SINGULAR HYPERBOLICITY OF C^{1} GENERIC THREE DIMENSIONAL VECTOR FIELDS

Manseob Lee

Abstract

In the paper, we show that for a generic C^{1} vector field X on a closed three dimensional manifold M, any isolated transitive set of X is singular hyperbolic. It is a partial answer of the conjecture in [13].

1. Introduction

The transitivity is a symbol of chaotic property for differential dynamical systems. The C^{1} robust transitivity for diffeomorphisms are well investigate in a series of works $[2,3,5]$, and then we have a good characterization on isolated transitive sets of C^{1} generic diffeomorphisms at the same time. From the main result of [1] we know that if every isolated transitive set of a C^{1} generic diffeomorphism admit a nontrivial dominated splitting, then it is volume hyperbolic.

It is well known that a singularity-free flow, for an instance, a suspension of a diffeomorphism, will take similar phenomenona of diffeomorphisms. However, once the recurrent regular points can accumulates a singularity, such as the Lorenz-like systems, we will meet something new. For instance, in [14], one have to use a new notion of singular hyperbolicity to characterize the robustly transitive sets of a 3-dimensional flow. Here the singular hyperbolicity is a generalization of hyperbolicity so that we can give the Lorenz attractor and Smale's horseshoe a unified characterization. In this article, we will show that an isolated transitive set of C^{1} generic vector field on 3-dimensional manifold will be singular hyperbolic. That means, every isolated transitive set of a C^{1} generic vector field looks like a Lorenz attractor $[6,10]$.

Let us be precise now. Denote by M a compact $d(\geq 2)$-dimensional smooth Riemannian manifold without boundary and by $\mathfrak{X}^{1}(M)$ the set of C^{1} vector fields on M endowed with the C^{1} topology. Every $X \in \mathfrak{X}^{1}(M)$ generates a flow $X^{t}: M \times \mathbb{R} \rightarrow M$ that is a C^{1} map such that $X^{t}: M \rightarrow M$ is a diffeomorphism for all $t \in \mathbb{R}$ and then $X^{0}(x)=x$ and $X^{t+s}(x)=X^{t}\left(X^{s}(x)\right)$ for all $s, t \in \mathbb{R}$ and $x \in M$. An orbit of X corresponding a point $x \in M$ is the

[^0]set $\operatorname{Orb}(x)=\left\{X^{t}(x): t \in \mathbb{R}\right\}$. A point $x \in M$ is called singular if $X^{t}(\sigma)=\sigma$ for all $t \in \mathbb{R}$, and $p \in M$ is called periodic if $X^{T}=p$ for some $T>0$. Let $\operatorname{Sing}(X)$ denotes the set of singularities of X and $\operatorname{Per}(X)$ is the set of periodic orbits of X. Denote by $\operatorname{Crit}(X)=\operatorname{Sing}(X) \cup \operatorname{Per}(X)$ the set of all critical points of X.

Let $\Lambda \subset M$ be a closed X^{t}-invariant set. We say that Λ is a hyperbolic set of X if there are constants $C>0, \lambda>0$ and a $D X^{t}$-invariant continuous splitting $T_{\Lambda} M=E^{s} \oplus\langle X\rangle \oplus E^{u}$ such that

$$
\left\|\left.D X^{t}\right|_{E_{x}^{s}}\right\| \leq C e^{-\lambda t} \text { and }\left\|\left.D X^{-t}\right|_{E_{x}^{u}}\right\| \leq C e^{-\lambda t}
$$

for $t>0$ and $x \in \Lambda$, where $\langle X(x)\rangle$ denotes the space spanned by $X(x)$, which is 0 -dimensional if x is a singularity or 1-dimensional if x is not a singularity. For any critical point $x \in \operatorname{Crit}(X)$, if its orbit is a hyperbolic set, we denote by $\operatorname{index}(x)=\operatorname{dim} E_{x}^{s}$.

Now let us recall the singular hyperbolicity firstly given by Morale, Pacífico and Pujals [14] which is an extension of hyperbolicity. We say that a compact invariant set Λ is positively singular hyperbolic for X (see [16]) if there are constants $K \geq 1$ and $\lambda>0$, and a continuous invariant $T_{\Lambda} M=E^{s} \oplus E^{c u}$ with respect to $D X^{t}$ such that
(i) E^{s} is (K, λ)-dominated by $E^{c u}$, that is,
$\left\|\left.D X^{t}\right|_{E^{s}(x)}\right\| \cdot\left\|\left.D X^{-t}\right|_{E^{c}\left(X^{t}(x)\right)}\right\| \leq K e^{-\lambda t}, \quad \forall x \in \Lambda$ and $t \geq 0$.
(ii) E^{s} is contracting, that is,

$$
\left\|\left.D X^{t}\right|_{E^{s}(x)}\right\| \leq K e^{-\lambda t}, \quad \forall x \in \Lambda \text { and } t \geq 0
$$

(iii) $E^{c u}$ is sectional expanding, that is, for any $x \in \Lambda$ and any 2-dimensional subspace $L \subset E^{c}(x)$,

$$
\left|\operatorname{det}\left(\left.D X^{t}\right|_{L}\right)\right| \geq K^{-1} e^{\lambda t}, \quad \forall t \geq 0
$$

We say that Λ is negatively singular hyperbolic for X if Λ is positively singular hyperbolic for $-X$, and then say that Λ is singular hyperbolic for X if it is either positively singular hyperbolic for X, or negatively singular hyperbolic for X. Definitely, we can see that if Λ is singular hyperbolic for X and it does not contain singularities, then it is hyperbolic (see [14, Proposition 1.8] for a proof). In the paper, we consider the relation between transitivity and hyperbolicity for an isolated compact invariant set. We say that Λ is transitive if there is $x \in \Lambda$ such that $\omega(x)=\Lambda$, where $\omega(x)$ is the omega limit set of x. We say that a closed X^{t}-invariant set Λ is isolated (or locally maximal) if there exists a neighborhood U of Λ such that

$$
\Lambda=\Lambda_{X}(U)=\bigcap_{t \in \mathbb{R}} X^{t}(U)
$$

Here U is said to be isolated neighborhood of Λ.
For the 3-dimensional case, Morales, Pacífico and Pujals [14] proved that if Λ is a robustly transitive set containing singularities, then it is a singular
hyperbolic set for X. Here we will consider C^{1} generic vector fields. We say that a subset $\mathcal{G} \subset \mathfrak{X}^{1}(M)$ is residual if it contains a countable intersection of open and dense subsets of $\mathfrak{X}^{1}(M)$. A property is called C^{1} generic if it holds in a residual subset of $\mathfrak{X}^{1}(M)$. We give the following characterization of the isolated transitive sets of a C^{1} generic vector field on 3-dimensional Riemannian manifold.

Theorem A. For C^{1} generic $X \in \mathfrak{X}^{1}(M)$, an isolated transitive set Λ is singular hyperbolic.

2. Transitivity and locally star condition

Let M be a three dimensional smooth Riemannian manifold and let $X \in$ $\mathfrak{X}^{1}(M)$ be the set of C^{1} vector fields on M endowed with the C^{1} topology. Here we collect some known generic properties for C^{1} vector fields.

Proposition 2.1. There is a residual set $\mathcal{G}_{1} \subset \mathfrak{X}^{1}(M)$ such that for any $X \in$ \mathcal{G}_{1}, X satisfies the following properties:
(1) X is a Kupka-Samle system, that is, every periodic orbits and singularity of X is hyperbolic, and the corresponding invariant manifolds intersect transversely.
(2) if there is a sequence of vector fields $\left\{X_{n}\right\}$ with critical orbit $\left\{P_{n}\right\}$ of X_{n} such that $X_{n} \rightarrow X$, index $\left(P_{n}\right)=i$ and $P_{n} \rightarrow_{H} \Lambda$, then there is a sequence of critical orbit $\left\{Q_{n}\right\}$ of X such that $\operatorname{index}\left(Q_{n}\right)=i$ and $Q_{n} \rightarrow_{H} \Lambda$, where \rightarrow_{H} is the Hausdorff limit.
The item 1 is from the famous Kupka-Smale theorem (see [15]) and item 2 is a vector field version of [18, Lemma 3.5]

From item 1 of Proposition 2.1, we can see that if Λ is a trivial transitive set, that is, Λ is a periodic orbit or a singularity, then it should be hyperbolic and automatically singular hyperbolic. To prove Theorem A, we just need to consider the nontrivial case. Hereafter, we assume that Λ is a nontrivial transitive set of X. One can see that if Λ is a nontrivial transitive set, then Λ contains no hyperbolic sinks or sources.

Let U be an isolated neighborhood of Λ. Then for $Y C^{1}$ close to X, denote by

$$
\Lambda_{Y}(U)=\bigcap_{t \in \mathbb{R}} Y^{t}(U)
$$

the maximal invariant set of Y in U.
Lemma 2.2. Let $\mathcal{G}_{1} \subset \mathfrak{X}^{1}(M)$ be the residual set given in Proposition 2.1. For any $X \in \mathcal{G}_{1}$, if Λ is an isolated nontrivial transitive set of X, then there are a C^{1} neighborhood $\mathcal{U}(X)$ of X and a neighborhood U of Λ such that for any $Y \in \mathcal{U}(X)$, we have every $\gamma \in \Lambda_{Y}(U) \cap \operatorname{Per}(Y)$ is hyperbolic and $\operatorname{index}(\gamma)=1$.
Proof. Let \mathcal{G}_{1} be the residual set in Proposition 2.1 and let Λ be an isolated transitive set of $X \in \mathcal{G}_{1}$. Arguing by contradiction, we assume that for any C^{1}
neighborhood $\mathcal{U}(X)$ of X and any neighborhood U of Λ, there is $Y \in \mathcal{U}(X)$ such that Y has a periodic orbit Q whose index is not 1 . Then we have three cases: (i) Q is not hyperbolic, (ii) Q is hyperbolic but $\operatorname{index}(Q)=0$ or (iii) index $(Q)=2$. Note that if the periodic orbit Q is not hyperbolic for Y, then we can take a vector field $Z C^{1}$ arbitrary close to Y such that either Q is a sink for Z or Q is a source for Z. Then we also have the case cases (ii) or (iii) happening. Thus we can take sequences $Y_{n} \rightarrow X$ and a periodic orbit P_{n} of Y_{n} such that $\operatorname{index}\left(P_{n}\right)=0$ or 2 and

$$
\lim _{n \rightarrow \infty} P_{n}=\Gamma \subset \Lambda
$$

Then we can take a sequence of vector fields X_{n} tends to X and periodic orbits $\left\{Q_{n}\right\}$ of X_{n} with index $\left(Q_{n}\right)=0$ or 2 such that

$$
\lim _{n \rightarrow \infty} Q_{n}=\Gamma \subset \Lambda
$$

Without loss of generality, we can assume that all Q_{n} have the same index 0 or 2 once we take a subsequence. By the item 2 of Proposition 2.1, we know that there is a sequence P_{n} of periodic orbit of X with index 0 or 2 converging into Λ. Since Λ is isolated, for sufficiently large n, we have $P_{n} \subset \Lambda$. This is a contradiction since Λ is a nontrivial transitive set.

Let Λ be a closed X^{t}-invariant set. We say Λ is locally star if there are a C^{1} neighborhood $\mathcal{U}(X)$ of $X \in \mathfrak{X}^{1}(M)$ and a neighborhood U of Λ such that for any $Y \in \mathcal{U}(X)$, every periodic orbit of Y in $\Lambda_{Y}(U)=\bigcap_{t \in \mathbb{R}} Y^{t}(U)$ is hyperbolic and has same indices.

Corollary 2.3. There is a residual set $\mathcal{R} \subset \mathfrak{X}^{1}(M)$ such that for any $X \in \mathcal{R}$, if Λ is an isolated transitive set of X which is not an orbit, then Λ is a local star.

Proof. Let $X \in \mathcal{R}=\mathcal{G}_{1}$ and let Λ be an isolated transitive set. By Lemma 2.2, there are a C^{1} neighborhood $\mathcal{U}(X)$ of X and a neighborhood U of Λ such that for any $Y \in \mathcal{U}(X)$, every periodic orbit $\gamma \in \Lambda_{Y}(U) \cap \operatorname{Per}(Y)$ is hyperbolic and $\operatorname{index}(\gamma)=1$. Thus Λ is a local star.

3. Transitivity and Lyapunov stability

Suppose $\sigma \in \operatorname{Sing}(X)$ is hyperbolic. Then we denote by

$$
\begin{gathered}
W^{s}(\sigma)=W^{s}(\sigma, X)=\left\{y \in M: d\left(X^{t}(\sigma), X^{t}(y)\right) \rightarrow 0 \text { as } t \rightarrow \infty\right\} \\
W^{u}(\sigma)=W^{u}(\sigma, X)=\left\{y \in M: d\left(X^{t}(\sigma), X^{t}(y)\right) \rightarrow 0 \text { as } t \rightarrow-\infty\right\}
\end{gathered}
$$

where $W^{s}(\sigma, X)$ is said to be the stable manifold of σ and $W^{u}(\sigma, X)$ is said to be the unstable manifold of σ. It is known that index $(\sigma)=\operatorname{dim} W^{s}(\sigma)$.

If X is a Kupka-Smale vector field, then X contains finitely many singularities and every singularity is hyperbolic. Thus by the structurally stability of hyperbolic singularity we know that there are a C^{1} neighborhood
$\mathcal{U}(X)$ of X and a neighborhood U of Λ such that for any $Y \in \mathcal{U}(X)$, every $\sigma \in \Lambda_{Y}(U) \cap \operatorname{Sing}(Y) \subset U$ is hyperbolic.
Lemma 3.1. Let $\mathcal{G}_{1} \subset \mathfrak{X}^{1}(M)$ be the residual set given in Proposition 2.1. For any $X \in \mathcal{G}_{1}$, if Λ is an isolated nontrivial transitive set of X, then there are a C^{1} neighborhood $\mathcal{U}(X)$ of X and a neighborhood U of Λ such that for any $Y \in \mathcal{U}(X)$, every singularities in $\Lambda_{Y}(U)$ is saddles.

Proof. We prove it by contradiction. Assume the contrary of the lemma. Then we can find a sequence of vector fields X_{n} tends to X and a sequence of singularity σ_{n} of X_{n} such that σ_{n} tends to a point σ such that the index of σ_{n} equals to 0 or 3 . Without loss of generality, we assume that every σ_{n} has index 0 , then we can see that σ is a singularity. Since $X \in \mathcal{G}_{1}$, we have σ is hyperbolic. By the structurally stability of σ we know σ have index 0 too. This contradicts with Λ is a nontrivial transitive set.

Lemma 3.2. Let Λ be a transitive set of a C^{1} vector field X. If $\sigma \in \Lambda \cap$ $\operatorname{Sing}(X)$ is hyperbolic, then $\left(W^{s}(\sigma) \backslash\{\sigma\}\right) \cap \Lambda \neq \emptyset$ and $\left(W^{u}(\sigma) \backslash\{\sigma\}\right) \cap \Lambda \neq \emptyset$.

Proof. We consider the case of $\left(W^{s}(\sigma) \backslash\{\sigma\}\right) \cap \Lambda \neq \emptyset$ (Other case is similar). Since $\sigma \in \Lambda=\omega(x)$ for some $x \in \Lambda$, there is $t_{n} \in \mathbb{R}^{+}$with $t_{n} \rightarrow \infty$ such that $X^{t_{n}}(x) \rightarrow \sigma$. Since σ is hyperbolic, we can take $\epsilon>0$ such that

$$
\left\{x: X^{t}(x) \in B_{\epsilon}(\sigma) \text { for all } t>0\right\} \subset W^{s}(\sigma) .
$$

Denote by $x_{n}=X^{t_{n}}(x)$. For n large enough, $x_{n} \in B_{\epsilon}(\sigma)$. Let $\tau_{n}=\sup \{t$: $\left.X^{(-t, 0)}\left(x_{n}\right) \subset B_{\epsilon}(\sigma)\right\}$. Then we have $X^{-\tau_{n}}\left(x_{n}\right) \in B_{\epsilon}(\sigma)$. Let $y_{n}=X^{-\tau_{n}}\left(x_{n}\right)$. We can see that $\tau_{n} \rightarrow+\infty$ as $n \rightarrow \infty$. Take a subsequence if necessary, we can assume that $y_{n} \rightarrow y$ as $n \rightarrow \infty$. It is easy to see that $y \neq \sigma$. For every y_{n}, we have $X^{\left(0, \tau_{n}\right)}\left(y_{n}\right) \in \partial B_{\epsilon}(\sigma)$. By the continuity of the flow X^{t}, we have $X^{(0,+\infty)}(y) \subset B_{\epsilon}(\sigma)$, then $y \in W^{s}(\sigma) \backslash\{\sigma\}$.

The following is the connecting lemma for C^{1} vector fields.
Lemma 3.3 ([16]). Let $X \in \mathfrak{X}^{1}(M)$ and $z \in M$ be neither periodic nor singular of X. For any C^{1} neighborhood $\mathcal{U}(X) \subset \mathfrak{X}^{1}(M)$ of X, there exist three numbers $\rho>1, L>1$ and $\delta_{0}>0$ such that for any $0<\delta \leq \delta_{0}$ and any two points x, y outside the tube $\Delta=B_{\delta}\left(X^{[0, L]}(z)\right)$ (or $\Delta=B_{\delta}\left(X^{[-L, 0]}(z)\right)$), if the positive X-orbit of x hits $B_{\delta / \rho}(z)$ and the negative X-orbit of y both hit $B_{\delta / \rho}\left(X^{L}(z)\right)$, then there exists $Y \in \mathcal{U}(X)$ with $Y=X$ outside Δ such that y is on the positive Y-orbit of x.

Lemma 3.4. Let Λ be a transitive set for X and $\sigma \in \Lambda \cap \operatorname{Sing}(X)$ be hyperbolic. Then for any C^{1} neighborhood $\mathcal{U}(X)$ of X, any non-empty open set U in Λ, there is $Y \in \mathcal{U}(X)$ such that $W^{s}(\sigma, Y) \cap U \neq \emptyset$, where $W^{s}(\sigma, Y)$ is the stable manifold of σ with respect to Y.
Proof. Let $\mathcal{U}(X)$ be fixed. By Lemma 3.2, there is a point $x \in\left(W^{s}(\sigma) \backslash\{\sigma\}\right) \cap \Lambda$. Then x is neither a singularity nor a periodic point. Let L, ρ and δ_{0} be the
constant given by Lemma 3.3. Take a point $X^{T}(x)$ with $T>L$ and $\delta>0$ such that the tube

$$
B_{\delta}\left(X^{[0, L]}(x)\right) \cap X^{[T,+\infty)}(x)=\emptyset .
$$

Since Λ is transitive, there is $z \in \Lambda$ such that $\omega(z)=\Lambda$. For any small neighborhood U of y, we can find $0<s<t$ such that $X^{s}(z) \in U$ and $X^{t}(z) \in$ $B_{\delta / \rho}(x)$. Let $q=X^{T}(x)$ and $p=X^{s}(z)$. Then by Lemma 3.3, there is $Y \in \mathcal{U}(X)$ such that $Y^{t}(p)=q$ for some $t>0$. Since $q=X^{T}(x) \in W^{s}(\sigma)$, we have $p \in W^{s}(\sigma, Y)$.

From Lemma 3.1 we know that if $X \in \mathcal{G}_{1}$, and Λ is an isolated nontrivial transitive set of X, then every $\sigma \in \Lambda \cap \operatorname{Sing}(X)$ has index 1 or 2 .
Lemma 3.5. There is a residual set $\mathcal{G}_{2} \subset \mathfrak{X}^{1}(M)$ with the following property. For any $X \in \mathcal{G}_{2}$ and any isolated nontrivial transitive set Λ of X, if there is $\sigma \in \Lambda \cap \operatorname{Sing}(X)$ with $\operatorname{index}(\sigma)=2$, then $\Lambda \subset \overline{W^{u}(\sigma)}$. Symmetrically, if there is $\sigma \in \Lambda \cap \operatorname{Sing}(X)$ with index $(\sigma)=1$, then $\Lambda \subset \overline{W^{s}(\sigma)}$.

Proof. Let $\mathcal{O}=\left\{O_{1}, O_{2}, \ldots, O_{n}, \ldots\right\}$ be a countable basis of M. For each $m, k \in \mathbb{N}$, let

$$
\begin{aligned}
\mathcal{H}_{m, k}=\{ & X \in \mathfrak{X}^{1}(M): \text { there is a } C^{1} \text { neighborhood } \mathcal{U}(X) \text { of } X \text { such that } \\
& \text { for any } Y \in \mathcal{U}(X), Y \text { has a singularity } \sigma \in O_{m} \text { with } \\
& \text { index } \left.(\sigma)=2 \text { such that } W^{u}(\sigma, Y) \cap O_{k} \neq \emptyset\right\} .
\end{aligned}
$$

Then $\mathcal{H}_{m, k}$ is an open in $\mathfrak{X}^{1}(M)$. Let

$$
\mathcal{N}_{m, k}=\mathfrak{X}^{1}(M) \backslash \overline{\mathcal{H}_{m, k}} .
$$

Then $\mathcal{H}_{m, k} \cup \mathcal{N}_{m, k}$ is open and dense in $\mathfrak{X}^{1}(M)$. Let

$$
\mathcal{G}_{2}=\bigcap_{m, k \in \mathbb{N}}\left(\mathcal{H}_{m, k} \cup \mathcal{N}_{m, k}\right)
$$

We will show that the residual set \mathcal{G}_{2} satisfies the request of lemma. Let $X \in \mathcal{G}_{2}$ and Λ be an isolated transitive set and let $\sigma \in \Lambda \cap \operatorname{Sing}(X)$ with index $(\sigma)=2$. Since σ is hyperbolic, we can take O_{m} such that O_{m} is an isolated neighborhood of σ. By the structurally stability of hyperbolic singularity, there is a C^{1} neighborhood $\mathcal{U}(X)$ of X such that for any $Y \in \mathcal{U}(X), Y$ has a unique hyperbolic singularity in O_{m}. For any $y \in \Lambda$ and any neighborhood U of y, we can choose $O_{k} \in \mathcal{O}$ such that $y \in O_{k} \subset U$.
Claim. $X \notin \mathcal{N}_{m, k}$.
Proof of Claim. For any neighborhood $\mathcal{V}(X) \subset \mathcal{U}(X)$, by Lemma 3.4, there is $Y \in \mathcal{V}(X)$ such that Y has a singularity $\sigma \in O_{m}$ with index $(\sigma)=2$ and $W^{u}(\sigma, Y) \cap O_{k} \neq \emptyset$. Note that σ may not be a singularity of $Z \in \mathcal{U}(Y)$. By the persistence of hyperbolic singularity σ, there is a singularity σ_{Z} of Z such that $W^{u}(\sigma, Z) \cap O_{k} \neq \emptyset$. Thus we have $Y \in \mathcal{H}_{m, k}$. Hence $X \in \overline{\mathcal{H}_{m, k}}$. This ends the proof of claim.

Then by claim, since $X \in \mathcal{G}_{2}$, we have $X \in \mathcal{H}_{m, k}$. Note that O_{m} is an isolated neighborhood of σ, by the definition of $\mathcal{H}_{m, k}$, we know that $W^{u}(\sigma) \cap O_{k} \neq \emptyset$. This prove that for every neighborhood U of y, we know that $W^{u}(\sigma) \cap U \neq \emptyset$. This means that $\Lambda \subset \overline{W^{u}(\sigma)}$.

We say that a closed X^{t}-invariant set Λ is Lyapunov stable for X if for every neighborhood U of Λ there is a neighborhood $V \subset U$ of Λ such that $X^{t}(V) \subset U$ for every $t \geq 0$. Let σ be a hyperbolic singularity of X with $\operatorname{dim} W^{u}(\sigma)=1$. Then $W^{u}(\sigma) \backslash\{\sigma\}$ can be divided into two connected branches Γ_{1}, Γ_{2}, that is, $W^{u}(\sigma)=\{\sigma\} \cup \Gamma_{1} \cup \Gamma_{2}$.
Lemma 3.6. Let $X \in \mathfrak{X}^{1}(M)$ and Λ be a transitive set of X. Assume $\sigma \in \Lambda$ is a hyperbolic singularity of X with $\operatorname{dim} W^{u}(\sigma)=1$. Let $\Gamma_{1}=\operatorname{Orb}\left(x_{1}\right)$ and $\Gamma_{2}=\operatorname{Orb}\left(x_{2}\right)$ be the two branches of $W^{u}(\sigma) \backslash\{\sigma\}$. If $x_{1} \in \Lambda$, then for any neighborhood $\mathcal{U}(X)$ of X, and any neighborhood V of x_{2}, there is $Y \in \mathcal{U}(X)$ such that x_{1} is still in the unstable manifold of σ and the positive orbit of x_{1} will cross V with respect to Y.

Proof. We prove this lemma by a standard application of the connecting lemma. By Lemma 3.2 we know that there is a point $z \in\left(W^{s}(\sigma) \backslash\{\sigma\}\right) \cap \Lambda$. Then we have two triple of $\rho>1, L>1$ and δ_{0} with the properties stated as in Lemma 3.3 with respect to the point x_{1} and z and the neighborhood $\mathcal{U}(X)$ of X. By taking the larger ρ, L, and smaller δ_{0}, we get a triple, still denoted by ρ, L and δ_{0}, works both for x_{1} and z.

Now we can take $\delta>0$ small enough such that the two tubes $\Delta_{1}=$ $B_{\delta}\left(X^{[0, L]}\left(x_{1}\right)\right)$ and $\Delta_{2}=B_{\delta}\left(X^{[-L, 0]}(z)\right)$ are disjoint. For any neighborhood V of x_{2} and any neighborhood V^{\prime} of z, by the inclination lemma we know that there are a point $y \in V$ and $T>0$ such that $X^{-T}(y) \in V^{\prime}$. If $\delta>0$ is choosing small enough, we can take y and T such that $X^{[-T, 0]}(y)$ does not touch Δ_{1}.

Since Λ is transitive, we can find a point $x \in \Lambda$ such that $\Lambda=\omega(x)$. Then we can find $t_{1}<t_{2}$ such that $X^{t_{1}}(x) \in B_{\delta / \rho}\left(X^{L}\left(x_{1}\right)\right)$ and $X^{t_{2}}(x) \in B_{\delta / \rho}\left(X^{-L}(z)\right)$ and a point $y \in V$ with $X^{-T}(y) \in B_{\delta / \rho}(z)$. Then apply Lemma 3.3, we can find a vector filed $Y \in \mathcal{U}(X)$ differs from X at tubes Δ_{1} and Δ_{2} such that the negative orbit of x_{1} is not changed and y is contained in the positive orbit of x_{1}. It is easy to see that Y satisfies the request of lemma.

Lemma 3.7. Let $\mathcal{G}_{2} \subset \mathfrak{X}^{1}(M)$ be the residual set chosen as in Lemma 3.5. Then for any $X \in \mathcal{G}_{2}$ and any isolated nontrivial transitive set Λ of X, if there is a singularity $\sigma \in \Lambda$ with index $(\sigma)=2$, then we have $\overline{W^{u}(\sigma)} \subset \Lambda$.
Proof. Let $\mathcal{O}=\left\{O_{1}, O_{2}, \ldots, O_{n}, \ldots\right\}$ be a countable basis of M. Recall that for each $m, k \in \mathbb{N}$, we take

$$
\begin{aligned}
\mathcal{H}_{m, k}=\{ & X \in \mathfrak{X}^{1}(M): \text { there is a } C^{1} \text { neighborhood } \mathcal{U}(X) \text { of } X \text { such that } \\
& \text { for any } Y \in \mathcal{U}(X), Y \text { has a singularity } \sigma \in O_{m} \text { with } \\
& \text { index } \left.(\sigma)=2 \text { such that } W^{u}(\sigma, Y) \cap O_{k} \neq \emptyset\right\} .
\end{aligned}
$$

Then take $\mathcal{N}_{m, k}=\mathfrak{X}^{1}(M) \backslash \overline{\mathcal{H}_{m, k}}$ and

$$
\mathcal{G}_{2}=\bigcap_{m, k \in \mathbb{N}}\left(\mathcal{H}_{m, k} \cup \mathcal{N}_{m, k}\right)
$$

We will see that this \mathcal{G}_{2} satisfies the request of lemma.
Let $X \in \mathcal{G}_{2}$ and Λ be an isolated transitive set of X. Assume there is singularity $\sigma \in \Lambda$ with index 2. Let $\Gamma_{1}=\operatorname{Orb}\left(x_{1}\right)$ and $\Gamma_{2}=\operatorname{Orb}\left(x_{2}\right)$ be the two branches of $W^{u}(\sigma) \backslash \sigma$. By Lemma 3.2, we know that either x_{1} or x_{2} is contained in Λ. Without loss of generality, we assume that $x_{1} \in \Lambda$. To prove $\overline{W^{u}(\sigma)} \subset \Lambda$, we just need to prove that x_{2} is also contained in Λ. By the compactness of Λ, we just need to prove that for any neighborhood U of x_{2}, one has $U \cap \Lambda \neq \emptyset$. For a given arbitrarily small neighborhood U of x, we can find k such that $O_{k} \subset U$. Let O_{m} be an isolated neighborhood of σ. Then we have:

Claim. $X \notin \mathcal{N}_{m, k}$.
Proof of Claim. For any neighborhood $\mathcal{V}(X) \subset \mathcal{U}(X)$, by Lemma 3.6, there is $Y \in \mathcal{V}(X)$ such that Y has a singularity $\sigma \in O_{m}$ with index $(\sigma)=2$ and $W^{u}(\sigma, Y) \cap O_{k} \neq \emptyset$. By the continuity of the unstable manifold we know that there is a C^{1} neighborhood $\mathcal{U}(Y)$ of Y such that for any $Z \in \mathcal{U}(Y)$, $W^{u}(\sigma, Z) \cap O_{k} \neq \emptyset$. Thus we have $Y \in \mathcal{H}_{m, k}$. Hence $X \in \overline{\mathcal{H}_{m, k}}$. This ends the proof of claim.

Since $X \in \mathcal{G}_{2}$ and $X \notin \mathcal{N}_{m, k}$, we have $X \in \mathcal{H}_{m, k}$. Since σ is the only singularity of X in O_{m}, by the definition of $\mathcal{H}_{m, k}$ we can see that $W^{u}(\sigma) \cap O_{k} \neq$ \emptyset. Hence for any neighborhood U of x_{2}, there is a point contained in $W^{u}(\sigma)$. This ends the proof of Lemma 3.7.

The following lemma is collected from [4].
Lemma 3.8 ([4, Proposition 4.1]). There is a residual set $\mathcal{G}_{3} \subset \mathfrak{X}^{1}(M)$ such that for any $X \in \mathcal{G}_{3}, \overline{W^{u}(\sigma)}$ is Lyapunov stable for X and $\overline{W^{s}(\sigma)}$ is Lyapunov stable for $-X$ for all $\sigma \in \operatorname{Sing}(X)$.

Proposition 3.9. There is a residual set $\mathcal{S} \subset \mathfrak{X}^{1}(M)$ such that for any $X \in \mathcal{S}$, and any isolated nontrivial transitive set Λ of X, if there is a singularity $\sigma \in \Lambda \cap$ $\operatorname{Sing}(X)$ with $\operatorname{index}(\sigma)=2$, then Λ is Lyapunov stable for X. Symmetrically, if there is $\sigma \in \Lambda \cap \operatorname{Sing}(X)$ with $\operatorname{index}(\sigma)=1$, then Λ is Lyapunov stable for $-X$.

Proof. Let $X \in \mathcal{S}=\mathcal{G}_{2} \cap \mathcal{G}_{3}$ and Λ be an isolated transitive set of X. Suppose that $\sigma \in \Lambda \cap \operatorname{Sing}(X)$ with index $(\sigma)=2$. Then by Proposition 3.5 and Lemma 3.7, we have $\overline{W^{u}(\sigma)}=\Lambda$. By Lemma 3.8, Λ is Lyapunov stable for X.

A point $\sigma \in \operatorname{Sing}(X)$ of X is called Lorenz-like if $D X(\sigma)$ has three real eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ such that $\lambda_{2}<\lambda_{3}<0<-\lambda_{3}<\lambda_{1}$. Let $\sigma \in \operatorname{Sing}(X)$ be a Lorenz-like singularity. Then we use $E_{\sigma}^{s s}, E_{\sigma}^{c s}, E_{\sigma}^{u}$ to denote the eigenspaces
of $D X(\sigma)$ corresponding the eigenspaces $\lambda_{2}, \lambda_{3}, \lambda_{1}$, respectively. Denoted by $W_{X}^{s s}(\sigma)$ the one-dimensional invariant manifold of X associated to the eigenvalue λ_{2}. We have the following lemma was proved in [13].

Lemma 3.10 ([13, Lemma A.4]). There is a residual set $\mathcal{G}_{4} \subset \mathfrak{X}^{1}(M)$ such that for any $X \in \mathcal{R}$, if Λ is a Lyapunov stable nontrivial transitive set of X, then every singularity $\sigma \in \Lambda$ is Lorenz-like and one has $W_{X}^{s s}(\sigma) \cap \Lambda=\{\sigma\}$.

Here is the main conclusion in this section.
Proposition 3.11. There is a residual set $\mathcal{T} \subset \mathfrak{X}^{1}(M)$ with the following properties. Let $X \in \mathcal{T}$ and Λ be an isolated transitive set of X. If there is a singularity with index 2 , then for all singularity $\sigma \in \Lambda$, one has $(1) \operatorname{index}(\sigma)=$ 2 , (2) σ is Lorenz-like, and (3) $W_{X}^{\text {ss }}(\sigma) \cap \Lambda=\{\sigma\}$. Symmetrically, if there is a singularity with index 1 , then for all singularity $\sigma \in \Lambda$, one has $(1) \operatorname{index}(\sigma)=$ 1, (2) σ is Lorenz-like for $-X$, and (3) $W_{X}^{u u}(\sigma) \cap \Lambda=\{\sigma\}$.
Proof. Let $X \in \mathcal{T}=\mathcal{S} \cap \mathcal{G}_{4}$ and Λ be an isolated transitive set of X. Suppose that there is $\eta \in \Lambda \cap \operatorname{Sing}(X)$ such that $\operatorname{index}(\eta)=2$. By Proposition 3.9, Λ is Lyapunov stable for X. On the other hand, since $X \in \mathcal{G}_{4}$, according to Lemma 3.11, σ is Lorenz-like, and $W_{X}^{s s}(\sigma) \cap \Lambda=\{\sigma\}$. We directly obtained $\operatorname{index}(\sigma)=2$ for all $\sigma \in \Lambda \cap \operatorname{Sing}(X)$.

4. Proof of Theorem A

To prove Theorem A, we prepare two techniques here. One is the extended linear Poincaré flow given by Li, Gan and Wen [7], and another one is the ergodic closing lemma given by Mañé [11,12].

Firstly we recall the notion of linear Poincaré flow firstly given by Liao [8,9]. For any regular point $x \in M \backslash \operatorname{Sing}(X)$, we can put a normal space

$$
N_{x}=\left\{v \in T_{x} M: v \perp X(x)\right\} .
$$

Then we have a normal bundle

$$
N=N(X)=\bigcup_{x \in M \backslash \operatorname{Sing}(X)} N_{x} .
$$

Denote by π_{x} the orthogonal projection from $T_{x} M$ to N_{x} for any $x \in M \backslash$ $\operatorname{Sing}(X)$. From the tangent flow, we can define the linear Poincaré flow

$$
\begin{gathered}
P_{t}^{X}: N(X) \rightarrow N(X) \\
P_{t}^{X}(v)=\pi_{X^{t}(x)}\left(D X^{t}(v)\right) \text { for all } v \in N_{x}, \text { and } x \in M \backslash \operatorname{Sing}(X) .
\end{gathered}
$$

Note that the linear Poincaré flow is defined on the normal bundle over a non compact set. We consider a compactification for P_{t}^{X} as following.

Let

$$
G^{1}=\left\{L: L \text { is a one dimensional subspace in } T_{x} M, x \in M\right\}
$$

be the Grassmannian manifold of M. Then for any $L \in G^{1}$, assuming $L \subset T_{x} M$ for some $x \in M$, we can define a normal space associated to L as follows:

$$
N_{L}=\left\{v \in T_{x} M: v \perp L\right\} .
$$

Now we can take a normal bundle

$$
N=N_{G^{1}}=\bigcup_{L \in G^{1}} N_{L}
$$

Note that G^{1} is a compact manifold, so $N_{G^{1}}$ is a bundle over a compact space.
For any $L \in G^{1}$ contained in $T_{x} M$, denoted by π_{L} the orthogonal projection from $T_{x} M$ to N_{L} along L. Let X be a C^{1} vector field. Similar to the linear Poincaré flow, we can define the extended linear Poincaré flow

$$
\begin{gathered}
\tilde{P}_{t}^{X}: N_{G^{1}} \rightarrow N_{G^{1}} \\
\tilde{P}_{t}^{X}(v)=\pi_{D X^{t}(L)}\left(D X^{t}(v)\right)
\end{gathered}
$$

for all $L \in G^{1}$ and $v \in N_{L}$. One can check that for any $x \in M \backslash \operatorname{Sing}(X)$, we have $N_{x}=N_{\langle X(x)\rangle}$ and $\left.P_{t}^{X}\right|_{N_{x}}=\left.\tilde{P}_{t}^{X}\right|_{N_{\langle X(x)\rangle}}$. Here, \tilde{P}_{t}^{X} is said to be the extended linear Poincaré flow.

For any compact invariant set Λ of the vector fields X, we use $\tilde{\Lambda}$ to denote the closure of

$$
\{\langle X(x)\rangle: x \in \Lambda \backslash \operatorname{Sing}(X)\}
$$

in the space of G^{1}. Let $\sigma \in \Lambda$ be a singularity, denote by

$$
\tilde{\Lambda}_{\sigma}=\left\{L \in \tilde{\Lambda}: L \subset T_{\sigma} M\right\}
$$

From the facts we got from Proposition 3.11, we have the following characterization of $\tilde{\Lambda}_{\sigma}$.
Lemma 4.1. Let $X \in \mathcal{T}$ and Λ be an isolated transitive set of X. Suppose there is a singularity with index 2. Then for all singularity $\sigma \in \Lambda$, we have $L \subset E_{\sigma}^{c s} \oplus E_{\sigma}^{u}$ for all $L \in \tilde{\Lambda}_{\sigma}$.

Proof. Let $X \in \mathcal{T}$ and Λ be an isolated transitive set of X. Suppose on the contrary, that is, there is $L \in \tilde{\Lambda}_{\sigma}$ such that L is not a subspace in $E_{\sigma}^{c s} \oplus E_{\sigma}^{u}$. Note that $D X^{t}(L)$ is contained in $\tilde{\Lambda}_{\sigma}$ for all $t \in \mathbb{R}$ and $\tilde{\Lambda}_{\sigma}$ is a closed set. By taking a limit line of $D X^{t}(L)$ as $t \rightarrow-\infty$, we know that there is $L \in \tilde{\Lambda}_{\sigma}$ such that $L \subset E_{\sigma}^{s s}$. From now on, we assume that $L \in \tilde{\Lambda}$ and $L \subset E_{\sigma}^{s s}$. By the definition of $\tilde{\Lambda}$, we know that there exist $x_{n} \in \Lambda \backslash \operatorname{Sing}(X)$ such that $\left\langle X\left(x_{n}\right)\right\rangle \rightarrow L \subset E_{\sigma}^{s s}$. For the simplicity of notations, we assume everything happens in a local chart containing σ. For any $0<\eta \leq 1$, denote by $E_{\sigma}^{c u}=E_{\sigma}^{c s} \oplus E_{\sigma}^{u}$ and

$$
C_{\eta}^{c u}(\sigma)=\left\{v=v^{s s}+v^{c u} \in T_{\sigma} M:\left|v^{s s}\right|<\eta\left|v^{c u}\right|, v^{s s} \in E_{\sigma}^{s s}, v^{c u} \in E_{\sigma}^{c u}\right\}
$$

the $c u$-cone at the singularity σ. These cones can be parallel translated to x who is close to σ. Since $E_{\sigma}^{s s} \oplus E_{\sigma}^{c u}$ is a dominated splitting for the tangent flow $D X^{t}$, there are two constants $T>0$ and $0<\lambda<1$ such that

$$
D X^{t}\left(C_{1}^{c u}(\sigma)\right) \subset C_{\lambda}^{c u}(\sigma)
$$

for any $t \in[T, 2 T]$. By the continuous property of the cone to a cone field in a small neighborhood U_{σ} of σ, for any $t \in[T, 2 T], X^{[0, t]}(x) \subset U_{\sigma}$ then we have $D X^{t}\left(C_{1}^{c u}(x)\right) \subset C_{1}^{c u}\left(X^{t}(x)\right)$. Now let $t_{n}=\sup \left\{t>0: X^{[-t, 0]}\left(x_{n}\right) \subset U_{\sigma}\right\}$. We know that $t_{n} \rightarrow+\infty$ as $n \rightarrow \infty$ because $x_{n} \rightarrow \sigma$ as $n \rightarrow \infty$. Denote by $y_{n}=X^{-t_{n}}\left(x_{n}\right)$. Then we can take $q=\lim _{n \rightarrow \infty} y_{n} \in \partial U_{\sigma}$ by taking the subsequence if necessary. We know that for $t>0, X^{t}(q) \in U_{\sigma}$ and so, $q \in W^{s}(\sigma)$. Since $y_{n} \in \Lambda$ we know $q \in \Lambda$. If $q \in W^{s s}(\sigma) \cap \Lambda$, because we have already $q \in \partial U_{\sigma}$, hence $q \neq \sigma$, then from the fact that $X \in \mathcal{T}_{1}$ and Λ is an isolated nontrivial transitive set, this is a contradiction by Proposition 3.11. Now we assume that $q \in W^{s}(\sigma) \backslash W^{s s}(\sigma)$. We have $\left\langle X\left(X^{t}(q)\right)\right\rangle \rightarrow E_{\sigma}^{c s}$ as $t \rightarrow+\infty$. Thus there is $T_{1}>0$ big enough such that $X\left(X^{T_{1}}(q)\right) \in C_{1}^{c u}\left(X^{T_{1}}(q)\right)$. For n big enough we have $X\left(X^{T_{1}}\left(y_{n}\right)\right) \in C_{1}^{c u}\left(X^{T_{1}}\left(y_{n}\right)\right)$. Since $t_{n} \rightarrow \infty$, we assume that $t_{n}-T_{1}>T$. Since $X^{\left[T_{1}, t_{n}\right]}\left(y_{n}\right) \subset U_{\sigma}$, we know that

$$
\begin{aligned}
X\left(x_{n}\right) & =X\left(X^{t_{n}}\left(y_{n}\right)\right)=D X^{t_{n}-T_{1}}\left(X\left(X^{T_{1}}\left(y_{n}\right)\right)\right) \\
& \in D X^{t_{n}-T_{1}}\left(C_{1}^{c u}\left(X^{T_{1}}\left(y_{n}\right)\right)\right) \\
& \subset C_{1}^{c u}\left(X^{t_{n}}\left(y_{n}\right)\right)=C_{1}^{c u}\left(x_{n}\right)
\end{aligned}
$$

This is a contradiction with the assumption $\left\langle X\left(x_{n}\right)\right\rangle \rightarrow L \subset E_{\sigma}^{s s}$.
It is proved in Section 2 that generically, if Λ is an isolated transitive set, then it is locally star. By some well know results from the proof of stability conjecture, we have the following proposition.

Proposition 4.2 ($[9,11])$. Let Λ be a locally star set for $X \in \mathfrak{X}^{1}(M)$ and let $\mathcal{U}(X), U$ be the neighborhoods in the definition of local star. Then there are constants $0<\lambda_{0}<1, T_{0}>0$ such that for any $Y \in \mathcal{U}(X)$ and any $p \in \Lambda_{Y}(U) \cap \operatorname{Per}(Y)$, the following properties hold:
(a) $\Delta^{s} \oplus \Delta^{u}$ is a dominated splitting with respect to the linear Poincaré flow. Precisely, for any $t \geq T_{0}$ and any $x \in \operatorname{Orb}(p)$,

$$
\left\|\left.P_{t}^{Y}\right|_{\Delta^{s}(x)}\right\| \cdot\left\|\left.P_{-t}^{Y}\right|_{\Delta^{u}\left(Y^{t}(x)\right)}\right\| \leq e^{-2 \lambda_{0} t}
$$

(b) if τ is the period of p and m is any positive integer, and if $0=t_{0}<$ $t_{1}<\cdots<t_{k}=m \tau$ is any partition of the time interval $[0, m \tau]$ with $t_{i+1}-t_{i} \geq T_{0}$, then

$$
\frac{1}{m \tau} \sum_{i=0}^{k-1} \log \left\|\left.P_{t_{i+1}-t_{i}}^{Y}\right|_{\Delta^{s}\left(Y^{t_{i}}(p)\right)}\right\|<-\lambda_{0}
$$

and

$$
\frac{1}{m \tau} \sum_{i=0}^{k-1} \log \left\|\left.P_{-\left(t_{i+1}-t_{i}\right)}^{Y}\right|_{\Delta^{u}\left(Y^{\left.t_{i+1}(p)\right)}\right.}\right\|<-\lambda_{0}
$$

where $\Delta^{s} \oplus \Delta^{u}$ is the hyperbolic splitting with respect to $\left.P_{\tau}^{X}\right|_{N_{\text {Orb }(p)}}$.

Now we assume that Λ is an isolated transitive set of a C^{1}-generic vector field X. By the closing lemma we know that for any $x \in \Lambda \backslash \operatorname{Sing}(X)$, one can find a sequence of periodic points p_{n} of X such that $p_{n} \rightarrow x$ as $n \rightarrow \infty$. Consequently, for any $L \in \tilde{\Lambda}$, we can find a sequence of periodic points p_{n} of X, such that L is the limit of $\left\langle X\left(p_{n}\right)\right\rangle$. Since Λ is locally star, from item (a) of Proposition 4.2 we can see that for any $L \in \tilde{\Lambda}$, we can get two one dimensional subspaces $\Delta^{1}(L)=\lim _{n \rightarrow \infty} \Delta^{s}\left(p_{n}\right)$ and $\Delta^{2}(L)=\lim _{n \rightarrow \infty} \Delta^{u}\left(p_{n}\right)$ with the property: for any $t \geq T_{0}$,

$$
\left\|\left.\tilde{P}_{t}^{Y}\right|_{\Delta^{1}(L)}\right\| \cdot\left\|\left.\tilde{P}_{-t}^{Y}\right|_{\Delta^{2}\left(D X^{t}(L)\right)}\right\| \leq e^{-2 \lambda_{0} t}
$$

This implies that there is a dominated splitting $N_{\tilde{\Lambda}}=\Delta^{1} \oplus \Delta^{2}$ for the extended linear Poincaré flow \tilde{P}_{t}^{X}. For any $x \in \Lambda \backslash \operatorname{Sing}(X)$, we can put $\Delta^{i}(x)=$ $\Delta^{i}(\langle X(x)\rangle)$ for $i=1,2$, then we can get a dominated splitting $N_{\Lambda \backslash \operatorname{Sing}(X)}=$ $\Delta^{1} \oplus \Delta^{2}$ for the linear Poincaré flow P_{t}^{X}.

If $X \in \mathcal{T}$ and Λ be an isolated transitive set of X, then we have only finitely many singularity in Λ. Without loss of generality, after a change of equivalent Riemmanian structure, we can assume that for any $\sigma \in \Lambda$ with index 2 , the subspaces $E_{\sigma}^{s s}, E_{\sigma}^{c s}, E_{\sigma}^{u}$ are mutually orthogonal. From Lemma 4.1 we know that every $L \in \tilde{\Lambda}_{\sigma}$ is orthogonal to $E_{\sigma}^{s s}$, this fact derives the following lemma.

Lemma 4.3. Let $X \in \mathcal{T}$ and Λ be an isolated transitive set of X. Suppose there is a singularity with index 2. Then for all singularity $\sigma \in \Lambda$ with mutually orthogonal $E_{\sigma}^{s s}, E_{\sigma}^{c s}, E_{\sigma}^{u}$, we have $\Delta^{1}(L)=E_{\sigma}^{s s}$ and $\left.\tilde{P}_{S}^{X}\right|_{\Delta^{1}(L)}=\left.D X^{S}\right|_{E_{\sigma}^{s s}}$ for any $L \in \tilde{\Lambda}_{\sigma}$.
Proof. We denote by $E_{\sigma}^{c u}:=E_{\sigma}^{c s} \oplus E_{\sigma}^{u}$ for any given singularity $\sigma \in \Lambda$. For any $L \in \tilde{\Lambda}_{\sigma}$, we set $N^{1}(L)=E_{\sigma}^{s s}$ and $N^{2}(L)=E_{\sigma}^{c u} \cap N_{L}$. By the fact that L is orthogonal to $E_{\sigma}^{s s}$ we know that $N^{1}(L) \subset N_{L}$ for any $L \in \tilde{\Lambda}_{\sigma}$. Now we have two subbundles

$$
N_{\tilde{\Lambda}_{\sigma}}^{1}=\bigcup_{L \in \tilde{\Lambda}_{\sigma}} N^{1}(L), \quad N_{\tilde{\Lambda}_{\sigma}}^{2}=\bigcup_{L \in \tilde{\Lambda}_{\sigma}} N^{2}(L)
$$

These two subbundles are \tilde{P}_{t}^{X}-invariant by the fact that $L \subset E_{\sigma}^{c u}$ for any $L \in \tilde{\Lambda}_{\sigma}$ and both $E_{\sigma}^{s s}$ and $E_{\sigma}^{c u}$ are $D X^{t}$-invariant.

Since $E_{\sigma}^{s s} \oplus E_{\sigma}^{c u}$ is a dominated splitting for $D X^{t}$, we know that there are constants $C>1, \lambda>0$ such that

$$
\frac{\left\|D X^{-t}(u)\right\|}{\left\|D X^{-t}(v)\right\|} \leq C e^{-\lambda t}
$$

for any unit vectors $u \in E_{\sigma}^{c u}$ and $v \in E_{\sigma}^{s s}$ and any $t>0$. Then for any $L \in \tilde{\Lambda}_{\sigma}$ and any unit vectors $u \in N^{2}(L), v \in N^{1}(L)$, we have

$$
\frac{\left\|\tilde{P}_{-t}^{X}(u)\right\|}{\left\|\tilde{P}_{-t}^{X}(v)\right\|} \leq \frac{\left\|D X^{-t}(u)\right\|}{\left\|D X^{-t}(v)\right\|} \leq C e^{-\lambda t} .
$$

This says that $N_{\tilde{\Lambda}_{\sigma}}=N_{\tilde{\Lambda}_{\sigma}}^{1} \oplus N_{\tilde{\Lambda}_{\sigma}}^{2}$ is a dominated splitting on $\tilde{\Lambda}_{\sigma}$ with respect to the extended linear Poincaré flow \tilde{P}_{t}^{X}. By the uniqueness of dominated splitting we know that $N_{\tilde{\Lambda}_{\sigma}}^{1}=\Delta_{\tilde{\Lambda}_{\sigma}}^{1}$. Thus we have $\Delta^{1}(L)=E_{\sigma}^{s s}$ for all $L \in \tilde{\Lambda}_{\sigma}$. By the definition of extended linear Poincaré flow, we directly have the fact that $\left.\tilde{P}_{S}^{X}\right|_{\Delta^{1}(L)}=\left.D X^{S}\right|_{E_{\sigma}^{s s}}$ for all $L \in \tilde{\Lambda}_{\sigma}$.

Now let us recall the ergodic closing lemma. A point $x \in M \backslash \operatorname{Sing}(X)$ is called a well closable point of X if for any C^{1} neighborhood $\mathcal{U}(X)$ of X and any $\delta>0$, there are $Y \in \mathcal{U}(X), z \in M, \tau>0$ and $T>0$ such that the following conditions are hold:
(a) $Y^{\tau}(z)=z$,
(b) $d\left(X^{t}(x), Y^{t}(z)\right)<\delta$ for any $0 \leq t \leq \tau$, and
(c) $X=Y$ on $M \backslash B\left(X^{[-T, 0]}(x), \delta\right)$.

Denote by $\Sigma(X)$ the set of all well closable points of X. Here we will use the flow version of the ergodic closing lemma which was proved in [17].
Lemma 4.4 ([17]). For any $X \in \mathfrak{X}^{1}(M), \mu(\Sigma(X) \cup \operatorname{Sing}(X))=1$ for every $T>0$ and every X^{T}-invariant Borel probability measure μ.

Assume $X \in \mathcal{T}$ and Λ is an isolated transitive set of X. From Proposition 4.2 we have already known that there is a dominated splitting $N_{\Lambda \backslash \operatorname{Sing}(X)}=$ $\Delta^{1} \oplus \Delta^{2}$ with $\operatorname{dim}\left(\Delta^{1}\right)=\operatorname{dim}\left(\Delta^{2}\right)=1$ with respect to the linear Poincaré flow P_{t}^{X}. By applying the ergodic closing lemma, we have the following lemma.
Lemma 4.5. Let $X \in \mathcal{T}$ and Λ be an isolated transitive set of X. Suppose there is a singularity with index 2. Then there are constants $C>1$ and $\lambda>0$ such that

$$
\begin{aligned}
\left\|\left.D X^{t}\right|_{\langle X(x)\rangle}\right\|^{-1} \cdot\left\|\left.P_{t}^{X}\right|_{\Delta^{1}(x)}\right\| & <C \mathrm{e}^{-\lambda t} \\
\left\|\left.D X^{-t}\right|_{\langle X(x)\rangle}\right\| \cdot\left\|\left.P_{-t}^{X}\right|_{\Delta^{2}(x)}\right\| & <C \mathrm{e}^{-\lambda t}
\end{aligned}
$$

for all $x \in \Lambda \backslash \operatorname{Sing}(X)$ and $t \geq 0$.
Proof. Let $X \in \mathcal{T}$ and Λ be an isolated transitive set of X. Then there is a \tilde{P}_{t}^{X} invariant splitting $N_{\tilde{\Lambda}}=\Delta^{1} \oplus \Delta^{2}$ with constants $T_{0}>0$ and $\lambda_{0}>0$ such that the followings are satisfied:
(1) if $L=\langle X(x)\rangle$ for some $x \in \Lambda \backslash \operatorname{Sing}(X)$, then $\Delta^{i}(\langle X(x)\rangle)=\Delta^{i}(x)$ for $i=1,2$,
(2) $\left\|\left.\tilde{P}_{t}^{Y}\right|_{\Delta^{1}(L)}\right\| \cdot\left\|\left.\tilde{P}_{-t}^{Y}\right|_{\Delta^{2}\left(D X^{t}(L)\right)}\right\| \leq e^{-2 \lambda_{0} t}$ for any $t>T_{0}$, and
(3) $L \in \tilde{\Lambda}$.

To prove the lemma, we just need to prove that there are $C>1$ and $\lambda>0$ such that for any $L \in \tilde{\Lambda}$ and any $t>0$, we have

$$
\begin{gathered}
\left\|\left.D X^{t}\right|_{L}\right\|^{-1} \cdot\left\|\left.\tilde{P}_{t}^{X}\right|_{\Delta^{1}(L)}\right\|<C \mathrm{e}^{-\lambda t} \\
\left\|\left.D X^{-t}\right|_{L}\right\| \cdot\left\|\left.\tilde{P}_{-t}^{X}\right|_{\Delta^{2}(L)}\right\|<C \mathrm{e}^{-\lambda t}
\end{gathered}
$$

Since $\tilde{\Lambda}$ is compact, we just need to show that for any $L \in \tilde{\Lambda}$, there is a $T>0$ such that

$$
\begin{gathered}
\log \left\|\left.\tilde{P}_{T}^{X}\right|_{\Delta^{1}(L)}\right\|-\log \left\|\left.D X^{T}\right|_{L}\right\|<0 \\
\log \left\|\left.\tilde{P}_{-T}^{X}\right|_{\Delta^{2}(L)}\right\|+\log \left\|\left.D X^{-T}\right|_{L}\right\|<0
\end{gathered}
$$

Now let us prove these properties of $\Delta^{1} \oplus \Delta^{2}$ by contradiction. Firstly we prove the first half part. Assume that for any $L \in \tilde{\Lambda}$ and any $t>0$

$$
\log \left\|\left.\tilde{P}_{t}^{X}\right|_{\Delta^{1}(L)}\right\|-\log \left\|\left.D X^{t}\right|_{L}\right\| \geq 0
$$

Similar to [12, Lemma I.5], by a typical application of Birkhoff ergodic theorem, for any $S>0$ there is an ergodic $D X^{T}$-invariant measure $\tilde{\mu} \in \mathcal{M}\left(G^{1}\right)$ with $\operatorname{supp}(\tilde{\mu}) \subset \tilde{\Lambda}$ such that

$$
\int\left(\log \left\|\left.\tilde{P}_{S}^{X}\right|_{\Delta^{1}(L)}\right\|-\log \left\|\left.D X^{S}\right|_{L}\right\|\right) d \tilde{\mu}(L) \geq 0
$$

In the following, we will always choose S is big enough.
Claim. If S is big enough, then for any singularity $\sigma \in \Lambda \cap \operatorname{Sing}(X)$, one has $\tilde{\mu}\left(\tilde{\Lambda}_{\sigma}\right)=0$.

Proof of Claim. According to Lemma 4.1, for every $L \in \tilde{\Lambda}_{\sigma}, L \subset E_{\sigma}^{c s} \oplus E_{\sigma}^{u}:=$ $E_{\sigma}^{c u}$. Without loss of generality, we assume that $E_{\sigma}^{s s}$ is orthogonal to $E_{\sigma}^{c u}$. Then by Lemma 4.3 we have $\left.\tilde{P}_{S}^{X}\right|_{\Delta^{1}(L)}=\left.D X^{S}\right|_{E_{\sigma}^{s s}}$ for any $L \in \tilde{\Lambda}_{\sigma}$. Since $E_{\sigma}^{s s}$ is dominated by $E_{\sigma}^{c u}$, we can take S big enough such that

$$
\log \left\|\left.\tilde{P}_{S}^{X}\right|_{\Delta^{1}(L)}\right\|-\log \left\|\left.D X^{S}\right|_{L}\right\|<0
$$

for any $L \in \tilde{\Lambda}_{\sigma}$. If $\tilde{\mu}\left(\tilde{\Lambda}_{\sigma}\right) \neq 0$, then we have $\tilde{\mu}\left(\tilde{\Lambda}_{\sigma}\right)=1$ by the invariant of $\tilde{\Lambda}_{\sigma}$ and the ergodicity of $\tilde{\mu}$, thus we have

$$
\int\left(\log \left\|\left.\tilde{P}_{S}^{X}\right|_{\Delta^{1}(L)}\right\|-\log \left\|\left.D X^{S}\right|_{L}\right\|\right) d \tilde{\mu}(L)<0 .
$$

This is a contradiction. This ends the proof of claim.
In the following, we will take S is a multiple of T_{0} which is big enough such that the above claim is satisfied. One can see S have also the properties of T_{0}.

For any Borel set $A \subset \Lambda$, we denote by $\tilde{A}=\{L: L=\langle X(x)\rangle$ for some $x \in$ $A\}$. Then we define $\mu(A)=\tilde{\mu}(\tilde{A})$. By the fact that $\tilde{\mu}\left(\tilde{\Lambda}_{\sigma}\right)=0$ for any $\sigma \in \Lambda \cap \operatorname{Sing}(X)$, we know that μ is an ergodic measure support in Λ with $\mu(\Lambda \backslash \operatorname{Sing}(X))=1$. From the inequality

$$
\int\left(\log \left\|\left.\tilde{P}_{S}^{X}\right|_{\Delta^{1}(L)}\right\|-\log \left\|\left.D X^{S}\right|_{L}\right\|\right) d \tilde{\mu}(L) \geq 0
$$

we have

$$
\int_{\Lambda \backslash \operatorname{Sing}(X)}\left(\log \left\|\left.P_{S}^{X}\right|_{\Delta_{x}^{1}}\right\|-\log \left\|\left.D X^{S}\right|_{\langle X(x)\rangle}\right\|\right) d \mu(x) \geq 0 .
$$

By Lemma 4.4,

$$
\int_{\Lambda \cap \Sigma(X)}\left(\log \left\|\left.P_{S}^{X}\right|_{\Delta^{1}(x)}\right\|-\log \left\|\left.D X^{S}\right|_{\langle X(x)\rangle}\right\|\right) d \mu(x) \geq 0
$$

By the ergodic theorem of Birkhoff, there is a point $y \in \Lambda \cap \Sigma(X)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n S} \sum_{j=0}^{n-1}\left(\log \left\|\left.P_{S}^{X}\right|_{\Delta^{1}\left(X^{j S}(y)\right)}\right\|-\log \left\|\left.D X^{S}\right|_{\left\langle X\left(X^{j S}(y)\right)\right\rangle}\right\|\right) \geq 0 \tag{1}
\end{equation*}
$$

Claim. y is not a periodic point of X.
Proof of Claim. By the fact that $\left\|\left.D X^{S}\right|_{\langle X(x)\rangle}\right\|=\frac{\left|X\left(X^{S}(x)\right)\right|}{|X(x)|}$, we have

$$
\begin{aligned}
\sum_{j=0}^{n-1} \log \left\|\left.D X^{s}\right|_{\left\langle X\left(X^{j S}(y)\right)\right\rangle}\right\| & =\sum_{j=0}^{n-1} \log \frac{\left|X\left(X^{j+1} S(y)\right)\right|}{\left|X\left(X^{j S}(y)\right)\right|} \\
& =\log \left|X\left(X^{n S}(y)\right)\right|-\log |X(y)|
\end{aligned}
$$

If $y \in \operatorname{Per}(X)$, then by Proposition 4.2, we have

$$
\limsup _{n \rightarrow \infty} \frac{1}{n S} \sum_{j=0}^{n-1} \log \left\|\left.P_{S}^{X}\right|_{\Delta_{X^{j S}(y)}^{s}}\right\| \leq-\lambda_{0}
$$

Since $\sup |\log (X(x))|$ is bounded for $x \in \operatorname{Orb}(y)$, we have

$$
\limsup _{n \rightarrow \infty} \frac{1}{n S}\left(\sum_{j=0}^{n-1} \log \|\left. P_{S}^{X}\right|_{X^{j S}(y)} ^{s}|-\log | X\left(X^{n S}(y)\right)|-\log | X(y) \mid\right) \leq-\lambda
$$

This is contradiction by (1). Thus y is not periodic.
Since y is a well closable point, for any $n>0$, there are $X_{n} \in \mathfrak{X}^{1}(M)$, $z_{n} \in M$, and $\tau_{n}>0$ such that
(i) $Y_{n}^{\tau_{n}}\left(z_{n}\right)=z_{n}$ and τ_{n} is the prime period of z_{n},
(ii) $d\left(X^{t}(y), Y_{n}^{t}\left(z_{n}\right)\right) \leq 1 / n$ for any $0 \leq t \leq \tau_{n}$, and
(iii) $\left\|Y_{n}-X\right\| \leq 1 / n$.

Since y is not a periodic point, we have $\tau_{n} \rightarrow+\infty$ as $n \rightarrow \infty$. We also have the following uniformly continuity for $\left.P_{t}^{Y}\right|_{\Delta^{1}}$.

Claim. For any $\epsilon>0$ there is $\delta>0$ and a C^{1} neighborhood $\mathcal{U}(X)$ of X such that for any $x, y \in M$, if (i) $x \in \Lambda \backslash \operatorname{Sing}(X)$, (ii) there is $Y \in \mathcal{U}(X)$ such that $y \in \operatorname{Per}(Y), \operatorname{Orb}(y) \subset U$, and $d(x, y)<\delta$, then

$$
\begin{equation*}
\left|\log \left\|\left.P_{t}^{X}\right|_{\Delta^{1}(x)}\right\|-\log \left\|\left.P_{t}^{Y}\right|_{\Delta^{s}(y)}\right\|\right|<\epsilon \tag{2}
\end{equation*}
$$

for any $t \in[0,2 S]$. Here $\Delta^{s}(y)$ denotes the stable subspace of y with respect to the vector field Y.

Proof of Claim. We prove this by deriving a contradiction. Assume the contrary. Then there is $\eta>0$ such that for any $n>0$ there exists $t_{n} \in[0,2 S]$, $X_{n} \rightarrow X$ and two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ such that (i) $x_{n} \in \Lambda \backslash \operatorname{Sing}(X)$, (ii) $y_{n} \in \operatorname{Per}\left(X_{n}\right)$ and $\operatorname{Orb}\left(y_{n}\right) \subset U$, (iii) $d\left(x_{n}, y_{n}\right)<1 / n$, and

$$
\left|\log \left\|\left.P_{t_{n}}^{X}\right|_{\Delta^{1}\left(x_{n}\right)}\right\|-\log \left\|\left.P_{t_{n}}^{X_{n}}\right|_{\Delta^{s}\left(y_{n}\right)}\right\|\right| \geq \eta .
$$

Since $[0,2 S]$ and Λ are compact, we can take sequences $\left\{t_{n}\right\} \subset[0,2 S]$ and $\left\{x_{n}\right\} \subset \Lambda$ (take subsequences if necessary) such that $t_{n} \rightarrow t_{0}$ and $x_{n} \rightarrow x_{0}$. Then we have $y_{n} \rightarrow x_{0}$ by the above item (iii).

If $x_{0} \notin \operatorname{Sing}(X)$, then by the continuity of dominated splitting, we know $\Delta^{1}\left(x_{n}\right) \rightarrow \Delta^{1}\left(x_{0}\right)$ and $\Delta^{s}\left(y_{n}\right) \rightarrow \Delta^{1}\left(x_{0}\right)$ as $n \rightarrow \infty$, then we have

$$
\left|\log \left\|\left.P_{t_{0}}^{X}\right|_{\Delta^{1}\left(x_{0}\right)}\right\|-\log \left\|\left.P_{t_{0}}^{X}\right|_{\Delta^{1}\left(x_{0}\right)}\right\|\right| \geq \eta
$$

This is a contradiction.
If $x_{0} \in \operatorname{Sing}(X)$, then we can take sequences $\left\{\left\langle X\left(x_{n}\right)\right\rangle\right\},\left\{\left\langle X_{n}\left(y_{n}\right)\right\rangle\right\}$ (take subsequences if necessary) such that $\left\langle X\left(x_{n}\right)\right\rangle \rightarrow L \in \tilde{\Lambda}_{x_{0}}$ and $\left\langle X_{n}\left(y_{n}\right)\right\rangle \rightarrow$ $L_{1} \in \tilde{\Lambda}_{x_{0}}$. Since both $L, L_{1} \in \tilde{\Lambda}_{x_{0}}$, we have $\left.\tilde{P}_{t}^{X}\right|_{\Delta^{1}(L)}=\left.\tilde{P}_{t}^{X}\right|_{\Delta^{1}\left(L_{1}\right)}=\left.D X^{t}\right|_{E_{x_{0}^{s s}}}$ by Lemma 4.3. But on the other hand, we have

$$
\left|\log \left\|\left.\tilde{P}_{t}^{X}\right|_{\Delta^{1}(L)}\right\|-\log \| \tilde{P}_{t}^{X}\right|_{\Delta^{1}\left(L_{1}\right)}| | \mid \geq \eta
$$

This is also a contradiction. This ends the proof of Claim.
By (2), there is n_{0} such that for any $k>n_{0}, t \in[0,2 S]$ and $t_{0} \in\left[0, \tau_{n}\right]$, one has

$$
\begin{equation*}
\left|\log \left\|\left.P_{t}^{X}\right|_{\Delta_{X^{t_{0}(y)}}^{1}}\right\|-\log \left\|\left.P_{t}^{X_{n}}\right|_{\Delta^{s}\left(X_{n}^{\left.t_{0}\left(z_{n}\right)\right)}\right.}\right\|\right|<S \lambda_{0} / 3, \tag{3}
\end{equation*}
$$

where λ_{0} as in Proposition 4.2. Let $\tau_{n}=m_{n} S+s_{n}\left(m_{n} \in \mathbb{Z}\right.$ and $\left.s_{n} \in[0, S)\right)$. Then we consider the partition

$$
0=t_{0}<t_{1}=S<\cdots<t_{m_{n}-1}=\left(m_{n}-1\right) S<t_{m_{n}}=\tau_{n}
$$

According to Proposition 4.2, we know

$$
\sum_{j=0}^{m_{n}-2} \log \left\|\left.P_{S}^{X_{n}}\right|_{\Delta^{s}\left(X_{n}^{j S}\left(z_{n}\right)\right)}\right\|+\log \left\|\left.P_{S+s_{n}}^{X_{n}}\right|_{\Delta^{s}\left(X_{n}^{\left(m_{n}-1\right) S}\left(z_{n}\right)\right)}\right\| \leq-\tau_{n} \lambda_{0}
$$

Then by (3) we have

$$
\begin{array}{r}
\sum_{j=0}^{m_{n}-2} \log \left\|\left.P_{S}^{X}\right|_{\Delta^{1}\left(X^{j S}(y)\right)}\right\|+\log \left\|\left.P_{S+s_{n}}^{X}\right|_{\Delta^{1}\left(X^{\left(m_{n}-1\right) S}(y)\right)}\right\| \\
\leq m_{n} S \lambda_{0} / 3-\tau_{n} \lambda_{0}=-2 m_{n} S \lambda_{0} / 3-s_{n} \lambda_{0} \leq-2 m_{n} S \lambda_{0} / 3 .
\end{array}
$$

For sufficiently small $r>0$, let $B_{r}(y)$ be a neighborhood of $X^{[-2 S, 0]}(y)$ such that $B_{r}(y) \cap \operatorname{Sing}(X)=\emptyset$. Denote by $C=\sup \left\{|\log | X(x) \|: x \in B_{r}(y)\right\}+$ $\sup \left\{\left|\log \left\|\left.P_{t}^{X}\right|_{\Delta^{s}(x)}\right\|\right|: x \in B_{r}(y), t \in[0,2 S]\right\}<\infty$. Since $d\left(y, z_{n}\right)<1 / n$ and $d\left(X^{\tau_{n}}(y), z_{n}\right)=d\left(X^{\tau_{n}}(y), X^{\tau_{n}}\left(z_{n}\right)\right)<1 / n$, we know $d\left(X^{\tau_{n}}(y), y\right)<2 / n$.

Thus there is $n_{1}>n_{0}$ such that for any $n>n_{1}$ and $t \in[0,2 S]$ we have $X^{\tau_{n}-t}(y) \in B_{r}(y)$. Since $\tau_{n}-\left(m_{n}-1\right) S=S+s_{n}<2 S$, we know

$$
\begin{equation*}
|\log | X\left(X^{\left(m_{n}-1\right) S}(y)\right)\left|\left|+\left|\log \| P_{S+s_{n}}^{X}\right|_{\Delta^{s}\left(P_{\left(m_{n}-1\right) S}^{X}(y)\right)}\right|\right| \mid \leq C . \tag{4}
\end{equation*}
$$

By (1) and $m_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$, there is $n_{2} \geq n_{1}$ such that for any $n>n_{2}$

$$
\begin{aligned}
& \sum_{j=0}^{m_{n}-2} \log \left\|\left.P_{S}^{X}\right|_{\Delta^{1}\left(X^{j S}(y)\right)}\right\|-\left(\log \left|X\left(X^{\left(m_{n}-1\right) S}(y)\right)\right|-\log |X(y)|\right) \\
\geq & -\left(m_{n}-1\right) S \lambda_{0} / 3 .
\end{aligned}
$$

Then by

$$
\sum_{j=0}^{m_{n}-2} \log \left\|\left.P_{S}^{X}\right|_{\Delta^{s}\left(X^{j S}(y)\right)}\right\|+\log \left\|\left.P_{S+s_{n}}^{X}\right|_{\Delta^{s}\left(X^{\left(m_{n}-1\right) S}(y)\right)}\right\| \leq-2 m_{n} S \lambda_{0} / 3
$$

and (4), we have

$$
-\left(m_{n}-1\right) S \lambda_{0} / 3 \leq-2 m_{n} S \lambda_{0} / 3+C+\log |X(y)|
$$

If n is big enough, then it does not happen, and so, it is a contradiction. This proves that for any $L \in \tilde{\Lambda}$, there is a $T>0$ such that

$$
\log \left\|\left.\tilde{P}_{T}^{X}\right|_{\Delta^{1}(L)}\right\|-\log \left\|\left.D X^{T}\right|_{L}\right\|<0
$$

And then by the compactness of $\tilde{\Lambda}$, we can find $C>1$ and $\lambda>0$ such that for any $L \in \tilde{\Lambda}$ and any $t>0$, we have

$$
\left\|\left.D X^{t}\right|_{L}\right\|^{-1} \cdot\left\|\left.\tilde{P}_{t}^{X}\right|_{\Delta^{1}(L)}\right\|<C \mathrm{e}^{-\lambda t}
$$

By a similar argument we can prove that for any $L \in \tilde{\Lambda}$, there is a $T>0$ such that

$$
\log \left\|\left.\tilde{P}_{-T}^{X}\right|_{\Delta^{2}(L)}\right\|+\log \left\|\left.D X^{-T}\right|_{L}\right\|<0
$$

and then there exist $C>1$ and $\lambda>0$ such that for any $L \in \tilde{\Lambda}$ and any $t>0$, we have

$$
\left\|\left.D X^{-t}\right|_{L}\right\| \cdot\left\|\left.\tilde{P}_{-t}^{X}\right|_{\Delta^{2}(L)}\right\|<C \mathrm{e}^{-\lambda t} .
$$

This ends the proof of the lemma.
Theorem A is a direct corollary of Lemma 4.5 and the following lemma in [19].
Lemma 4.6 ([19, Theorem A]). Assume Λ is a non-trivial transitive set such that all singularity in Λ is hyperbolic. If there is a dominated splitting $N_{\Lambda \backslash \operatorname{Sing}(X)}=\Delta^{1} \oplus \Delta^{2}$ on $\Lambda \backslash \operatorname{Sing}(X)$ with respect to P_{t}^{X} and there are constants $C>1$ and $\lambda>0$ such that

$$
\begin{array}{r}
\left\|\left.D X^{t}\right|_{\langle X(x)\rangle}\right\|^{-1} \cdot\left\|\left.P_{t}^{X}\right|_{\Delta^{1}(x)}\right\|<C \mathrm{e}^{-\lambda t}, \\
\left\|\left.D X^{-t}\right|_{\langle X(x)\rangle}\right\| \cdot\left\|\left.P_{-t}^{X}\right|_{\Delta^{2}(x)}\right\|<C \mathrm{e}^{-\lambda t}
\end{array}
$$

for all $x \in \Lambda \backslash \operatorname{Sing}(X)$ and $t \geq 0$, then Λ is positively singular hyperbolic.

Proof of Theorem A. Let $X \in \mathcal{T}$ and Λ be an isolated transitive set of X. If there is a singularity $\sigma \in \Lambda$ with index 2 , then Λ is positively singular hyperbolic by Lemma 4.5 and Lemma 4.6. If there is a singularity $\sigma \in \Lambda$ with index 1 , then by reversing the vector fields, we know that Λ is negatively singular hyperbolic. This ends of the proof of Theorem A.

Acknowledgement. The author wishes to express grateful to Xiao Wen for the hospitality at Beihang University in China.

References

[1] F. Abdenur, C. Bonatti, and S. Crovisier, Global dominated splittings and the C^{1} Newhouse phenomenon, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2229-2237. https: //doi.org/10.1090/S0002-9939-06-08445-0
[2] C. Bonatti and L. J. Díaz, Persistent nonhyperbolic transitive diffeomorphisms, Ann. of Math. (2) 143 (1996), no. 2, 357-396. https://doi.org/10.2307/2118647
[3] C. Bonatti, L. J. Díaz, and E. R. Pujals, A C^{1}-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2) 158 (2003), no. 2, 355-418. https://doi.org/10.4007/annals.2003.158. 355
[4] C. M. Carballo, C. A. Morales Rojas, and M. J. Pacífico, Maximal transitive sets with singularities for generic C^{1} vector fields, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 3, 287-303. https://doi.org/10.1007/BF01241631
[5] L. J. Díaz, E. R. Pujals, and R. Ures, Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999), no. 1, 1-43. https://doi.org/10.1007/BF02392945
[6] J. Guckenheimer, A strange, strange attractor, The Hopf Bifurcation Theorem and its Applications, Springer-Verlag, New York, 1976.
[7] M. Li, S. Gan, and L. Wen, Robustly transitive singular sets via approach of an extended linear Poincaré flow, Discrete Contin. Dyn. Syst. 13 (2005), no. 2, 239-269. https: //doi.org/10.3934/dcds.2005.13.239
[8] S. T. Liao, Obstruction sets. I, Acta Math. Sinica 23 (1980), no. 3, 411-453.
[9] S. T. Liao, Obstruction sets. II, Acta Sci. Natur. Univ. Pekinensis 2 (1981), 1-36.
[10] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), no. 2, 130-141.
[11] R. Mañé, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540. https://doi.org/10.2307/2007021
[12] R. Mañé, A proof of the C^{1} stability conjecture, Publ. Math. IHES 66 (1988), 161-210.
[13] C. A. Morales and M. J. Pacífico, A dichotomy for three-dimensional vector fields, Ergod. Th. \& Dynam. Syst. 23 (2003), 1575-1600.
[14] C. A. Morales, M. J. Pacífico, and E. R. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2) 160 (2004), no. 2, 375-432. https://doi.org/10.4007/annals.2004.160.375
[15] J. Palis Jr. and W. de Melo, Geometric theory of dynamical systems, translated from the Portuguese by A. K. Manning, Springer, New York, 1982.
[16] Y. Shi, S. Gan, and L. Wen, On the singular-hyperbolicity of star flows, J. Mod. Dyn. 8 (2014), no. 2, 191-219. https://doi.org/10.3934/jmd.2014.8.191
[17] L. Wen, On the C^{1} stability conjecture for flows, J. Differential Equations 129 (1996), no. 2, 334-357. https://doi.org/10.1006/jdeq.1996.0121
[18] L. Wen, Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc. (N.S.) 35 (2004), no. 3, 419-452. https: //doi.org/10.1007/s00574-004-0023-x
[19] X. Wen, L. Wen, and D. Yang, A characterization of singular hyperbolicity via the linear Poincaré flow, J. Differential Equations 268 (2020), no. 8, 4256-4275. https: //doi.org/10.1016/j.jde.2019.10.029

Manseob Lee
Department of Marketing Big Data
Mokwon University
Daejeon 35349, Korea
Email address: lmsds@mokwon.ac.kr

[^0]: Received June 23, 2023; Accepted October 19, 2023.
 2020 Mathematics Subject Classification. Primary 37C20, 37C27, 37D50.
 Key words and phrases. Transitive set, generic, local star, Lyapunove stable, singular hyperbolic.

