said to
be the unstable manifold of σ. It is known that index(σ) = dimW s(σ).

If X is a Kupka-Smale vector field, then X contains finitely many singu-
larities and every singularity is hyperbolic. Thus by the structurally sta-
bility of hyperbolic singularity we know that there are a C1 neighborhood
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U(X) of X and a neighborhood U of Λ such that for any Y ∈ U(X), every
σ ∈ ΛY (U) ∩ Sing(Y ) ⊂ U is hyperbolic.

Lemma 3.1. Let G1 ⊂ X1(M) be the residual set given in Proposition 2.1. For
any X ∈ G1, if Λ is an isolated nontrivial transitive set of X, then there are
a C1 neighborhood U(X) of X and a neighborhood U of Λ such that for any
Y ∈ U(X), every singularities in ΛY (U) is saddles.

Proof. We prove it by contradiction. Assume the contrary of the lemma. Then
we can find a sequence of vector fields Xn tends to X and a sequence of singu-
larity σn of Xn such that σn tends to a point σ such that the index of σn equals
to 0 or 3. Without loss of generality, we assume that every σn has index 0,
then we can see that σ is a singularity. Since X ∈ G1, we have σ is hyperbolic.
By the structurally stability of σ we know σ have index 0 too. This contradicts
with Λ is a nontrivial transitive set. □

Lemma 3.2. Let Λ be a transitive set of a C1 vector field X. If σ ∈ Λ ∩
Sing(X) is hyperbolic, then (W s(σ) \ {σ})∩Λ ̸= ∅ and (Wu(σ) \ {σ})∩Λ ̸= ∅.

Proof. We consider the case of (W s(σ) \ {σ}) ∩ Λ ̸= ∅ (Other case is similar).
Since σ ∈ Λ = ω(x) for some x ∈ Λ, there is tn ∈ R+ with tn → ∞ such that
Xtn(x) → σ. Since σ is hyperbolic, we can take ϵ > 0 such that

{x : Xt(x) ∈ Bϵ(σ) for all t > 0} ⊂ W s(σ).

Denote by xn = Xtn(x). For n large enough, xn ∈ Bϵ(σ). Let τn = sup{t :
X(−t,0)(xn) ⊂ Bϵ(σ)}. Then we have X−τn(xn) ∈ Bϵ(σ). Let yn = X−τn(xn).
We can see that τn → +∞ as n → ∞. Take a subsequence if necessary, we
can assume that yn → y as n → ∞. It is easy to see that y ̸= σ. For every
yn, we have X(0,τn)(yn) ∈ ∂Bϵ(σ). By the continuity of the flow Xt, we have
X(0,+∞)(y) ⊂ Bϵ(σ), then y ∈ W s(σ) \ {σ}. □

The following is the connecting lemma for C1 vector fields.

Lemma 3.3 ([16]). Let X ∈ X1(M) and z ∈ M be neither periodic nor singular
of X. For any C1 neighborhood U(X) ⊂ X1(M) of X, there exist three numbers
ρ > 1, L > 1 and δ0 > 0 such that for any 0 < δ ≤ δ0 and any two points x, y
outside the tube ∆ = Bδ(X

[0,L](z)) (or ∆ = Bδ(X
[−L,0](z))), if the positive

X-orbit of x hits Bδ/ρ(z) and the negative X-orbit of y both hit Bδ/ρ(X
L(z)),

then there exists Y ∈ U(X) with Y = X outside ∆ such that y is on the positive
Y -orbit of x.

Lemma 3.4. Let Λ be a transitive set for X and σ ∈ Λ∩Sing(X) be hyperbolic.
Then for any C1 neighborhood U(X) of X, any non-empty open set U in Λ,
there is Y ∈ U(X) such that W s(σ, Y ) ∩ U ̸= ∅, where W s(σ, Y ) is the stable
manifold of σ with respect to Y .

Proof. Let U(X) be fixed. By Lemma 3.2, there is a point x ∈ (W s(σ)\{σ})∩Λ.
Then x is neither a singularity nor a periodic point. Let L, ρ and δ0 be the
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constant given by Lemma 3.3. Take a point XT (x) with T > L and δ > 0 such
that the tube

Bδ(X
[0,L](x)) ∩X [T,+∞)(x) = ∅.

Since Λ is transitive, there is z ∈ Λ such that ω(z) = Λ. For any small
neighborhood U of y, we can find 0 < s < t such that Xs(z) ∈ U and Xt(z) ∈
Bδ/ρ(x). Let q = XT (x) and p = Xs(z). Then by Lemma 3.3, there is

Y ∈ U(X) such that Y t(p) = q for some t > 0. Since q = XT (x) ∈ W s(σ), we
have p ∈ W s(σ, Y ). □

From Lemma 3.1 we know that if X ∈ G1, and Λ is an isolated nontrivial
transitive set of X, then every σ ∈ Λ ∩ Sing(X) has index 1 or 2.

Lemma 3.5. There is a residual set G2 ⊂ X1(M) with the following property.
For any X ∈ G2 and any isolated nontrivial transitive set Λ of X, if there is
σ ∈ Λ ∩ Sing(X) with index(σ) = 2, then Λ ⊂ Wu(σ). Symmetrically, if there

is σ ∈ Λ ∩ Sing(X) with index(σ) = 1, then Λ ⊂ W s(σ).

Proof. Let O = {O1, O2, . . . , On, . . .} be a countable basis of M . For each
m, k ∈ N, let

Hm,k = {X ∈ X1(M) : there is a C1 neighborhood U(X) of X such that

for any Y ∈ U(X), Y has a singularity σ ∈ Om with

index(σ) = 2 such that Wu(σ, Y ) ∩Ok ̸= ∅}.

Then Hm,k is an open in X1(M). Let

Nm,k = X1(M) \ Hm,k.

Then Hm,k ∪Nm,k is open and dense in X1(M). Let

G2 =
⋂

m,k∈N
(Hm,k ∪Nm,k).

We will show that the residual set G2 satisfies the request of lemma. Let
X ∈ G2 and Λ be an isolated transitive set and let σ ∈ Λ ∩ Sing(X) with
index(σ) = 2. Since σ is hyperbolic, we can take Om such that Om is an isolated
neighborhood of σ. By the structurally stability of hyperbolic singularity, there
is a C1 neighborhood U(X) of X such that for any Y ∈ U(X), Y has a unique
hyperbolic singularity in Om. For any y ∈ Λ and any neighborhood U of y, we
can choose Ok ∈ O such that y ∈ Ok ⊂ U .

Claim. X ̸∈ Nm,k.

Proof of Claim. For any neighborhood V(X) ⊂ U(X), by Lemma 3.4, there
is Y ∈ V(X) such that Y has a singularity σ ∈ Om with index(σ) = 2 and
Wu(σ, Y ) ∩ Ok ̸= ∅. Note that σ may not be a singularity of Z ∈ U(Y ). By
the persistence of hyperbolic singularity σ, there is a singularity σZ of Z such
that Wu(σ, Z) ∩ Ok ̸= ∅. Thus we have Y ∈ Hm,k. Hence X ∈ Hm,k. This
ends the proof of claim. □
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Then by claim, sinceX ∈ G2, we haveX ∈ Hm,k. Note thatOm is an isolated
neighborhood of σ, by the definition of Hm,k, we know that Wu(σ) ∩ Ok ̸= ∅.
This prove that for every neighborhood U of y, we know that Wu(σ) ∩ U ̸= ∅.
This means that Λ ⊂ Wu(σ). □

We say that a closed Xt-invariant set Λ is Lyapunov stable for X if for every
neighborhood U of Λ there is a neighborhood V ⊂ U of Λ such that Xt(V ) ⊂ U
for every t ≥ 0. Let σ be a hyperbolic singularity of X with dimWu(σ) = 1.
Then Wu(σ) \ {σ} can be divided into two connected branches Γ1,Γ2, that is,
Wu(σ) = {σ} ∪ Γ1 ∪ Γ2.

Lemma 3.6. Let X ∈ X1(M) and Λ be a transitive set of X. Assume σ ∈ Λ
is a hyperbolic singularity of X with dimWu(σ) = 1. Let Γ1 = Orb(x1) and
Γ2 = Orb(x2) be the two branches of Wu(σ) \ {σ}. If x1 ∈ Λ, then for any
neighborhood U(X) of X, and any neighborhood V of x2, there is Y ∈ U(X)
such that x1 is still in the unstable manifold of σ and the positive orbit of x1

will cross V with respect to Y .

Proof. We prove this lemma by a standard application of the connecting lemma.
By Lemma 3.2 we know that there is a point z ∈ (W s(σ) \ {σ}) ∩ Λ. Then we
have two triple of ρ > 1, L > 1 and δ0 with the properties stated as in Lemma
3.3 with respect to the point x1 and z and the neighborhood U(X) of X. By
taking the larger ρ, L, and smaller δ0, we get a triple, still denoted by ρ, L and
δ0, works both for x1 and z.

Now we can take δ > 0 small enough such that the two tubes ∆1 =
Bδ(X

[0,L](x1)) and ∆2 = Bδ(X
[−L,0](z)) are disjoint. For any neighborhood V

of x2 and any neighborhood V ′ of z, by the inclination lemma we know that
there are a point y ∈ V and T > 0 such that X−T (y) ∈ V ′. If δ > 0 is choosing
small enough, we can take y and T such that X [−T,0](y) does not touch ∆1.

Since Λ is transitive, we can find a point x ∈ Λ such that Λ = ω(x). Then we
can find t1 < t2 such that Xt1(x) ∈ Bδ/ρ(X

L(x1)) and Xt2(x) ∈ Bδ/ρ(X
−L(z))

and a point y ∈ V with X−T (y) ∈ Bδ/ρ(z). Then apply Lemma 3.3, we can
find a vector filed Y ∈ U(X) differs from X at tubes ∆1 and ∆2 such that the
negative orbit of x1 is not changed and y is contained in the positive orbit of
x1. It is easy to see that Y satisfies the request of lemma. □

Lemma 3.7. Let G2 ⊂ X1(M) be the residual set chosen as in Lemma 3.5.
Then for any X ∈ G2 and any isolated nontrivial transitive set Λ of X, if there
is a singularity σ ∈ Λ with index(σ) = 2, then we have Wu(σ) ⊂ Λ.

Proof. Let O = {O1, O2, . . . , On, . . .} be a countable basis of M . Recall that
for each m, k ∈ N, we take

Hm,k = {X ∈ X1(M) : there is a C1 neighborhood U(X) of X such that

for any Y ∈ U(X), Y has a singularity σ ∈ Om with

index(σ) = 2 such that Wu(σ, Y ) ∩Ok ̸= ∅}.
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Then take Nm,k = X1(M) \ Hm,k and

G2 =
⋂

m,k∈N
(Hm,k ∪Nm,k).

We will see that this G2 satisfies the request of lemma.
Let X ∈ G2 and Λ be an isolated transitive set of X. Assume there is

singularity σ ∈ Λ with index 2. Let Γ1 = Orb(x1) and Γ2 = Orb(x2) be the
two branches of Wu(σ) \ σ. By Lemma 3.2, we know that either x1 or x2 is
contained in Λ. Without loss of generality, we assume that x1 ∈ Λ. To prove
Wu(σ) ⊂ Λ, we just need to prove that x2 is also contained in Λ. By the
compactness of Λ, we just need to prove that for any neighborhood U of x2,
one has U ∩ Λ ̸= ∅. For a given arbitrarily small neighborhood U of x, we can
find k such that Ok ⊂ U . Let Om be an isolated neighborhood of σ. Then we
have:

Claim. X ̸∈ Nm,k.

Proof of Claim. For any neighborhood V(X) ⊂ U(X), by Lemma 3.6, there
is Y ∈ V(X) such that Y has a singularity σ ∈ Om with index(σ) = 2 and
Wu(σ, Y ) ∩ Ok ̸= ∅. By the continuity of the unstable manifold we know
that there is a C1 neighborhood U(Y ) of Y such that for any Z ∈ U(Y ),
Wu(σ, Z)∩Ok ̸= ∅. Thus we have Y ∈ Hm,k. Hence X ∈ Hm,k. This ends the
proof of claim. □

Since X ∈ G2 and X /∈ Nm,k, we have X ∈ Hm,k. Since σ is the only
singularity of X in Om, by the definition of Hm,k we can see that Wu(σ)∩Ok ̸=
∅. Hence for any neighborhood U of x2, there is a point contained in Wu(σ).
This ends the proof of Lemma 3.7. □

The following lemma is collected from [4].

Lemma 3.8 ([4, Proposition 4.1]). There is a residual set G3 ⊂ X1(M) such

that for any X ∈ G3, Wu(σ) is Lyapunov stable for X and W s(σ) is Lyapunov
stable for −X for all σ ∈ Sing(X).

Proposition 3.9. There is a residual set S ⊂ X1(M) such that for any X ∈ S,
and any isolated nontrivial transitive set Λ of X, if there is a singularity σ ∈ Λ∩
Sing(X) with index(σ) = 2, then Λ is Lyapunov stable for X. Symmetrically,
if there is σ ∈ Λ ∩ Sing(X) with index(σ) = 1, then Λ is Lyapunov stable for
−X.

Proof. Let X ∈ S = G2 ∩ G3 and Λ be an isolated transitive set of X. Suppose
that σ ∈ Λ∩Sing(X) with index(σ) = 2. Then by Proposition 3.5 and Lemma

3.7, we have Wu(σ) = Λ. By Lemma 3.8, Λ is Lyapunov stable for X. □

A point σ ∈ Sing(X) of X is called Lorenz-like if DX(σ) has three real
eigenvalues λ1, λ2, λ3 such that λ2 < λ3 < 0 < −λ3 < λ1. Let σ ∈ Sing(X) be
a Lorenz-like singularity. Then we use Ess

σ , Ecs
σ , Eu

σ to denote the eigenspaces
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of DX(σ) corresponding the eigenspaces λ2, λ3, λ1, respectively. Denoted by
W ss

X (σ) the one-dimensional invariant manifold of X associated to the eigen-
value λ2. We have the following lemma was proved in [13].

Lemma 3.10 ([13, Lemma A.4]). There is a residual set G4 ⊂ X1(M) such
that for any X ∈ R, if Λ is a Lyapunov stable nontrivial transitive set of X,
then every singularity σ ∈ Λ is Lorenz-like and one has W ss

X (σ) ∩ Λ = {σ}.

Here is the main conclusion in this section.

Proposition 3.11. There is a residual set T ⊂ X1(M) with the following
properties. Let X ∈ T and Λ be an isolated transitive set of X. If there is a
singularity with index 2, then for all singularity σ ∈ Λ, one has (1) index(σ) =
2, (2) σ is Lorenz-like, and (3) W ss

X (σ)∩Λ = {σ}. Symmetrically, if there is a
singularity with index 1, then for all singularity σ ∈ Λ, one has (1) index(σ) =
1, (2) σ is Lorenz-like for −X, and (3) Wuu

X (σ) ∩ Λ = {σ}.

Proof. Let X ∈ T = S ∩ G4 and Λ be an isolated transitive set of X. Suppose
that there is η ∈ Λ ∩ Sing(X) such that index(η) = 2. By Proposition 3.9,
Λ is Lyapunov stable for X. On the other hand, since X ∈ G4, according to
Lemma 3.11, σ is Lorenz-like, and W ss

X (σ) ∩ Λ = {σ}. We directly obtained
index(σ) = 2 for all σ ∈ Λ ∩ Sing(X). □

4. Proof of Theorem A

To prove Theorem A, we prepare two techniques here. One is the extended
linear Poincaré flow given by Li, Gan and Wen [7], and another one is the
ergodic closing lemma given by Mañé [11, 12].

Firstly we recall the notion of linear Poincaré flow firstly given by Liao [8,9].
For any regular point x ∈ M \ Sing(X), we can put a normal space

Nx = {v ∈ TxM : v⊥X(x)}.

Then we have a normal bundle

N = N(X) =
⋃

x∈M\Sing(X)

Nx.

Denote by πx the orthogonal projection from TxM to Nx for any x ∈ M \
Sing(X). From the tangent flow, we can define the linear Poincaré flow

PX
t : N(X) → N(X)

PX
t (v) = πXt(x)(DXt(v)) for all v ∈ Nx, and x ∈ M \ Sing(X).

Note that the linear Poincaré flow is defined on the normal bundle over a non
compact set. We consider a compactification for PX

t as following.
Let

G1 = {L : L is a one dimensional subspace in TxM, x ∈ M}
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be the Grassmannian manifold ofM . Then for any L ∈ G1, assuming L ⊂ TxM
for some x ∈ M , we can define a normal space associated to L as follows:

NL = {v ∈ TxM : v⊥L}.
Now we can take a normal bundle

N = NG1 =
⋃

L∈G1

NL.

Note that G1 is a compact manifold, so NG1 is a bundle over a compact space.
For any L ∈ G1 contained in TxM , denoted by πL the orthogonal projection

from TxM to NL along L. Let X be a C1 vector field. Similar to the linear
Poincaré flow, we can define the extended linear Poincaré flow

P̃X
t : NG1 → NG1

P̃X
t (v) = πDXt(L)(DXt(v))

for all L ∈ G1 and v ∈ NL. One can check that for any x ∈ M \ Sing(X),

we have Nx = N⟨X(x)⟩ and PX
t |Nx

= P̃X
t |N⟨X(x)⟩ . Here, P̃X

t is said to be the
extended linear Poincaré flow.

For any compact invariant set Λ of the vector fields X, we use Λ̃ to denote
the closure of

{⟨X(x)⟩ : x ∈ Λ \ Sing(X)}
in the space of G1. Let σ ∈ Λ be a singularity, denote by

Λ̃σ = {L ∈ Λ̃ : L ⊂ TσM}.
From the facts we got from Proposition 3.11, we have the following charac-

terization of Λ̃σ.

Lemma 4.1. Let X ∈ T and Λ be an isolated transitive set of X. Suppose
there is a singularity with index 2. Then for all singularity σ ∈ Λ, we have
L ⊂ Ecs

σ ⊕ Eu
σ for all L ∈ Λ̃σ.

Proof. Let X ∈ T and Λ be an isolated transitive set of X. Suppose on the
contrary, that is, there is L ∈ Λ̃σ such that L is not a subspace in Ecs

σ ⊕Eu
σ . Note

that DXt(L) is contained in Λ̃σ for all t ∈ R and Λ̃σ is a closed set. By taking

a limit line of DXt(L) as t → −∞, we know that there is L ∈ Λ̃σ such that

L ⊂ Ess
σ . From now on, we assume that L ∈ Λ̃ and L ⊂ Ess

σ . By the definition

of Λ̃, we know that there exist xn ∈ Λ\Sing(X) such that ⟨X(xn)⟩ → L ⊂ Ess
σ .

For the simplicity of notations, we assume everything happens in a local chart
containing σ. For any 0 < η ≤ 1, denote by Ecu

σ = Ecs
σ ⊕ Eu

σ and

Ccu
η (σ) = {v = vss + vcu ∈ TσM : |vss| < η|vcu|, vss ∈ Ess

σ , vcu ∈ Ecu
σ }

the cu-cone at the singularity σ. These cones can be parallel translated to x
who is close to σ. Since Ess

σ ⊕Ecu
σ is a dominated splitting for the tangent flow

DXt, there are two constants T > 0 and 0 < λ < 1 such that

DXt(Ccu
1 (σ)) ⊂ Ccu

λ (σ)
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for any t ∈ [T, 2T ]. By the continuous property of the cone to a cone field in a
small neighborhood Uσ of σ, for any t ∈ [T, 2T ], X [0,t](x) ⊂ Uσ then we have
DXt(Ccu

1 (x)) ⊂ Ccu
1 (Xt(x)). Now let tn = sup{t > 0 : X [−t,0](xn) ⊂ Uσ}.

We know that tn → +∞ as n → ∞ because xn → σ as n → ∞. Denote
by yn = X−tn(xn). Then we can take q = limn→∞ yn ∈ ∂Uσ by taking
the subsequence if necessary. We know that for t > 0, Xt(q) ∈ Uσ and so,
q ∈ W s(σ). Since yn ∈ Λ we know q ∈ Λ. If q ∈ W ss(σ) ∩ Λ, because we
have already q ∈ ∂Uσ, hence q ̸= σ, then from the fact that X ∈ T1 and Λ
is an isolated nontrivial transitive set, this is a contradiction by Proposition
3.11. Now we assume that q ∈ W s(σ)\W ss(σ). We have ⟨X(Xt(q))⟩ → Ecs

σ as
t → +∞. Thus there is T1 > 0 big enough such thatX(XT1(q)) ∈ Ccu

1 (XT1(q)).
For n big enough we have X(XT1(yn)) ∈ Ccu

1 (XT1(yn)). Since tn → ∞, we
assume that tn − T1 > T . Since X [T1,tn](yn) ⊂ Uσ, we know that

X(xn) = X(Xtn(yn)) = DXtn−T1(X(XT1(yn)))

∈ DXtn−T1(Ccu
1 (XT1(yn)))

⊂ Ccu
1 (Xtn(yn)) = Ccu

1 (xn).

This is a contradiction with the assumption ⟨X(xn)⟩ → L ⊂ Ess
σ . □

It is proved in Section 2 that generically, if Λ is an isolated transitive set,
then it is locally star. By some well know results from the proof of stability
conjecture, we have the following proposition.

Proposition 4.2 ([9, 11]). Let Λ be a locally star set for X ∈ X1(M) and
let U(X), U be the neighborhoods in the definition of local star. Then there
are constants 0 < λ0 < 1, T0 > 0 such that for any Y ∈ U(X) and any
p ∈ ΛY (U) ∩ Per(Y ), the following properties hold:

(a) ∆s ⊕ ∆u is a dominated splitting with respect to the linear Poincaré
flow. Precisely, for any t ≥ T0 and any x ∈ Orb(p),

∥PY
t |∆s(x)∥ · ∥PY

−t|∆u(Y t(x))∥ ≤ e−2λ0t;

(b) if τ is the period of p and m is any positive integer, and if 0 = t0 <
t1 < · · · < tk = mτ is any partition of the time interval [0,mτ ] with
ti+1 − ti ≥ T0, then

1

mτ

k−1∑
i=0

log ∥PY
ti+1−ti |∆s(Y ti (p))∥ < −λ0,

and

1

mτ

k−1∑
i=0

log ∥PY
−(ti+1−ti)

|∆u(Y ti+1 (p))∥ < −λ0,

where ∆s ⊕∆u is the hyperbolic splitting with respect to PX
τ |NOrb(p)

.
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Now we assume that Λ is an isolated transitive set of a C1-generic vector
field X. By the closing lemma we know that for any x ∈ Λ \ Sing(X), one
can find a sequence of periodic points pn of X such that pn → x as n → ∞.
Consequently, for any L ∈ Λ̃, we can find a sequence of periodic points pn of
X, such that L is the limit of ⟨X(pn)⟩. Since Λ is locally star, from item (a) of

Proposition 4.2 we can see that for any L ∈ Λ̃, we can get two one dimensional
subspaces ∆1(L) = limn→∞ ∆s(pn) and ∆2(L) = limn→∞ ∆u(pn) with the
property: for any t ≥ T0,

∥P̃Y
t |∆1(L)∥ · ∥P̃Y

−t|∆2(DXt(L))∥ ≤ e−2λ0t.

This implies that there is a dominated splitting NΛ̃ = ∆1⊕∆2 for the extended

linear Poincaré flow P̃X
t . For any x ∈ Λ \ Sing(X), we can put ∆i(x) =

∆i(⟨X(x)⟩) for i = 1, 2, then we can get a dominated splitting NΛ\Sing(X) =

∆1 ⊕∆2 for the linear Poincaré flow PX
t .

If X ∈ T and Λ be an isolated transitive set of X, then we have only finitely
many singularity in Λ. Without loss of generality, after a change of equivalent
Riemmanian structure, we can assume that for any σ ∈ Λ with index 2, the
subspaces Ess

σ , Ecs
σ , Eu

σ are mutually orthogonal. From Lemma 4.1 we know

that every L ∈ Λ̃σ is orthogonal to Ess
σ , this fact derives the following lemma.

Lemma 4.3. Let X ∈ T and Λ be an isolated transitive set of X. Suppose
there is a singularity with index 2. Then for all singularity σ ∈ Λ with mutually
orthogonal Ess

σ , Ecs
σ , Eu

σ , we have ∆1(L) = Ess
σ and P̃X

S |∆1(L) = DXS |Ess
σ

for

any L ∈ Λ̃σ.

Proof. We denote by Ecu
σ := Ecs

σ ⊕ Eu
σ for any given singularity σ ∈ Λ. For

any L ∈ Λ̃σ, we set N1(L) = Ess
σ and N2(L) = Ecu

σ ∩NL. By the fact that L

is orthogonal to Ess
σ we know that N1(L) ⊂ NL for any L ∈ Λ̃σ. Now we have

two subbundles

N1
Λ̃σ

=
⋃

L∈Λ̃σ

N1(L), N2
Λ̃σ

=
⋃

L∈Λ̃σ

N2(L).

These two subbundles are P̃X
t -invariant by the fact that L ⊂ Ecu

σ for any

L ∈ Λ̃σ and both Ess
σ and Ecu

σ are DXt-invariant.
Since Ess

σ ⊕ Ecu
σ is a dominated splitting for DXt, we know that there are

constants C > 1, λ > 0 such that

∥DX−t(u)∥
∥DX−t(v)∥

≤ Ce−λt

for any unit vectors u ∈ Ecu
σ and v ∈ Ess

σ and any t > 0. Then for any L ∈ Λ̃σ

and any unit vectors u ∈ N2(L), v ∈ N1(L), we have

∥P̃X
−t(u)∥

∥P̃X
−t(v)∥

≤ ∥DX−t(u)∥
∥DX−t(v)∥

≤ Ce−λt.
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This says that NΛ̃σ
= N1

Λ̃σ
⊕N2

Λ̃σ
is a dominated splitting on Λ̃σ with respect

to the extended linear Poincaré flow P̃X
t . By the uniqueness of dominated

splitting we know that N1
Λ̃σ

= ∆1
Λ̃σ

. Thus we have ∆1(L) = Ess
σ for all L ∈ Λ̃σ.

By the definition of extended linear Poincaré flow, we directly have the fact
that P̃X

S |∆1(L) = DXS |Ess
σ

for all L ∈ Λ̃σ. □

Now let us recall the ergodic closing lemma. A point x ∈ M \ Sing(X) is
called a well closable point of X if for any C1 neighborhood U(X) of X and any
δ > 0, there are Y ∈ U(X), z ∈ M , τ > 0 and T > 0 such that the following
conditions are hold:

(a) Y τ (z) = z,
(b) d(Xt(x), Y t(z)) < δ for any 0 ≤ t ≤ τ , and
(c) X = Y on M \B(X [−T,0](x), δ).

Denote by Σ(X) the set of all well closable points of X. Here we will use the
flow version of the ergodic closing lemma which was proved in [17].

Lemma 4.4 ([17]). For any X ∈ X1(M), µ(Σ(X) ∪ Sing(X)) = 1 for every
T > 0 and every XT -invariant Borel probability measure µ.

Assume X ∈ T and Λ is an isolated transitive set of X. From Proposition
4.2 we have already known that there is a dominated splitting NΛ\Sing(X) =

∆1⊕∆2 with dim(∆1) = dim(∆2) = 1 with respect to the linear Poincaré flow
PX
t . By applying the ergodic closing lemma, we have the following lemma.

Lemma 4.5. Let X ∈ T and Λ be an isolated transitive set of X. Suppose
there is a singularity with index 2. Then there are constants C > 1 and λ > 0
such that

∥DXt|⟨X(x)⟩∥−1 · ∥PX
t |∆1(x)∥ < Ce−λt,

∥DX−t|⟨X(x)⟩∥ · ∥PX
−t|∆2(x)∥ < Ce−λt

for all x ∈ Λ \ Sing(X) and t ≥ 0.

Proof. Let X ∈ T and Λ be an isolated transitive set of X. Then there is a
P̃X
t invariant splitting NΛ̃ = ∆1 ⊕∆2 with constants T0 > 0 and λ0 > 0 such

that the followings are satisfied:

(1) if L = ⟨X(x)⟩ for some x ∈ Λ \ Sing(X), then ∆i(⟨X(x)⟩) = ∆i(x) for
i = 1, 2,

(2) ∥P̃Y
t |∆1(L)∥ · ∥P̃Y

−t|∆2(DXt(L))∥ ≤ e−2λ0t for any t > T0, and

(3) L ∈ Λ̃.

To prove the lemma, we just need to prove that there are C > 1 and λ > 0
such that for any L ∈ Λ̃ and any t > 0, we have

∥DXt|L∥−1 · ∥P̃X
t |∆1(L)∥ < Ce−λt,

∥DX−t|L∥ · ∥P̃X
−t|∆2(L)∥ < Ce−λt.
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Since Λ̃ is compact, we just need to show that for any L ∈ Λ̃, there is a T > 0
such that

log ∥P̃X
T |∆1(L)∥ − log ∥DXT |L∥ < 0,

log ∥P̃X
−T |∆2(L)∥+ log ∥DX−T |L∥ < 0.

Now let us prove these properties of ∆1 ⊕∆2 by contradiction. Firstly we
prove the first half part. Assume that for any L ∈ Λ̃ and any t > 0

log ∥P̃X
t |∆1(L)∥ − log ∥DXt|L∥ ≥ 0.

Similar to [12, Lemma I.5], by a typical application of Birkhoff ergodic theorem,
for any S > 0 there is an ergodic DXT -invariant measure µ̃ ∈ M(G1) with

supp(µ̃) ⊂ Λ̃ such that∫
(log ∥P̃X

S |∆1(L)∥ − log ∥DXS |L∥)dµ̃(L) ≥ 0.

In the following, we will always choose S is big enough.

Claim. If S is big enough, then for any singularity σ ∈ Λ∩ Sing(X), one has

µ̃(Λ̃σ) = 0.

Proof of Claim. According to Lemma 4.1, for every L ∈ Λ̃σ, L ⊂ Ecs
σ ⊕ Eu

σ :=
Ecu

σ . Without loss of generality, we assume that Ess
σ is orthogonal to Ecu

σ .

Then by Lemma 4.3 we have P̃X
S |∆1(L) = DXS |Ess

σ
for any L ∈ Λ̃σ. Since Ess

σ

is dominated by Ecu
σ , we can take S big enough such that

log ∥P̃X
S |∆1(L)∥ − log ∥DXS |L∥ < 0

for any L ∈ Λ̃σ. If µ̃(Λ̃σ) ̸= 0, then we have µ̃(Λ̃σ) = 1 by the invariant of Λ̃σ

and the ergodicity of µ̃, thus we have∫
(log ∥P̃X

S |∆1(L)∥ − log ∥DXS |L∥)dµ̃(L) < 0.

This is a contradiction. This ends the proof of claim. □

In the following, we will take S is a multiple of T0 which is big enough such
that the above claim is satisfied. One can see S have also the properties of T0.

For any Borel set A ⊂ Λ, we denote by Ã = {L : L = ⟨X(x)⟩ for some x ∈
A}. Then we define µ(A) = µ̃(Ã). By the fact that µ̃(Λ̃σ) = 0 for any
σ ∈ Λ ∩ Sing(X), we know that µ is an ergodic measure support in Λ with
µ(Λ \ Sing(X)) = 1. From the inequality∫

(log ∥P̃X
S |∆1(L)∥ − log ∥DXS |L∥)dµ̃(L) ≥ 0,

we have ∫
Λ\Sing(X)

(log ∥PX
S |∆1

x
∥ − log ∥DXS |⟨X(x)⟩∥)dµ(x) ≥ 0.
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By Lemma 4.4,∫
Λ∩Σ(X)

(log ∥PX
S |∆1(x)∥ − log ∥DXS |⟨X(x)⟩∥)dµ(x) ≥ 0.

By the ergodic theorem of Birkhoff, there is a point y ∈ Λ ∩ Σ(X) such that

(1) lim
n→∞

1

nS

n−1∑
j=0

(log ∥PX
S |∆1(XjS(y))∥ − log ∥DXS |⟨X(XjS(y))⟩∥) ≥ 0.

Claim. y is not a periodic point of X.

Proof of Claim. By the fact that ∥DXS |⟨X(x)⟩∥ = |X(XS(x))|
|X(x)| , we have

n−1∑
j=0

log ∥DXs|⟨X(XjS(y))⟩∥ =

n−1∑
j=0

log
|X(Xj+1S(y))|
|X(XjS(y))|

= log |X(XnS(y))| − log |X(y)|.

If y ∈ Per(X), then by Proposition 4.2, we have

lim sup
n→∞

1

nS

n−1∑
j=0

log ∥PX
S |∆s

XjS(y)
∥ ≤ −λ0.

Since sup | log(X(x))| is bounded for x ∈ Orb(y), we have

lim sup
n→∞

1

nS

( n−1∑
j=0

log ∥PX
S |∆s

XjS(y)
∥ − log |X(XnS(y))| − log |X(y)|

)
≤ −λ.

This is contradiction by (1). Thus y is not periodic. □

Since y is a well closable point, for any n > 0, there are Xn ∈ X1(M),
zn ∈ M , and τn > 0 such that

(i) Y τn
n (zn) = zn and τn is the prime period of zn,

(ii) d(Xt(y), Y t
n(zn)) ≤ 1/n for any 0 ≤ t ≤ τn, and

(iii) ∥Yn −X∥ ≤ 1/n.

Since y is not a periodic point, we have τn → +∞ as n → ∞. We also have
the following uniformly continuity for PY

t |∆1 .

Claim. For any ϵ > 0 there is δ > 0 and a C1 neighborhood U(X) of X such
that for any x, y ∈ M , if (i) x ∈ Λ \ Sing(X), (ii) there is Y ∈ U(X) such that
y ∈ Per(Y ), Orb(y) ⊂ U , and d(x, y) < δ, then

(2) | log ∥PX
t |∆1(x)∥ − log ∥PY

t |∆s(y)∥| < ϵ

for any t ∈ [0, 2S]. Here ∆s(y) denotes the stable subspace of y with respect
to the vector field Y .
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Proof of Claim. We prove this by deriving a contradiction. Assume the con-
trary. Then there is η > 0 such that for any n > 0 there exists tn ∈ [0, 2S],
Xn → X and two sequences {xn}, {yn} such that (i) xn ∈ Λ \ Sing(X), (ii)
yn ∈ Per(Xn) and Orb(yn) ⊂ U , (iii) d(xn, yn) < 1/n, and

| log ∥PX
tn |∆1(xn)∥ − log ∥PXn

tn |∆s(yn)∥| ≥ η.

Since [0, 2S] and Λ are compact, we can take sequences {tn} ⊂ [0, 2S] and
{xn} ⊂ Λ (take subsequences if necessary) such that tn → t0 and xn → x0.
Then we have yn → x0 by the above item (iii).

If x0 ̸∈ Sing(X), then by the continuity of dominated splitting, we know
∆1(xn) → ∆1(x0) and ∆s(yn) → ∆1(x0) as n → ∞, then we have

| log ∥PX
t0 |∆1(x0)∥ − log ∥PX

t0 |∆1(x0)∥| ≥ η.

This is a contradiction.
If x0 ∈ Sing(X), then we can take sequences {⟨X(xn)⟩}, {⟨Xn(yn)⟩} (take

subsequences if necessary) such that ⟨X(xn)⟩ → L ∈ Λ̃x0
and ⟨Xn(yn)⟩ →

L1 ∈ Λ̃x0 . Since both L,L1 ∈ Λ̃x0 , we have P̃X
t |∆1(L) = P̃X

t |∆1(L1) = DXt|Ess
x0

by Lemma 4.3. But on the other hand, we have

| log ∥P̃X
t |∆1(L)∥ − log ∥P̃X

t |∆1(L1)∥| ≥ η.

This is also a contradiction. This ends the proof of Claim. □

By (2), there is n0 such that for any k > n0, t ∈ [0, 2S] and t0 ∈ [0, τn], one
has

(3) | log ∥PX
t |∆1

Xt0 (y)

∥ − log ∥PXn
t |

∆s(X
t0
n (zn))

∥| < Sλ0/3,

where λ0 as in Proposition 4.2. Let τn = mnS + sn (mn ∈ Z and sn ∈ [0, S)).
Then we consider the partition

0 = t0 < t1 = S < · · · < tmn−1 = (mn − 1)S < tmn
= τn.

According to Proposition 4.2, we know

mn−2∑
j=0

log ∥PXn

S |∆s(XjS
n (zn))

∥+ log ∥PXn

S+sn
|
∆s(X

(mn−1)S
n (zn))

∥ ≤ −τnλ0.

Then by (3) we have

mn−2∑
j=0

log ∥PX
S |∆1(XjS(y))∥+ log ∥PX

S+sn |∆1(X(mn−1)S(y))∥

≤ mnSλ0/3− τnλ0 = −2mnSλ0/3− snλ0 ≤ −2mnSλ0/3.

For sufficiently small r > 0, let Br(y) be a neighborhood of X [−2S,0](y) such
that Br(y) ∩ Sing(X) = ∅. Denote by C = sup{| log |X(x)|| : x ∈ Br(y)} +
sup{| log ||PX

t |∆s(x)∥| : x ∈ Br(y), t ∈ [0, 2S]} < ∞. Since d(y, zn) < 1/n
and d(Xτn(y), zn) = d(Xτn(y), Xτn(zn)) < 1/n, we know d(Xτn(y), y) < 2/n.
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Thus there is n1 > n0 such that for any n > n1 and t ∈ [0, 2S] we have
Xτn−t(y) ∈ Br(y). Since τn − (mn − 1)S = S + sn < 2S, we know

(4) | log |X(X(mn−1)S(y))||+ | log ∥PX
S+sn |∆s(PX

(mn−1)S
(y))∥| ≤ C.

By (1) and mn → +∞ as n → +∞, there is n2 ≥ n1 such that for any
n > n2

mn−2∑
j=0

log ∥PX
S |∆1(XjS(y))∥ − (log |X(X(mn−1)S(y))| − log |X(y)|)

≥ − (mn − 1)Sλ0/3.

Then by

mn−2∑
j=0

log ∥PX
S |∆s(XjS(y))∥+ log ∥PX

S+sn |∆s(X(mn−1)S(y))∥ ≤ −2mnSλ0/3,

and (4), we have

−(mn − 1)Sλ0/3 ≤ −2mnSλ0/3 + C + log |X(y)|.
If n is big enough, then it does not happen, and so, it is a contradiction. This
proves that for any L ∈ Λ̃, there is a T > 0 such that

log ∥P̃X
T |∆1(L)∥ − log ∥DXT |L∥ < 0.

And then by the compactness of Λ̃, we can find C > 1 and λ > 0 such that for
any L ∈ Λ̃ and any t > 0, we have

∥DXt|L∥−1 · ∥P̃X
t |∆1(L)∥ < Ce−λt.

By a similar argument we can prove that for any L ∈ Λ̃, there is a T > 0
such that

log ∥P̃X
−T |∆2(L)∥+ log ∥DX−T |L∥ < 0,

and then there exist C > 1 and λ > 0 such that for any L ∈ Λ̃ and any t > 0,
we have

∥DX−t|L∥ · ∥P̃X
−t|∆2(L)∥ < Ce−λt.

This ends the proof of the lemma. □

Theorem A is a direct corollary of Lemma 4.5 and the following lemma in
[19].

Lemma 4.6 ([19, Theorem A]). Assume Λ is a non-trivial transitive set
such that all singularity in Λ is hyperbolic. If there is a dominated splitting
NΛ\Sing(X) = ∆1 ⊕∆2 on Λ \ Sing(X) with respect to PX

t and there are con-
stants C > 1 and λ > 0 such that

∥DXt|⟨X(x)⟩∥−1 · ∥PX
t |∆1(x)∥ < Ce−λt,

∥DX−t|⟨X(x)⟩∥ · ∥PX
−t|∆2(x)∥ < Ce−λt

for all x ∈ Λ \ Sing(X) and t ≥ 0, then Λ is positively singular hyperbolic.
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Proof of Theorem A. Let X ∈ T and Λ be an isolated transitive set of X. If
there is a singularity σ ∈ Λ with index 2, then Λ is positively singular hyperbolic
by Lemma 4.5 and Lemma 4.6. If there is a singularity σ ∈ Λ with index 1, then
by reversing the vector fields, we know that Λ is negatively singular hyperbolic.
This ends of the proof of Theorem A. □
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