Browse > Article
http://dx.doi.org/10.4134/BKMS.2010.47.2.231

ASYMPTOTIC STUDY OF MIXED ROTATING MHD SYSTEM  

Selmi, Ridha (DEPARTEMENT DE MATHEMATIQUE FACULTE DES SCIENCES DE GABES)
Publication Information
Bulletin of the Korean Mathematical Society / v.47, no.2, 2010 , pp. 231-249 More about this Journal
Abstract
Asymptotic behavior of three-dimensional mixed, periodic and rotating magnetohydrodynamic system is investigated as the Rossby number goes to zero. The system presents the difficulty to be singular and mixed, that is hyperbolic in the vertical direction and parabolic in the horizontal one. The divergence free condition and the spectral properties of the penalization operator are crucial in the proofs. The main tools are the energy method, the Schochet's method and products laws in anisotropic Sobolev spaces.
Keywords
MHD system; hyperbolic-parabolic system; anisotropic Sobolev spaces; divergence free condition; asymptotic behavior; Schocht's methods;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 E. Dormy, These de Doctorat, Institut de Physique de Globe, place Jussieu, 75005 Paris, France.
2 E. Dormy, P. Cardin, and D. Jault, MHD flow in a slightly differantially rotating sphericalshell, with conducting inner core, in a dipolar magnetic field, Earth Planet. Sci.Lett. 160 (1998), 15–30.   DOI   ScienceOn
3 I. Gallagher, Applications of Schochet’s methods to parabolic equations, J. Math. PuresAppl. (9) 77 (1998), no. 10, 989–1054.   DOI   ScienceOn
4 I. Gallagher, Asymptotic of the solutions of hyperbolic equations with a skew-symmetricperturbation, J. Differential Equations 150 (1998), no. 2, 363–384.   DOI   ScienceOn
5 E. Grenier, Oscillatory perturbations of the Navier-Stokes equations, J. Math. PuresAppl. (9) 76 (1997), no. 6, 477–498.   DOI   ScienceOn
6 D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces, Rev.Mat. Iberoamericana 15 (1999), no. 1, 1–36.
7 D. Iftimie, A uniqueness result for the Navier-Stokes equations with vanishing verticalviscosity, SIAM J. Math. Anal. 33 (2002), no. 6, 1483–1493.   DOI   ScienceOn
8 J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod; Gauthier-Villars, Paris 1969.
9 J. Benameur and R. Selmi, Study of anisotropic MHD system in anisotropic Sobolevspaces, Ann. Fac. Sci. Toulouse Math. (6) 17 (2008), no. 1, 1–22.   DOI   ScienceOn
10 J. Benameur, S. Ibrahim, and M. Majdoub, Asymptotic study of a magneto-hydrodynamicsystem, Differential Integral Equations 18 (2005), no. 3, 299–324.
11 B. Desjardins, E. Dormy, and E. Grenier, Stability of mixed Ekman-Hartmann boundarylayers, Nonlinearity 12 (1999), no. 2, 181–199.   DOI   ScienceOn
12 R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North Holland, Amsterdam, 1984.
13 R. Selmi, Convergence results for MHD system, Int. J. Math. Math. Sci. 2006 (2006),Art. ID 28704, 19 pp.
14 S. Schochet, Fast singular limits of hyperbolic PDEs, J. Differential Equations 114(1994), no. 2, 476–512.   DOI   ScienceOn