DOI QR코드

DOI QR Code

EVENTUAL SHADOWING FOR CHAIN TRANSITIVE SETS OF C1 GENERIC DYNAMICAL SYSTEMS

  • Lee, Manseob (Department of Marketing Big Data and Mathematics Mokwon University)
  • Received : 2019.01.28
  • Accepted : 2021.01.22
  • Published : 2021.09.01

Abstract

We show that given any chain transitive set of a C1 generic diffeomorphism f, if a diffeomorphism f has the eventual shadowing property on the locally maximal chain transitive set, then it is hyperbolic. Moreover, given any chain transitive set of a C1 generic vector field X, if a vector field X has the eventual shadowing property on the locally maximal chain transitive set, then the chain transitive set does not contain a singular point and it is hyperbolic. We apply our results to conservative systems (volume-preserving diffeomorphisms and divergence-free vector fields).

Keywords

Acknowledgement

The author wish to express their appreciation to reviewers for their valuable comments.

References

  1. F. Abdenur, C. Bonatti, and S. Crovisier, Global dominated splittings and the C1 Newhouse phenomenon, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2229-2237. https: //doi.org/10.1090/S0002-9939-06-08445-0
  2. F. Abdenur and L. J. D'iaz, Pseudo-orbit shadowing in the C1 topology, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 223-245. https://doi.org/10.3934/dcds.2007.17.223
  3. J. Ahn, K. Lee, and M. Lee, Homoclinic classes with shadowing, J. Inequal. Appl. 2012 (2012), 97, 6 pp. https://doi.org/10.1186/1029-242X-2012-97
  4. N. Aoki, The set of Axiom A diffeomorphisms with no cycles, Bol. Soc. Brasil. Mat. (N.S.) 23 (1992), no. 1-2, 21-65. https://doi.org/10.1007/BF02584810
  5. N. Aoki and K. Hiraide, Topological theory of dynamical systems, North-Holland Mathematical Library, 52, North-Holland Publishing Co., Amsterdam, 1994.
  6. A. Arbieto, Periodic orbits and expansiveness, Math. Z. 269 (2011), no. 3-4, 801-807. https://doi.org/10.1007/s00209-010-0767-5
  7. A. Arbieto and T. Catalan, Hyperbolicity in the volume preserving scenario, Ergodic Theory & Dynam. Syst. 33 (2013), 1644-1666. https://doi.org/10.1017/etds.2012.111
  8. A. Arbieto, L. Senos, and T. Sodero, The specification property for flows from the robust and generic viewpoint, J. Differential Equations 253 (2012), no. 6, 1893-1909. https://doi.org/10.1016/j.jde.2012.05.022
  9. M. Bessa, A generic incompressible flow is topological mixing, C. R. Math. Acad. Sci. Paris 346 (2008), no. 21-22, 1169-1174. https://doi.org/10.1016/j.crma.2008.07.012
  10. M. Bessa, M. Lee, and S. Vaz, Stable weakly shadowable volume-preserving systems are volume-hyperbolic, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 6, 1007-1020. https://doi.org/10.1007/s10114-014-3093-8
  11. M. Bessa, M. Lee, and X. Wen, Shadowing, expansiveness and specification for C1-conservative systems, Acta Math. Sci. Ser. B (Engl. Ed.) 35 (2015), no. 3, 583-600. https://doi.org/10.1016/S0252-9602(15)30005-9
  12. C. Bonatti and S. Crovisier, Recurrence et genericite, Invent. Math. 158 (2004), no. 1, 33-104. https://doi.org/10.1007/s00222-004-0368-1
  13. C. Bonatti and L. D'iaz, Robust heterodimensional cycles and C1-generic dynamics, J. Inst. Math. Jussieu 7 (2008), no. 3, 469-525. https://doi.org/10.1017/S1474748008000030
  14. B. Carvalho, Hyperbolicity, transitivity and the two-sided limit shadowing property, Proc. Amer. Math. Soc. 143 (2015), no. 2, 657-666. https://doi.org/10.1090/S0002-9939-2014-12250-7
  15. S. Crovisier, Periodic orbits and chain-transitive sets of C1-diffeomorphisms, Publ. Math. Inst. Hautes Etudes Sci. No. 104 (2006), 87-141. https://doi.org/10.1007/s10240-006-0002-4
  16. C. I. Doering, Persistently transitive vector fields on three-dimensional manifolds, in Dynamical systems and bifurcation theory (Rio de Janeiro, 1985), 59-89, Pitman Res. Notes Math. Ser., 160, Longman Sci. Tech., Harlow, 1987.
  17. C. Ferreira, Stability properties of divergence-free vector fields, Dyn. Syst. 27 (2012), no. 2, 223-238. https://doi.org/10.1080/14689367.2012.655710
  18. J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), 301-308. https://doi.org/10.2307/1995906
  19. C. Good and J. Meddaugh, Orbital shadowing, internal chain transitivity and ω-limit sets, Ergodic Theory & Dynam. Syst. 38 (2018), no. 1, 134-154. https://doi.org/10.1017/etds.2016.30
  20. J. Guchenheimer, A strange, strange attractor. The Hopf bifurcation theorems and its applications, Applied Mathematical Series, vol. 19, pp. 368-381. Springer, 1976.
  21. S. Hayashi,Diffeomorphisms in F1(M) satisfy Axiom A, Ergodic Theory & Dynam. Syst. 12 (1992), 233-253. https://doi.org/10.1017/S0143385700006726
  22. M. Komuro, Lorenz attractors do not have the pseudo-orbit tracing property, J. Math. Soc. Japan 37 (1985), no. 3, 489-514. https://doi.org/10.2969/jmsj/03730489
  23. I. Kupka, Contribution a la theorie des champs generiques, Contributions to Differential Equations 2 (1963), 457-484 and 3 (1964), 411-420.
  24. M. Lee, Usual limit shadowable homoclinic classes of generic diffeomorphisms, Adv. Difference Equ. 2012 (2012), 91, 8 pp. https://doi.org/10.1186/1687-1847-2012-91
  25. M. Lee, Vector fields with stably limit shadowing, Adv. Difference Equ. 2013 (2013), 255, 6 pp. https://doi.org/10.1186/1687-1847-2013-255
  26. M. Lee, Volume preserving diffeomorphisms with weak and limit weak shadowing, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 3, 319-325.
  27. M. Lee, Orbital shadowing for C1-generic volume-preserving diffeomorphisms, Abstr. Appl. Anal. 2013 (2013), Art. ID 693032, 4 pp. https://doi.org/10.1155/2013/693032
  28. M. Lee, Orbital shadowing property for generic divergence-free vector fields, Chaos Solitons Fractals 54 (2013), 71-75. https://doi.org/10.1016/j.chaos.2013.05.013
  29. M. Lee, Volume-preserving diffeomorphisms with periodic shadowing, Int. J. Math. Anal. 7 (2013), 2379-2383. http://dx.doi.org/10.12988/ijma.2013.37187
  30. M. Lee, Asymptotic average shadowing property for volume preserving diffeomorphisms, Far. East J. Math. Sci. 75 (2013), 47-56.
  31. M. Lee, The ergodic shadowing property from the robust and generic view point, Adv. Difference Equ. 2014 (2014), 170, 7 pp. https://doi.org/10.1186/1687-1847-2014-170
  32. M. Lee, Robustly chain transitive diffeomorphisms, J. Inequal. Appl. 2015 (2015), 230, 6 pp. https://doi.org/10.1186/s13660-015-0752-y
  33. M. Lee, Volume-preserving diffeomorphisms with various limit shadowing, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 25 (2015), no. 2, 1550018, 8 pp. https://doi.org/10.1142/S0218127415500182
  34. M. Lee, The barycenter property for robust and generic diffeomorphisms, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 8, 975-981. https://doi.org/10.1007/s10114-016-5123-1
  35. M. Lee, Locally maximal homoclinic classes for generic diffeomorphisms, Balkan J. Geom. Appl. 22 (2017), no. 2, 44-49.
  36. M. Lee, Chain transitive sets and dominated splitting for generic diffeomorphisms, J. Chungcheong Math. Soc. 30 (2017), no. 2, 177-181. https://doi.org/10.14403/jcms.2017.30.2.177
  37. M. Lee, A type of the shadowing properties for generic view points, Axioms 7 (2018), no. 1, 18 pp.
  38. M. Lee, Vector fields satisfying the barycenter property, Open Math. 16 (2018), no. 1, 429-436. https://doi.org/10.1515/math-2018-0040
  39. M. Lee, Asymptotic orbital shadowing property for diffeomorphisms, Open Math. 17 (2019), no. 1, 191-201. https://doi.org/10.1515/math-2019-0002
  40. M. Lee, Lyapunov stable homoclinic classes for smooth vector fields, Open Math. 17 (2019), no. 1, 990-997. https://doi.org/10.1515/math-2019-0068
  41. M. Lee, Orbital shadowing property on chain transitive sets for generic diffeomorphisms, Acta Univ. Sapientiae Math. 12 (2020), no. 1, 146-154. https://doi.org/10.2478/ausm-2020-0009
  42. M. Lee, Topologically stable chain recurrence classes for diffeomorpisms, Math. 8 (2020), 1912. https://doi.org/10.3390/math8111912
  43. K. Lee and M. Lee, Divergence-free vector fields with inverse shadowing, Adv. Difference Equ. 2013 (2013), 337, 7 pp. https://doi.org/10.1186/1687-1847-2013-337
  44. K. Lee and M. Lee, Shadowable chain recurrence classes for generic diffeomorphisms, Taiwanese J. Math. 20 (2016), no. 2, 399-409. https://doi.org/10.11650/tjm.20.2016.5815
  45. M. Lee and S. Lee, Generic diffeomorphisms with robustly transitive sets, Commun. Korean Math. Soc. 28 (2013), no. 3, 581-587. https://doi.org/10.4134/CKMS.2013.28.3.581
  46. K. Lee, M. Lee, and S. Lee, Hyperbolicity of homoclinic classes of C1 vector fields, J. Aust. Math. Soc. 98 (2015), no. 3, 375-389. https://doi.org/10.1017/S1446788714000640
  47. M. Lee, S. Lee, and J. Park, Shadowable chain components and hyperbolicity, Bull. Korean Math. Soc. 52 (2015), no. 1, 149-157. https://doi.org/10.4134/BKMS.2015.52.1.149
  48. M. Lee and J. Park, Chain components with stably limit shadowing property are hyperbolic, Adv. Difference Equ. 2014 (2014), 104, 11 pp. https://doi.org/10.1186/1687-1847-2014-104
  49. M. Lee and J. Park, Diffeomorphisms with average and asymptotic average shadowing, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 23 (2016), no. 4, 285-294.
  50. M. Lee and J. Park, Vector fields with the asymptotic orbital pseudo-orbit tracing property, Qual. Theory Dyn. Syst. 19 (2020), no. 2, Paper No. 52, 16 pp. https://doi.org/10.1007/s12346-020-00388-z
  51. K. Lee and X. Wen, Shadowable chain transitive sets of C1-generic diffeomorphisms, Bull. Korean Math. Soc. 49 (2012), no. 2, 263-270. https://doi.org/10.4134/BKMS.2012.49.2.263
  52. G. Lu, K. Lee, and M. Lee, Generic diffeomorphisms with weak limit shadowing, Adv. Difference Equ. 2013 (2013), 27, 5 pp. https://doi.org/10.1186/1687-1847-2013-27
  53. R. Mane, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540. https://doi.org/10.2307/2007021
  54. R. Mane, A proof of the C1 stability conjecture, Inst. Hautes Etudes Sci. Publ. Math. No. 66 (1988), 161-210. https://doi.org/10.1007/BF02698931
  55. S. E. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math. 99 (1977), no. 5, 1061-1087. https://doi.org/10.2307/2374000
  56. J. Palis, Jr., and W. de Melo, Geometric Theory of Dynamical Systems, translated from the Portuguese by A. K. Manning, Springer-Verlag, New York, 1982.
  57. R. Ribeiro, Hyperbolicity and types of shadowing for C1 generic vector fields, Discrete Contin. Dyn. Syst. 34 (2014), no. 7, 2963-2982. https://doi.org/10.3934/dcds.2014.34.2963
  58. C. Robinson, Generic properties of conservative systems, Amer. J. Math. 92 (1970), 562-03. https://doi.org/10.2307/2373361
  59. K. Sakai, C1-stably shadowable chain components, Ergodic Theory & Dynam. Syst. 28 (2008), 987-1029. https://doi.org/10.1017/S0143385707000570
  60. K. Sakai, N. Sumi, and K. Yamamoto, Diffeomorphisms satisfying the specification property, Proc. Amer. Math. Soc. 138 (2010), no. 1, 315-321. https://doi.org/10.1090/S0002-9939-09-10085-0
  61. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. https://doi.org/10.1090/S0002-9904-1967-11798-1