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SINGULAR HYPERBOLICITY OF C! GENERIC THREE
DIMENSIONAL VECTOR FIELDS

MANSEOB LEE

ABSTRACT. In the paper, we show that for a generic C! vector field X
on a closed three dimensional manifold M, any isolated transitive set of
X is singular hyperbolic. It is a partial answer of the conjecture in [13].

1. Introduction

The transitivity is a symbol of chaotic property for differential dynamical
systems. The C! robust transitivity for diffeomorphisms are well investigate in
a series of works [2,3,5], and then we have a good characterization on isolated
transitive sets of C! generic diffecomorphisms at the same time. From the main
result of [1] we know that if every isolated transitive set of a C'* generic diffeo-
morphism admit a nontrivial dominated splitting, then it is volume hyperbolic.

It is well known that a singularity-free flow, for an instance, a suspension of a
diffeomorphism, will take similar phenomenona of diffeomorphisms. However,
once the recurrent regular points can accumulates a singularity, such as the
Lorenz-like systems, we will meet something new. For instance, in [14], one
have to use a new notion of singular hyperbolicity to characterize the robustly
transitive sets of a 3-dimensional flow. Here the singular hyperbolicity is a
generalization of hyperbolicity so that we can give the Lorenz attractor and
Smale’s horseshoe a unified characterization. In this article, we will show that
an isolated transitive set of C'' generic vector field on 3-dimensional manifold
will be singular hyperbolic. That means, every isolated transitive set of a C!
generic vector field looks like a Lorenz attractor [6,10].

Let us be precise now. Denote by M a compact d(> 2)-dimensional smooth
Riemannian manifold without boundary and by X'(M) the set of C* vector
fields on M endowed with the C! topology. Every X € X!(M) generates
a flow X* : M x R — M that is a C' map such that X' : M — M is a
diffeomorphism for all ¢ € R and then X°(z) = z and X'*(z) = X!(X?*(z))
for all s, € R and x € M. An orbit of X corresponding a point x € M is the
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set Orb(z) = {X*(z) : t € R}. A point # € M is called singular if X'(o) = o
for all t € R, and p € M is called periodic if XT = p for some T > 0. Let
Sing(X) denotes the set of singularities of X and Per(X) is the set of periodic
orbits of X. Denote by Crit(X) = Sing(X) U Per(X) the set of all critical
points of X.

Let A C M be a closed X !-invariant set. We say that A is a hyperbolic set of
X if there are constants C' > 0, A > 0 and a DX ‘-invariant continuous splitting
TaM = E* @ (X) ® E* such that

|IDX"p:s|| < Ce ™™ and |DX~|gu| < Ce ™

for t > 0 and « € A, where (X (z)) denotes the space spanned by X (z), which
is 0-dimensional if = is a singularity or 1-dimensional if x is not a singularity.
For any critical point z € Crit(X), if its orbit is a hyperbolic set, we denote
by index(z) = dimFE?.

Now let us recall the singular hyperbolicity firstly given by Morale, Pacifico
and Pujals [14] which is an extension of hyperbolicity. We say that a compact
invariant set A is positively singular hyperbolic for X (see [16]) if there are
constants K > 1 and A > 0, and a continuous invariant TA M = E° ® E with
respect to DX such that

(i) E* is (K, \)-dominated by E°, that is,
DX e @yl - 1DX " gext(on |l < Ke ™, Vz e Aandt>0.
(ii) E* is contracting, that is,
IDX" o (oyl| < Ke ™™, Vo€ Aandt>0.

(iii) E°* is sectional expanding, that is, for any « € A and any 2-dimensional
subspace L C E°(z),

|det(DX!|L)| > K~ ', vt >o0.

We say that A is negatively singular hyperbolic for X if A is positively singular
hyperbolic for — X, and then say that A is singular hyperbolic for X if it is either
positively singular hyperbolic for X, or negatively singular hyperbolic for X.
Definitely, we can see that if A is singular hyperbolic for X and it does not
contain singularities, then it is hyperbolic (see [14, Proposition 1.8] for a proof).
In the paper, we consider the relation between transitivity and hyperbolicity
for an isolated compact invariant set. We say that A is transitive if there is
x € A such that w(z) = A, where w(z) is the omega limit set of z. We say
that a closed Xt-invariant set A is isolated (or locally mazimal) if there exists
a neighborhood U of A such that

A=Ax(U) =[] X"V).
teR
Here U is said to be isolated neighborhood of A.

For the 3-dimensional case, Morales, Pacifico and Pujals [14] proved that
if A is a robustly transitive set containing singularities, then it is a singular
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hyperbolic set for X. Here we will consider C' generic vector fields. We say
that a subset G C XY(M) is residual if it contains a countable intersection of
open and dense subsets of X!(M). A property is called C* generic if it holds
in a residual subset of X!(M). We give the following characterization of the
isolated transitive sets of a C'! generic vector field on 3-dimensional Riemannian
manifold.

Theorem A. For C' generic X € XY(M), an isolated transitive set A is
singular hyperbolic.

2. Transitivity and locally star condition

Let M be a three dimensional smooth Riemannian manifold and let X €
X(M) be the set of C! vector fields on M endowed with the C! topology. Here
we collect some known generic properties for C' vector fields.

Proposition 2.1. There is a residual set G; C XY(M) such that for any X €
G1, X satisfies the following properties:

(1) X is a Kupka-Samle system, that is, every periodic orbits and singu-
larity of X is hyperbolic, and the corresponding invariant manifolds
intersect transversely.

(2) if there is a sequence of vector fields {X,} with critical orbit {P,} of
X, such that X, — X, index(P,) = i and P, —g A, then there is
a sequence of critical orbit {Qn} of X such that index(Q,) = i and
Qn —u A, where — g is the Hausdorff limit.

The item 1 is from the famous Kupka-Smale theorem (see [15]) and item 2
is a vector field version of [18, Lemma 3.5]

From item 1 of Proposition 2.1, we can see that if A is a trivial transitive
set, that is, A is a periodic orbit or a singularity, then it should be hyperbolic
and automatically singular hyperbolic. To prove Theorem A, we just need
to consider the nontrivial case. Hereafter, we assume that A is a nontrivial
transitive set of X. One can see that if A is a nontrivial transitive set, then A
contains no hyperbolic sinks or sources.

Let U be an isolated neighborhood of A. Then for Y C' close to X, denote
by

Ay(U) = ﬂ YHU)
teR
the maximal invariant set of Y in U.

Lemma 2.2. Let G C X' (M) be the residual set given in Proposition 2.1. For
any X € Gy, if A is an isolated nontrivial transitive set of X, then there are
a C neighborhood U(X) of X and a neighborhood U of A such that for any
Y e U(X), we have every v € Ay (U)N Per(Y) is hyperbolic and index(y) = 1.

Proof. Let G; be the residual set in Proposition 2.1 and let A be an isolated
transitive set of X € G;. Arguing by contradiction, we assume that for any C!
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neighborhood U(X) of X and any neighborhood U of A, there is Y € U(X)
such that Y has a periodic orbit () whose index is not 1. Then we have three
cases: (i) @ is not hyperbolic, (ii) @ is hyperbolic but index(Q) = 0 or (iii)
index(Q) = 2. Note that if the periodic orbit @ is not hyperbolic for Y, then
we can take a vector field Z C! arbitrary close to Y such that either Q is a
sink for Z or @ is a source for Z. Then we also have the case cases (ii) or (iii)
happening. Thus we can take sequences Y,, — X and a periodic orbit P, of Y,
such that index(P,,) = 0 or 2 and
lim P, =T C A.

n—oo

Then we can take a sequence of vector fields X, tends to X and periodic orbits
{Qr} of X,, with index(Q,) =0 or 2 such that

lim Q, =T C A.
n—o0

Without loss of generality, we can assume that all @,, have the same index 0
or 2 once we take a subsequence. By the item 2 of Proposition 2.1, we know
that there is a sequence P, of periodic orbit of X with index 0 or 2 converging
into A. Since A is isolated, for sufficiently large n, we have P, C A. This is a
contradiction since A is a nontrivial transitive set. (]

Let A be a closed X*-invariant set. We say A is locally star if there are a C!
neighborhood U(X) of X € X!(M) and a neighborhood U of A such that for
any Y € U(X), every periodic orbit of Y in Ay (U) = (e Y*(U) is hyperbolic
and has same indices.

Corollary 2.3. There is a residual set R C X' (M) such that for any X € R,
if A is an isolated transitive set of X which is not an orbit, then A is a local
star.

Proof. Let X € R = G; and let A be an isolated transitive set. By Lemma 2.2,
there are a C! neighborhood U(X) of X and a neighborhood U of A such that
for any Y € U(X), every periodic orbit v € Ay (U) N Per(Y) is hyperbolic and
index(y) = 1. Thus A is a local star. O

3. Transitivity and Lyapunov stability
Suppose o € Sing(X) is hyperbolic. Then we denote by
Wé(o) =W?(0,X)={y€ M :d(X"(c),X"(y)) = 0 as t — oo},

W¥(og) =W"(0,X)={y €M :d(X"(c),X"(y)) = 0 as t — —o0},
where W*#(o, X) is said to be the stable manifold of o and W*(c, X) is said to
be the unstable manifold of o. Tt is known that index (o) = dim W*(0).

If X is a Kupka-Smale vector field, then X contains finitely many singu-
larities and every singularity is hyperbolic. Thus by the structurally sta-
bility of hyperbolic singularity we know that there are a C' neighborhood
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U(X) of X and a neighborhood U of A such that for any Y € U(X), every
o € Ay(U)N Sing(Y) C U is hyperbolic.

Lemma 3.1. Let Gy C X'(M) be the residual set given in Proposition 2.1. For
any X € Gy, if A is an isolated nontrivial transitive set of X, then there are
a C neighborhood U(X) of X and a neighborhood U of A such that for any
Y e U(X), every singularities in Ay (U) is saddles.

Proof. We prove it by contradiction. Assume the contrary of the lemma. Then
we can find a sequence of vector fields X, tends to X and a sequence of singu-
larity o, of X,, such that o,, tends to a point ¢ such that the index of o, equals
to 0 or 3. Without loss of generality, we assume that every o, has index 0,
then we can see that o is a singularity. Since X € Gy, we have ¢ is hyperbolic.
By the structurally stability of o we know ¢ have index 0 too. This contradicts
with A is a nontrivial transitive set. ]

Lemma 3.2. Let A be a transitive set of a C' wector field X. If ¢ € AN
Sing(X) is hyperbolic, then (W*(c)\{c})NA# 0 and (W*(o)\{o})NA # 0.

Proof. We consider the case of (W*(o) \ {o}) N A # 0 (Other case is similar).
Since 0 € A = w(z) for some x € A, there is t,, € R* with t,, — oo such that
X'n(x) — 0. Since o is hyperbolic, we can take ¢ > 0 such that

{z: X'(z) € B(0) for all t > 0} C W*(0).

Denote by z,, = X' (z). For n large enough, x, € B.(o). Let 7, = sup{t :
X80 (2,) € B(0)}. Then we have X~ (x,,) € B.(0). Let y,, = X ™ (x,,).
We can see that 7,, — +0c0 as n — oo. Take a subsequence if necessary, we
can assume that y, — y as n — oco. It is easy to see that y # o. For every
Yn, we have X7 (y ) € 9B (o). By the continuity of the flow X, we have
X (0+)(4) € B.(0), then y € W*(o) \ {0} O

The following is the connecting lemma for C' vector fields.

Lemma 3.3 ([16]). Let X € X' (M) and z € M be neither periodic nor singular
of X. For any C* neighborhoodU(X) C X*(M) of X, there exist three numbers
p>1,L>1anddyg > 0 such that for any 0 < § < &g and any two points x,y
outside the tube A = Bs(X % (2)) (or A = Bs(XI=10(2))), if the positive
X-orbit of x hits Bs;,(z) and the negative X -orbit of y both hit Bs;,(X*(2)),
then there exists Y € U(X) with Y = X outside A such that y is on the positive
Y -orbit of x.

Lemma 3.4. Let A be a transitive set for X and o € ANSing(X) be hyperbolic.
Then for any C' neighborhood U(X) of X, any non-empty open set U in A,
there is Y € U(X) such that W*(o,Y)NU # 0, where W*(0,Y) is the stable
manifold of o with respect to Y.

Proof. Let U(X) be fixed. By Lemma 3.2, there is a point € (W*(o)\{o})NA.
Then z is neither a singularity nor a periodic point. Let L,p and Jg be the
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constant given by Lemma 3.3. Take a point X7 (x) with T > L and 6 > 0 such
that the tube
Bs(XOH () 0 XTH+0) () = 0.

Since A is transitive, there is z € A such that w(z) = A. For any small
neighborhood U of 3, we can find 0 < s < t such that X%(z) € U and X(z) €
Bs/p(z). Let ¢ = XT(z) and p = X*(z). Then by Lemma 3.3, there is
Y € U(X) such that Y(p) = g for some t > 0. Since ¢ = X7 (z) € W*(o), we
have p € W*(0,Y). O

From Lemma 3.1 we know that if X € Gy, and A is an isolated nontrivial
transitive set of X, then every o € AN Sing(X) has index 1 or 2.

Lemma 3.5. There is a residual set Go C X1 (M) with the following property.
For any X € Gs and any isolated nontrivial transitive set A of X, if there is
o € AN Sing(X) with index(o) = 2, then A C W (o). Symmetrically, if there

is 0 € AN Sing(X) with index(c) =1, then A C W3(0).

Proof. Let O = {01,03,...,0,,...} be a countable basis of M. For each
m,k € N let

Homx = {X € X1 (M) : there is a C" neighborhood U(X) of X such that
for any Y € U(X), Y has a singularity o € O,, with
index(o) = 2 such that W"(o,Y) N Oy, # 0}.
Then H,, k. is an open in X' (M). Let
Ninje = X1 (M) \ Hon
Then H, ;U Ny, i is open and dense in X'(M). Let

Go= () Hums UNmi)-

m,keEN

We will show that the residual set G- satisfies the request of lemma. Let
X € Go and A be an isolated transitive set and let o € A N Sing(X) with
index (o) = 2. Since o is hyperbolic, we can take O,, such that O, is an isolated
neighborhood of o. By the structurally stability of hyperbolic singularity, there
is a C! neighborhood U(X) of X such that for any Y € U(X), Y has a unique
hyperbolic singularity in O,,. For any y € A and any neighborhood U of y, we
can choose Oy € O such that y € Oy C U.

Claim. X ¢ N, .

Proof of Claim. For any neighborhood V(X) C U(X), by Lemma 3.4, there
is Y € V(X) such that Y has a singularity o € Oy, with index(c) = 2 and
W4(g,Y) N Oy # (. Note that o may not be a singularity of Z € U(Y). By
the persistence of hyperbolic singularity o, there is a singularity oz of Z such
that W*(0,Z) N Oy # 0. Thus we have Y € H,, ;. Hence X € H,, ;. This
ends the proof of claim. (I
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Then by claim, since X € Gy, we have X € H,, ;. Note that O, is an isolated
neighborhood of o, by the definition of H,, x, we know that W (o) N Oy, # 0.
This prove that for every neighborhood U of y, we know that W* (o) N U # §.
This means that A C W¥(o). O

We say that a closed X*-invariant set A is Lyapunov stable for X if for every
neighborhood U of A there is a neighborhood V' C U of A such that X*(V) c U
for every t > 0. Let o be a hyperbolic singularity of X with dimW*(o) = 1.
Then W%(o) \ {0} can be divided into two connected branches I'y, I's, that is,
Wu(O') = {O’} U Fl UFQ.

Lemma 3.6. Let X € X'Y(M) and A be a transitive set of X. Assume o € A
is a hyperbolic singularity of X with dimW"(c) = 1. Let T'y = Orb(x1) and
Ty = Orb(zz) be the two branches of W*(o) \ {¢}. If x1 € A, then for any
neighborhood U(X) of X, and any neighborhood V' of xo, there is Y € U(X)
such that x1 is still in the unstable manifold of o and the positive orbit of x
will cross V' with respect to Y .

Proof. We prove this lemma by a standard application of the connecting lemma.
By Lemma 3.2 we know that there is a point z € (W*(o) \ {o}) N A. Then we
have two triple of p > 1, L > 1 and §y with the properties stated as in Lemma
3.3 with respect to the point z; and z and the neighborhood U(X) of X. By
taking the larger p, L, and smaller §y, we get a triple, still denoted by p, L and
do, works both for z; and z.

Now we can take § > 0 small enough such that the two tubes A; =
Bs (X105 (2,)) and Ay = Bs(X[=59(2)) are disjoint. For any neighborhood V
of z9 and any neighborhood V' of z, by the inclination lemma we know that
there are a point y € V and T > 0 such that X~ (y) € V'. If § > 0 is choosing
small enough, we can take y and T such that X[=7%(y) does not touch A;.

Since A is transitive, we can find a point € A such that A = w(x). Then we
can find t; < t3 such that X* (z) € By, (X*(z1)) and X" () € B;;, (X L(2))
and a point y € V with X T (y) € Bs/p(2). Then apply Lemma 3.3, we can
find a vector filed Y € U(X) differs from X at tubes A; and Ag such that the
negative orbit of x; is not changed and y is contained in the positive orbit of
x1. It is easy to see that Y satisfies the request of lemma. (I

Lemma 3.7. Let Go C XY(M) be the residual set chosen as in Lemma 3.5.
Then for any X € Go and any isolated nontrivial transitive set A of X, if there
is a singularity o € A with index(o) = 2, then we have W (o) C A.

Proof. Let O = {01,04,...,0,,...} be a countable basis of M. Recall that
for each m, k € N, we take
Homp = {X € X1(M) : there is a ' neighborhood U(X) of X such that
for any Y € U(X),Y has a singularity o € O,,, with
index(c) = 2 such that W"(0,Y) N Oy, # 0}.
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Then take Ny, = X (M) \ Hpn . and
Go= () (o UNimi)-

m,keN

We will see that this G5 satisfies the request of lemma.

Let X € Gy and A be an isolated transitive set of X. Assume there is
singularity o € A with index 2. Let I'y = Orb(x1) and T'y = Orb(z2) be the
two branches of W¥(o) \ 0. By Lemma 3.2, we know that either z; or z3 is
contained in A. Without loss of generality, we assume that z; € A. To prove
Wt (o) C A, we just need to prove that xs is also contained in A. By the
compactness of A, we just need to prove that for any neighborhood U of x»,
one has U N A # (. For a given arbitrarily small neighborhood U of x, we can
find k such that O C U. Let O,, be an isolated neighborhood of o. Then we
have:

Claim. X & N, k.

Proof of Claim. For any neighborhood V(X) C U(X), by Lemma 3.6, there
is Y € V(X) such that Y has a singularity o € Oy, with index(c) = 2 and
W¥(g,Y) N O # 0. By the continuity of the unstable manifold we know
that there is a C!' neighborhood U(Y) of Y such that for any Z € U(Y),
W (o,Z)N Oy # 0. Thus we have Y € H,, . Hence X € H,, . This ends the
proof of claim. (I

Since X € Gy and X ¢ N, we have X € H,, . Since o is the only
singularity of X in O,,, by the definition of #,, » we can see that W*(o)NOy, #
(). Hence for any neighborhood U of xq, there is a point contained in W*(c).
This ends the proof of Lemma 3.7. (]

The following lemma is collected from [4].

Lemma 3.8 ([4, Proposition 4.1]). There is a residual set Gz C X*(M) such
that for any X € Gz, W¥(o) is Lyapunov stable for X and W#*(o) is Lyapunov
stable for —X for all o € Sing(X).

Proposition 3.9. There is a residual set S C X*(M) such that for any X € S,
and any isolated nontrivial transitive set A of X, if there is a singularity o € AN
Sing(X) with index(o) = 2, then A is Lyapunov stable for X. Symmetrically,
if there is 0 € AN Sing(X) with index(o) = 1, then A is Lyapunov stable for
-X.

Proof. Let X € § = GaNGs and A be an isolated transitive set of X. Suppose
that 0 € ANSing(X) with index(c) = 2. Then by Proposition 3.5 and Lemma
3.7, we have W*(o) = A. By Lemma 3.8, A is Lyapunov stable for X. O

A point o € Sing(X) of X is called Lorenz-like if DX (o) has three real
eigenvalues A1, Ao, A3 such that Ay < A3 <0< —A3 < A1. Let 0 € Sing(X) be
a Lorenz-like singularity. Then we use EZ°, ES®, E¥ to denote the eigenspaces
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of DX (o) corresponding the eigenspaces A2, A3, A1, respectively. Denoted by
W32(o) the one-dimensional invariant manifold of X associated to the eigen-
value A2. We have the following lemma was proved in [13].

Lemma 3.10 ([13, Lemma A.4]). There is a residual set G4 C X*(M) such
that for any X € R, if A is a Lyapunov stable nontrivial transitive set of X,
then every singularity o € A is Lorenz-like and one has W§ (o) N A = {o}.

Here is the main conclusion in this section.

Proposition 3.11. There is a residual set T C XY(M) with the following
properties. Let X € T and A be an isolated transitive set of X. If there is a
singularity with index 2, then for all singularity o € A, one has (1) index(c) =
2, (2) o is Lorenz-like, and (3) W (o) NA = {o}. Symmetrically, if there is a
singularity with index 1, then for all singularity o € A, one has (1) index(o) =
1, (2) o is Lorenz-like for —X, and (3) Wi¥*(o) N A = {o}.

Proof. Let X € T =8 NG, and A be an isolated transitive set of X. Suppose
that there is n € A N Sing(X) such that index(n) = 2. By Proposition 3.9,
A is Lyapunov stable for X. On the other hand, since X € G4, according to
Lemma 3.11, o is Lorenz-like, and W*(c) N A = {o}. We directly obtained
index(o) = 2 for all 0 € AN Sing(X). O

4. Proof of Theorem A

To prove Theorem A, we prepare two techniques here. One is the extended
linear Poincaré flow given by Li, Gan and Wen [7], and another one is the
ergodic closing lemma given by Mané [11,12].

Firstly we recall the notion of linear Poincaré flow firstly given by Liao [8,9].
For any regular point « € M \ Sing(X), we can put a normal space

Ny ={veT,M:vlX(x)}.
Then we have a normal bundle

N=NX)= (J N
zeM\Sing(X)

Denote by m, the orthogonal projection from T, M to N, for any x € M \
Sing(X). From the tangent flow, we can define the linear Poincaré flow

PX:N(X) = N(X)
PX(v) = Txt(z)(DX*(v)) for all v € N, and # € M \ Sing(X).

Note that the linear Poincaré flow is defined on the normal bundle over a non
compact set. We consider a compactification for PX as following.
Let

G' = {L : L is a one dimensional subspace in T, M, = € M}
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be the Grassmannian manifold of M. Then for any L € G*, assuming L C T, M
for some x € M, we can define a normal space associated to L as follows:

Np={veT,M:vlL}.
Now we can take a normal bundle
N=Ng = |J N
LeG?
Note that G is a compact manifold, so N1 is a bundle over a compact space.
For any L € G! contained in T,, M, denoted by 7, the orthogonal projection

from T, M to Ny along L. Let X be a C! vector field. Similar to the linear
Poincaré flow, we can define the extended linear Poincaré flow

PtX : Ngr =+ Nn

B (v) = 7TDXt(L)(DXt(v))
for all L € G' and v € Np. One can check that for any z € M \ Sing(X),
we have N, = N(x(y)) and PX|y, = NtX|N<X(I)>. Here, P/ is said to be the
extended linear Poincaré flow.
For any compact invariant set A of the vector fields X, we use A to denote
the closure of
{{X(x)):x e A\ Sing(X)}
in the space of G'. Let o € A be a singularity, denote by
Ap={LeA:LcCT,M}.

From the facts we got from Proposition 3.11, we have the following charac-
terization of A, .

Lemma 4.1. Let X € T and A be an isolated transitive set of X. Suppose
there is a singularity with index 2. Then for all singularity o € A, we have
LCEX®EY forall L € A,.

Proof. Let X € T and A be an isolated transitive set of X. Suppose on the
contrary, that is, there is L € A, such that L is not a subspace in ES*®E*. Note
that DX*(L) is contained in A, for all t € R and A, is a closed set. By taking
a limit line of DX*(L) as t — —oo, we know that there is L € A, such that
L C E3°. From now on, we assume that L € Aand L C E23. By the definition
of A, we know that there exist x,, € A\ Sing(X) such that (X (z,)) — L C E**.
For the simplicity of notations, we assume everything happens in a local chart
containing o. For any 0 < n <1, denote by ES* = E° ® EY and

C’;’U,(o_) — {U — USS _|_ UC’U. e TO-M . |USS| < /',]|/UC’U“7 /USS E E;S’ ,UC'U, e Egu}
the cu-cone at the singularity o. These cones can be parallel translated to x

who is close to o. Since E5°* @ ES* is a dominated splitting for the tangent flow
DX, there are two constants 7' > 0 and 0 < A < 1 such that

DX'(C§"(0)) € C5(o)
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for any t € [T, 2T]. By the continuous property of the cone to a cone field in a
small neighborhood U, of o, for any ¢ € [T,2T], X% (z) C U, then we have
DXHC5(x)) € C(XH(x)). Now let t, = sup{t > 0 : X[=00(z,) ¢ U,}.
We know that ¢, —+ 400 as n — oo because x,, — o as n — 0o. Denote
by yn = X 7'»(z,). Then we can take ¢ = lim, .oy, € OU, by taking
the subsequence if necessary. We know that for ¢t > 0, X*(¢) € U, and so,
q € Wé(o). Since y, € A we know ¢ € A. If ¢ € W*(o) N A, because we
have already g € 9U,, hence ¢ # o, then from the fact that X € 77 and A
is an isolated nontrivial transitive set, this is a contradiction by Proposition
3.11. Now we assume that ¢ € W#(o)\ W*5(c). We have (X(X'(q))) — ES° as
t = +00. Thus there is T > 0 big enough such that X (X71(q)) € C¢*(XT1(q)).
For n big enough we have X (X7 (y,)) € C{“(X™1(y,)). Since t, — oo, we
assume that ¢, — 17 > T'. Since X[Tl’t"](yn) C U,, we know that

X(zn) = X(X™ (yn)) = DX (X (X (y0)))
€ DX T(CT (X (yn)))
C CP(X " (yn)) = CT"(zn).
This is a contradiction with the assumption (X (x,)) — L C E3°. O
It is proved in Section 2 that generically, if A is an isolated transitive set,

then it is locally star. By some well know results from the proof of stability
conjecture, we have the following proposition.

Proposition 4.2 ([9,11]). Let A be a locally star set for X € X*(M) and
let U(X),U be the neighborhoods in the definition of local star. Then there
are constants 0 < Ao < 1, Top > 0 such that for any Y € U(X) and any
p € Ay (U) N Per(Y), the following properties hold:

(a) A® @ A" is a dominated splitting with respect to the linear Poincaré
flow. Precisely, for any t > Ty and any x € Orb(p),

||Pty —2kot;

ar@ll IPY vl < e

(b) if T is the period of p and m is any positive integer, and if 0 = tg <
t) < -+ < tx, = mT is any partition of the time interval [0, m7] with
tit1 —t; > Ty, then

1 k—1
Y
mr Z log ||Ptl-+17ti
1=0

asvti )l < —Ao,

and
k—1

1 Y
mr ; log pr(tiﬂ*ti)

where A% @& A" is the hyperbolic splitting with respect to PX

axyin ppll < —Ao,

|NO7‘b(p)'



506 M. LEE

Now we assume that A is an isolated transitive set of a C'-generic vector
field X. By the closing lemma we know that for any z € A\ Sing(X), one
can find a sequence of periodic points p,, of X such that p, — x as n — oc.
Consequently, for any L € A, we can find a sequence of periodic points p,, of
X, such that L is the limit of (X (p,)). Since A is locally star, from item (a) of
Proposition 4.2 we can see that for any L € A, we can get two one dimensional
subspaces A'(L) = lim, o A%(p,) and A%(L) = lim, . A%(p,) with the
property: for any ¢t > Tj,

12X [ary |l - 1PY e az(pxequy | < €72
This implies that there is a dominated splitting N5 = A'@®A? for the extended
linear Poincaré flow PX. For any z € A\ Sing(X), we can put Al(z) =
AY({X (x))) for i = 1,2, then we can get a dominated splitting Na\sing(x) =
A @ A? for the linear Poincaré flow PX.

If X € 7 and A be an isolated transitive set of X, then we have only finitely
many singularity in A. Without loss of generality, after a change of equivalent
Riemmanian structure, we can assume that for any ¢ € A with index 2, the
subspaces ES°, ES®, EY are mutually orthogonal. From Lemma 4.1 we know
that every L € A, is orthogonal to E2°, this fact derives the following lemma.

Lemma 4.3. Let X € T and A be an isolated transitive set of X. Suppose
there is a singularity with index 2. Then for all singularity o € A with mutually
orthogonal E5°, ES°, E*, we have A'(L) = ES* and P§(|A1(L) = DX?%|gss for
any L € A,.

Proof. We denote by ES* := ES* ¢ EY for any given singularity ¢ € A. For
any L € A,, we set NY(L) = E** and N?(L) = ES* N Ny. By the fact that L
is orthogonal to E%* we know that N'(L) C Ny, for any L € As. Now we have
two subbundles
N = U N, No= U N
LeA, LeA,

These two subbundles are P/X-invariant by the fact that L C ES“ for any
L € A, and both E** and ES* are DX ‘-invariant.

Since E3* & ES* is a dominated splitting for DX, we know that there are
constants C' > 1, A > 0 such that

DX~ (w)]] ~At
e < Ce
DX ()|

for any unit vectors u € ES* and v € E° and any ¢t > 0. Then for any L € Ay
and any unit vectors u € N2(L), v € N'(L), we have

IPX @ _ DX (W)l _

_ < < Ce M.
I1PX (v)]| — IDXH0)]
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This says that Ny = N 1{ &) N/?\ is a dominated splitting on A, with respect
to the extended linear Poincaré flow PX. By the uniqueness of dominated
splitting we know that Ni = AL . Thus we have A'(L) = E3* for all L € A,.

By the definition of extended linear Poincaré flow, we directly have the fact
that PglAl(L) =DX* Ess for all L € A,. ([

Now let us recall the ergodic closing lemma. A point z € M \ Sing(X) is
called a well closable point of X if for any C'* neighborhood U(X) of X and any
§ > 0, there are Y € U(X), z € M, 7 > 0 and T > 0 such that the following
conditions are hold:

(a) Y7(z) =z,

(b) d(X*(z),Y'(2)) < d for any 0 < ¢ < 7, and

(¢) X =Y on M\ B(XI=T%(z), ).
Denote by X(X) the set of all well closable points of X. Here we will use the
flow version of the ergodic closing lemma which was proved in [17].

Lemma 4.4 ([17]). For any X € X*(M), u(3(X) U Sing(X)) = 1 for every
T > 0 and every X T -invariant Borel probability measure .

Assume X € T and A is an isolated transitive set of X. From Proposition
4.2 we have already known that there is a dominated splitting N\ ging(x) =
A'® A? with dim(A') = dim(A?) = 1 with respect to the linear Poincaré flow
PX. By applying the ergodic closing lemma, we have the following lemma.

Lemma 4.5. Let X € T and A be an isolated transitive set of X. Suppose
there is a singularity with index 2. Then there are constants C > 1 and A > 0
such that

||DXt|(X(»L)>||71 ' HPtX|A1(1)” < Cei)\ta
IDX " (x@pll - 1PX|az (@) | < Ce™*
for all z € A\ Sing(X) and t > 0.
Proof. Let X € T and A be an isolated transitive set of X. Then there is a

PtX invariant splitting N3 = A! & A? with constants 7p > 0 and \g > 0 such
that the followings are satisfied:

(1) if L = (X (x)) for some z € A\ Sing(X), then A((X(z))) = A¥(z) for

i=1,2,

(2) ”ptYLAl(L)H . ||]5ft\A2(DXf(L))|| < e~ 2t for any t > Tp, and

(3) L eA.
To prove the lemma, we just need to prove that there are C' > 1 and A > 0
such that for any L € A and any t > 0, we have

IDX*|L)I™t - 12X [ar eyl < Ce™,

IDX |- 1Y anryll < Ce™.
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Since A is compact, we just need to show that for any L € /~\, thereisa T > 0
such that

log || P |a1(p) || — log | DXT|.|| < 0,
log | P2 | az(py || + log | DX ~T|.|| < .

Now let us prove these properties of Al @ A2 by contradiction. Firstly we
prove the first half part. Assume that for any L € A and any ¢t > 0

log || ax(ry || —log [ DX"|z ]l = 0.

Similar to [12, Lemma I.5], by a typical application of Birkhoff ergodic theorem,
for any S > 0 there is an ergodic DX”-invariant measure ji € M(G') with
supp(ft) C A such that

[ 081188 5000 - 0g [ DX 2l d(2) =
In the following, we will always choose S is big enough.
Claim. If S is big enough, then for any singularity o € AN Sing(X), one has
fi(Ag) = 0.

Proof of Claim. According to Lemma 4.1, for every L € Ay, L C EF QEY =
ES*. Without loss of generality, we assume that E2° is orthogonal to ES*.
Then by Lemma 4.3 we have P§<|A1(L) =DX?® gss for any L € A,. Since B
is dominated by ES", we can take S big enough such that

log || 25 [ a1 (1) || = log | DX ||| < 0

for any L € A,. If ji(Ay) # 0, then we have ji(Ay) = 1 by the invariant of A,
and the ergodicity of [, thus we have

[ 02 1PE | )l = 0g [ DX (L) < .
This is a contradiction. This ends the proof of claim. O

In the following, we will take S is a multiple of T which is big enough such
that the above claim is satisfied. One can see S have also the properties of T.

For any Borel set A C A, we denote by A = {L: L = (X(z)) for some = €

A}. Then we define u(A4) = (A). By the fact that i(A,) = 0 for any
o € AN Sing(X), we know that p is an ergodic measure support in A with
w(A\ Sing(X)) = 1. From the inequality

/ (log | B | s (1 || — log [|DX5|)di(L) > 0,
we have

/ (log [ PX | ar | — log [ DX x (ay ) dpe() > 0.
A\Sing(X)
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By Lemma 4.4,
/ (log [ P& |a o | — log [ DX (o N ddpl) > 0.
ANS(X)

By the ergodic theorem of Birkhoff, there is a point y € A N ¥X(X) such that
1 n—1
1 lm > (log [ P& | ar xss |l = log DX | x(xs5ypll) = 0
§=0

Claim. y is not a periodic point of X.

Proof of Claim. By the fact that [|[DX] x|l = I))((T()\))" we have

s Xit15(y)|
> log|IDX*|xxis | = Zlog |X IX(X5()]

=0
= log X (X" (y))] —log | X (y)|.

If y € Per(X), then by Proposition 4.2, we have

n—1

1
lim sup — Z log || P& | as

| < —Xo.

X715 (y)

Since sup | log(X(m))\ is bounded for z € Orb(y), we have

limsup nog, |~ To IX (X" ()]~ log X (5)]) < A
n—oo
This is contradiction by (1). Thus y is not periodic. O

Since y is a well closable point, for any n > 0, there are X,, € X'(M),
zn € M, and 7,, > 0 such that
(i) Y,7"(zp) = zp, and 7, is the prime period of z,,
(ii) d(X'(y),Y, (zn)) < 1/n for any 0 <t < 7,, and
(i) [V, — X|| < 1/n.
Since y is not a periodic point, we have 7, — +00 as n — co. We also have
the following uniformly continuity for P} |a1.

Claim. For any € > 0 there is § > 0 and a C* neighborhood U (X) of X such
that for any =,y € M, if (i) z € A\ Sing(X), (ii) there is Y € U(X) such that
y € Per(Y), Orb(y) C U, and d(z,y) < 4, then

(2) [log || P | at @l = 1og [P [aslll < €

for any ¢t € [0,2S]. Here A%(y) denotes the stable subspace of y with respect
to the vector field Y.
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Proof of Claim. We prove this by deriving a contradiction. Assume the con-
trary. Then there is > 0 such that for any n > 0 there exists ¢, € [0,25],
X, — X and two sequences {z,}, {yn} such that (i) z, € A\ Sing(X), (ii)
Yn € Per(X,,) and Orb(y,) C U, (iii) d(zn,yn) < 1/n, and

[log | P | at () | = Log 1P |y I = 1.

Since [0,2S] and A are compact, we can take sequences {t,} C [0,2S] and
{zn} C A (take subsequences if necessary) such that ¢, — tp and z, — xo.
Then we have y, — ¢ by the above item (iii).

If g € Sing(X), then by the continuity of dominated splitting, we know
AY(z,) — Al(xg) and A%(y,) — Al(zg) as n — oo, then we have

[log 1P | At (wo) | = Log |25 [ a1 (ao) Il = 1-

This is a contradiction.
If g € Sing(X), then we can take sequences {(X (x,))}, {(Xn(yn))} (take

subsequences if necessary) such that (X(zn)) — L € Ay, and (Xy(yn)) —
L, € Aa:o- Since both L, L € AIO, we have PtX|A1(L) = PtX|A1(L1) =DX?

by Lemma 4.3. But on the other hand, we have ’
|log || ¥ | ax () || = log [| B |ax (Il = 7.
This is also a contradiction. This ends the proof of Claim. (I

By (2), there is ng such that for any k > ng, t € [0,25] and ¢y € [0, 7,], one
has

(3) [log || P¥|ar, || —log [P
X*0 (y)

arxf0 e Il < 520/3,

where Ao as in Proposition 4.2. Let 7, = m,S + s, (m, € Z and s, € [0,5)).
Then we consider the partition

O=to<tr=S<-<tm,-1=(mp—1)S < tm, =7n.

According to Proposition 4.2, we know

My —2
> 108 1Pg 7 | ae (xi5 (| + log [1PSY, argxtmn5 ) < =Tado.
§=0
Then by (3) we have
My —2
Z 1og || P& a1 (x5 ()|l + 108 1 P&, | a1 (xmn -5 ) |
j=0

§ mnS)\()/?) — TnAO = —anS)\o/?) — Sn)\o S —anSAo/?)

For sufficiently small > 0, let B,.(y) be a neighborhood of X[=2%01(y) such
that B,.(y) N Sing(X) = (. Denote by C = sup{|log|X(z)|| : = € B.(y)} +
sup{|log || P* |as@x)|ll : © € Br(y),t € [0,25]} < oo. Since d(y,z,) < 1/n
and d(X™ (y), zn) = d(X™(y), X (25,)) < 1/n, we know d(X™ (y),y) < 2/n.
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Thus there is ny > ng such that for any n > n; and ¢ € [0,2S5] we have
X™7(y) € B,(y). Since 7, — (my, — 1)S = S + s, < 25, we know
@ [log XX IS ()| + [og [P [accrs, ol <C.

By (1) and m,, — 400 as n — +oo, there is ny > n; such that for any
n > ng

My —2
> 10g 1P | a1 (x5 gy |l — (og [ X (X =5 ()] — log | X (y)])
=0
> — (mn —1)SNo/3.
Then by
My, —2
> log||PE as(xss (| + 108 [1PSs s, s (xmn-ns | € —2mnSAo/3,

j=0
and (4), we have
—(mn —1)SX0/3 < —2m,, SAo/3 + C + log | X (y)]-
If n is big enough, then it does not happen, and so, it is a contradiction. This
proves that for any L € A, there is a T' > 0 such that
tog | P as 1 | — log [ DX ]| < 0.

And then by the compactness of A, we can find C > 1 and A > 0 such that for
any L € A and any t > 0, we have

IDX* L]t - 12X ar eyl < Ce™.

By a similar argument we can prove that for any L € A, there is a T > 0
such that
log || PXr|azr) || +log [|DX ]| <0,
and then there exist C' > 1 and A > 0 such that for any L € A and any ¢ > 0,
we have
IDX - B2yl < Ce™.
This ends the proof of the lemma. O

Theorem A is a direct corollary of Lemma 4.5 and the following lemma in
[19].

Lemma 4.6 ([19, Theorem A]). Assume A is a non-trivial transitive set
such that all singularity in A is hyperbolic. If there is a dominated splitting
Na\Sing(x) = A' @ A? on A\ Sing(X) with respect to PX and there are con-
stants C' > 1 and A > 0 such that

IDX | (x@pll ™ - 1P [ar g | < Ce™,

IDX | (x @yl - 1PX ] a2l < Ce™™
forallx € A\ Sing(X) and t > 0, then A is positively singular hyperbolic.



512

M. LEE

Proof of Theorem A. Let X € T and A be an isolated transitive set of X. If
there is a singularity o € A with index 2, then A is positively singular hyperbolic
by Lemma 4.5 and Lemma 4.6. If there is a singularity o € A with index 1, then
by reversing the vector fields, we know that A is negatively singular hyperbolic.
This ends of the proof of Theorem A. O
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