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SPECTRAL ANALYSIS FOR HYPERBOLIC

INTEGRO-DIFFERENTIAL EQUATIONS

WITH A WEAKLY SINGULAR KERNEL

S. K. Chung and M. G. Park

Abstract. Spectral analysis by energy method is given for a fully discrete methods

for hyperbolic integro-di�erential equations with a weakly singular kernel. Stability and

error estimates in H1-norm are derived.

1. Introduction.

We will consider an approximate solution using the spectral methods for the hyper-

bolic integro-di�erential equations with a singular kernel:

(1.1a) utt +Au =

Z t

0

K(t� s)Bu(s) ds+ f; (x; t) 2 
� (0; T ]

with a Dirichelet boundary condition

(1.1b) u(x; t) = 0; (x; t) 2 @
� (0; T ];

and initial conditions

(1.1c) u(x; 0) = u0(x) and ut(x; 0) = u1(x); x 2 
:

Here 
 = (0; �)2, A(x; t) is a linear, positive, symmetric, uniformly elliptic operator

and B(x) is a general partial di�erential operator of second order with smooth coe�-

cients. Given functions u0(x); u1(x) and f(x; t) are real-valued and su�ciently smooth.

Further, K(t) is a positive decreasing weakly singular kernel with the property:

(1.2) K(t) � Ct
�
; �1 < � < 0; t > 0:

Integro-di�erential equation (1.1) arises in visco-elastic problems. For more references

on problem of the type (1.1), we refer to Renardy, Hrusa and Nohel[13] and refer-

ences therein. The problem (1.1) with smooth kernels has been studied in Dix and

Torrej�on[7], Torrej�on and Yong[14], Yanik and Fairweather[15], where they showed
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existence and uniqueness of solutions for smooth initial data using energy estimates.

In [10], Hrusa and Renardy showed existence of discontinuous solution for nonsmooth

initial data. Local and global weak solutions of (1.1) with singular kernels have been

studied in Engler [8] and Hrusa and Renardy[9] using the limit of solutions with smooth-

ing kernels. Galerkin approximate solutions of (1.1) with weakly singular kernels have

been discussed in Choi and MacCamy[6], in which error estimates are given for the

semidiscrete scheme. For the fully discrete scheme, Galerkin solutions have been dis-

cussed in Pani, Thom�ee and Wahlbin[12] in case of the kernelK(t) � 1, where they also

considered storage reduction. In spite of many works on (1.1) with singular kernels, to

our best knowledge, the �nite element solutions of (1.1) with time stepping(fully dis-

crete scheme) appear to be untouched, even though it is crucial for real computation.

In this paper, we discuss error estimates of backward Euler's fully discrete spectral

approximate solutions for (1.1) with a weakly singular kernel. In section 2, error es-

timates for several projections, like L2-projection, Ritz projection and Ritz-Volterra

projection, will be discussed. In section 3, error estimates for �nite element solutions

by spectral methods with time stepping will be discussed, where H1-error estimates of

O(k+N
�2) are shown.

2. Error Estimates for Projections.

Let VN = spanf ij = sinix1sinjx2 : i; j = 1; 2; : : : ; Ng be the subspace of the

usual Sobolev space V = H
1
0 (
). The weak solution for (1.1) is de�ned as a function

uN : (0; T ] �! VN such that for all � 2 VN

(2.1a) (uNtt; �) + a(uN ; �) =

Z t

0

K(t� s)b(uN (s); �) ds+ (f; �);

(2.1b) (uN (x; 0); �) = (u0; �);

(2.1c) (uNt(x; 0); �) = (u1; �):

Here a(�; �) and b(�; �) are bilinear forms on H1
0 (
)�H

1
0 (
) associated with di�erential

operators A and B, respectively. The inner product (�; �) : H1
0 �H

1
0 ! R is de�ned as

(�;  ) =

Z



�(x) (x)dx; �;  2 H
1
0 (
):

De�ne a L
2-projection PN : L2(
) �! VN by PNv =

PN

i;j
aij(t) ij for v(x; t) =P

1

i;j
aij(t) ij . Then we have

(v � PNv; �) = 0; 8� 2 VN :

That is, PN is an orthogonal projection operator. It is well known that the following

error estimate holds for the the L2-projection(see [4]). Hereafter, a constant C will be

used as a generic constant independent of N and mesh k. For notational convenience,

we omit dependent variables x and t if there is no confusion.
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Lemma 2.1. There exists a constant C such that

kv � PNvk � CN
�2
kvk2:

The following version of Gronwall's lemma will be frequently used for error estimates,

whose proof can be found in Chen, Thom�ee and Wahlbin [5].

Lemma 2.2. Assume that y is a nonnegative function in L1(0; T ) and satis�es

y(t) � z(t) + �

Z t

0

K(t� s)y(s) ds; 0 < t � T; �1 < � < 0;

where z(t) � 0; � � 0. Then there is a constant CT such that

y(t) � z(t) + CT

Z t

0

K(t� s)z(s) ds; 0 < t � T:

We now introduce the standard Ritz projection operator RN : H1
0 (
) �! VN (
)

with

(2.2) a(v �RNv; �) = 0; 8� 2 VN (
):

The error estimate of Ritz projection can be found in Bressan and Quarteroni[3],

Bernardi and Maday[2] for all v 2 V with 0 � � � r and r � 1 as

(2.3) kv �RNvk� � CN
�(r�e(�))

kvkr;

where

e(�) =

�
�; � � 1

2�� 1; � > 1:

Further, we introduce the Ritz-Volterra projection operator �N : V �! VN by

(2.4) a((�Nu� u)(t); �) =

Z t

0

K(t� s)b((�Nu� u)(s); �) ds; 8� 2 V
0
N (
);

as in Lin, Thom�ee and Wahlbin[11]. Then we have the following error estimate for the

Ritz-Volterra projection.

Lemma 2.3. There exists a constant C such that for u 2 V .

k(�Nu� u)(t)k+N
�1
k(�Nu� u)(t)k1 � CN

�2 sup
s�t

ku(s)k2:

Proof. Let �N = �Nu � u. We begin with an H1 - estimate for �N . >From (2.3), we

obtain

kRNu� uk+N
�1
kRNu� uk1 � CN

�2
kuk2:
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It follows from the coercivity of a(�; �) and the orthogonal projection that for c0 > 0,

c0k�Nu�RNuk
2
1

� a(�Nu� RNu;�Nu� RNu)

= a(�N ;�Nu� RNu) + a(u�RNu;�Nu�RNu)

= a(�N ;�Nu� RNu)

=

Z t

0

K(t� s)b(�N (s); (�Nu�RNu)(t)) ds

� Ck�Nu�RNuk1

Z t

0

K(t� s)k�N(s)k1 ds:

Thus, we obtain

k�Nu� RNuk1 � C

Z t

0

K(t� s)k�N(s)k1 ds

and

k�Nk1 � k�Nu� RNuk1 + kRNu� uk1 � C

Z t

0

K(t� s)k�N(s)k1 ds+ kRNu� uk1:

It follows from Lemma 2.2 that

k�Nk1 � C sup
s�t

k(RNu� u)(s)k1 � CN
�1 sup

s�t

ku(s)k2:

We now consider the L2-estimate for �N using the duality argument. For any � 2 L2,

let  be the solution of

(2.5) A = � in 
;  = 0 on @
:

Then  is a unique solution of (2.5) such that

k k2 � Ck�k = C:

Note that, for � 2 VN ,

(2.6) (�N ; �) = (�N ; A ) = a(�N ;  � �) + a(�N ; �):

The last term on the right hand side of (2.6) becomes

a(�N ; �) =

Z t

0

K(t� s)b(�N (s); �) ds

=

Z t

0

K(t� s)b(�N (s); ��  ) ds+

Z t

0

K(t� s) (�N (s); B
�
 ) ds;
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where B� is the adjoint of B. Replacing � = RN and using (2.6), we obtain

(�N ; �) � CfkRN �  k1 sup
s�t

k�N (s)k1 + k k2

Z t

0

K(t� s)k�N(s)kdsg

� CfN
�1
k k2 �N

�1 sup
s�t

ku(s)k2 + k�k

Z t

0

K(t� s)k�N(s)kdsg:

Replacing � = �N=k�Nk in the above inequality, we obtain

k�Nk � CfN
�2 sup

s�t

ku(s)k2 +

Z t

0

K(t� s)k�N (s)k dsg:

An application of Lemma 2.2 completes the proof. �

Following the proof of Lemma 2.3, we may also obtain

(2.7) k�Nt
k+N

�1
k�Nt

k1 � CN
�2 sup

s�t

kut(s)k2

and

(2.8) k�Ntt
k+N

�1
k�Ntt

k1 � CN
�2 sup

s�t

kutt(s)k2:

3. Discretization in Time Direction.

Let M be a positive integer and k = T=M . We de�ne di�erence operators

�@k�
n =

�
n
� �

n�1

k
; �@2k�

n = �@k(�@k�
n)

and
~�(s) =

1

k
[(tj � s)�(tj�1) + (s� tj�1)�(tj)]; tj�1 � s � tj :

Let Un
N 2 VN be a solution of

(3.1a) (�@2kU
n
N ; �) + an(U

n
N ; �) =

Z tn

0

K(tn � s)b( ~UN(s); �)ds+ (fn; �); n � 2;

(3.1b) (U0
N ; �) = (u0; �);

(3.1c) (�@kU
1
N ; �) = (u1; �);

for all � 2 VN . We use the trapezoidal rule as in Weiss[16] and Atkinson[1] for inte-

grations in (3.1). Then we obtain the quadrature error

(3.2) "n(�) =

nX
j=1

f�n;j�(tj�1) + �n;j�(tj)g �

Z tn

0

K(tn � s)�(s)ds;

where

(3.3a) �n;j =

Z tj

tj�1

(tj � s)K(tn � s)ds;

(3.3b) �n;j =

Z tj

tj�1

(s� tj�1)K(tn � s)ds:
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Lemma 3.1. There is a constant C such that if �t 2 L1(0; T ;L2), then

k

MX
n=1

k"n(�)k � Ck
2

MX
n=1

max
0�s�tn

k�t(s)k:

Proof. Since we may rewrite �(s) as

�(s) =

�
�(tj�1) + (s� tj�1)�t(�j�1); tj�1 < �j�1 < s

�(tj) + (s� tj)�t(�j); s < �j < tj ;

we obtain, from the Taylor's theorem,

j(~�� �)(s)j �
1

k
(tj � s)(s� tj�1)fj�t(�j�1)j+ j�t(�j)jg

� kfj�t(�j�1)j+ j�t(�j)jg:

Since "n(�) =
R tn
0
K(tn � s)(~�� �)(s) ds; we obatin

j�n(�)j � 2k

nX
j=1

max
tj�1�s�tj

j�t(s)j

Z tj

tj�1

K(tn � s) ds

� Ck max
0�s�tn

j�t(s)j:

This implies

k"n(�)k � Ck max
0�s�tn

k�t(s)k:

Hence the required result holds from summation of the above inequality. �

The following lemma is a discrete version of Lemma 2.2, which will be used judi-

ciously.

Lemma 3.2. Let �n;j and �n;j be de�ned as in (3.3). Assume that yn � 0, zn � 0

and � � 0: If, either xn;j = �n;j or xn;j = �n;j,

yn � zn + �

nX
j=1

xn;jyj ; n � 0;

holds, then there is a constant C such that

yn � zn + C

nX
j=1

xn;jzj ; n � 0:

We now state the stability of approximate solutions in terms of a discrete energy

norm jjj � jjj de�ned by

jjj�
n
jjj
2
1 = k�@k�

n
k
2 + k�

n
k
2
1; n � 1:
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Theorem 3.1. Let UN 2 VN be a solution of (3.1). Then there exists a constant C

such that

jjjU
n
N jjj1 � CfjjjU

1
N jjj1 + k

MX
n=2

kf
n
kg:

Proof. Replacing � = �@kU
n
N in (3.1a), we obtain

(�@2kU
n
N ;

�@kU
n
N ) + an(U

n
N ;

�@kU
n
N )(3.4)

=

nX
j=1

Z tj

tj�1

K(tn � s)b( ~UN (s); �@kU
n
N ) ds+ (fn; �@kU

n
N )

� I
n
1 + I

n
2 :

Note that

(�@2kU
n
N ;

�@kU
n
N ) =

1

2
�@kk�@kU

n
Nk

2 +
k

2
k�@2kU

n
Nk

2

and

an(U
n
N ;

�@kU
n
N ) =

1

2
�@k(an(U

n
N ; U

n
N ))�

1

2
(�@kan)(U

n�1
N

; U
n�1
N

) +
k

2
an(�@kU

n
N ;

�@kU
n
N ):

Multiplying both sides of (3.4) by 2k and summing from n = 2 to M , we obtain, for

positive constants c0 and C,

k
�@kU

M
N k

2 + c0kU
M
N k

2
1 � k

�@kU
1
Nk

2 + CkU
1
Nk

2
1 + kj

MX
n=2

(�@kan)(U
n�1
N ; U

n�1
N )j

+ 2kj

MX
n=2

(In1 + I
n
2 )j:

The above inequality can be rewritten using the discrete norm jjcdotjjj as

(3.5) jjjU
M
N jjj

2
1 � CfjjjU

1
N jjj

2
1 + k

MX
n=2

jjjU
n�1
N

jjj
2
1 + k

MX
n=2

(jIn1 j+ jI
n
2 j)g:

Let jjjUN jjj1;M = max0�n�M jjjU
n
N jjj1: Then

k

mX
n=2

jI
n
2 j = k

MX
n=2

kf
n
k � jjjUN jjj1;M :

On the other hand, we can rewrite In1 using notations in (3.2){(3.3) as

I
n
1 = �n;nb(U

n�1
N

; �@kU
n
N ) + �n;nb(U

n
N ;

�@kU
n
N )

+

n�1X
j=1

�@kf�n;jb(U
j�1
N

; U
n
N ) + �n;jb(U

j

N
; U

n
N )g

�

n�1X
j=1

f(�@k�n;j)b(U
j�1
N

; U
n�1
N

) + (�@k�n;j)b(U
j

N
; U

n�1
N

)g:
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Summation both sides from n = 2 to M , we obtain

k

MX
n=2

I
n
1 =

MX
n=2

f�n;nb(U
n
N ; U

n
N ) + (�n;n � �n;n)b(U

n
N ; U

n�1
N

)� �n;nb(U
n�1
N

; U
n�1
N

)g

+

M�1X
j=1

f�M;jb(U
j�1
N

; U
M
N ) + �M;jb(U

j

N
; U

M
N )g

�

M�1X
j=1

f�j;jb(U
j�1
N

; U
j

N
) + �j;jb(U

j

N
; U

j

N
)g

� k

M�1X
j=1

MX
n=j+1

f(�@k�n;j)b(U
j�1
N

; U
n�1
N

) + (�@k�n;j)b(U
j

N
; U

n�1
N

)g:

Thus

k

MX
n=2

jI
n
1 j � C

MX
j=1

fj�j;j jkU
j

N
k1 + j�j;j � �j;j jkU

j

N
k1 + j�j;j jkU

j�1
N

k1gjjjUN jjj1;M

+ C

MX
j=1

f(j�M;j j+ j�j;j j)kU
j�1
N k1 + (j�M;j j+ j�j;j j)kU

j

Nk1gjjjUN jjj1;M

+ Ck

M�1X
j=1

fkU
j�1
N

k1

MX
n=j+1

j�@k�n;j j+ kU
j

N
k1

MX
n=j+1

j�@k�n;j jgjjjUN jjj1;M :

Since

j
�@k�n;j j =

1

k
j

Z tj

tj�1

(tj � s)[K(tn � s)�K(tn�1 � s)] dsj

�

Z tj

tj�1

[K(tn�1 � s)�K(tn � s)] ds;

we obtain, by interchanging summation with integration,

MX
n=j+1

j�@k�n;j j �

MX
n=j+1

Z tj

tj�1

[K(tn�1 � s)�K(tn � s)] ds

=

Z tj

tj�1

[K(tj � s)�K(tM � s)] ds

� C(kKkL1(0;T )):

Similarly, we obtain
MX

n=j+1

j�@k�n;j j � C(kKkL1(0;T )):
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Noting that j�n;j j � k
2+� and j�n;j j � k

2+� for j � n � M and dividing (3.5) by

jjjUN jjj1;M , we obtain

jjjU
M
N jjj1 � CfjjjU

1
N jjj1 + k

MX
n=1

jjjU
n
N jjj1 + k

MX
n=2

kf
n
kg:

Hence, the discrete Gronwall's inequality completes the proof. �

Let �n = U
n
N � �Nu(tn). Then the error en = U

n
N � u(tn) = �

n + �
n
N . Since we

know the estimate of �nN , we have only to �nd the estimate for �n.

Theorem 3.2. Let u(t) be the solution of (1.1) and Un
N be a solution of (3.1). Then

there exists a constant C such that

jjj�
n
jjj1 � CfN

�2 + k + jjj�
0
jjj1g:

Proof. From (2.4) and (3.1), we obtain

(3.5) (�@2k�
n
; �) + an(�

n
; �) =

Z tn

0

K(tn � s)b(~�k; �) ds+ (

3X
i=1

J
n
i ; �);

where

J
n
1 = utt(tn)� �@2ku(tn);

J
n
2 = ��@2k�

n
N ;

J
n
3 =

Z tn

0

K(tn � s)Bf ~�Nu(s)��Nu(s)gds:

It follows from Theorem 3.1 that

jjj�
M
jjj1 � Cfjjj�

1
jjj1 + k

MX
n=2

kJ
n
i kg:

From the relation Jn3 = "n(B�N) + "n(Bu) and Lemma 3.1, we obtain

kJ
n
3 k � Ckf sup

0�s�tn

kB�Nt(s)k+ sup
0�s�tn

kBut(s)kg � Ckkutk2:

Hence, we obtain

k

MX
n=2

kJ
n
3 k � Ck

2

MX
n=2

( sup
0�s�tn

kutk2) � Ck

Z tM

0

kut(s)k2ds:

Similarly, we obtain

k

MX
n=2

kJ
n
1 k � Ck

2

MX
n=2

Z tn

tn�1

kuttttkds = Ck
2

Z tM

t1

kuttttk ds:

For the estimate of Jn2 , it follows from (2.8) that

k

MX
n=2

kJ
n
2 k �

MX
n=2

Z tn

tn�1

k�Nttk ds � CN
�2
:

These complete the proof. �
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Remarks. Spectral analysis is discussed for a hyperbolic integro-di�erential equation

with a weakly singular kernel and error estimates of the spectral method is given.

Because of the memory term and global bases functions, a storage problem in com-

putation arises in the method. In order to overcome this problem, we will give an

improved method elsewhere.
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