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ADAPTIVE GRID SIMULATION OF HYPERBOLIC EQUATIONS

HAOJUN LI' AND MYUNGJOO KANGH 1

'DEPARTMENT OF MATHEMATICAL SCIENCES, SEOUL NATIONAL UNIVERSITY, SOUTH KOREA
E-mail address: {hj1i, mkang}@snu.ac.kr

ABSTRACT. We are interested in an adaptive grid method for hyperbolic equations. A mul-
tiresolution analysis, based on a biorthogonal family of interpolating scaling functions and lifted
interpolating wavelets, is used to dynamically adapt grid points according to the physical field
profile in each time step. Traditional finite-difference schemes with fixed stencils produce high
oscillations around sharp discontinuities. In this paper, we hybridize high-resolution schemes,
which are suitable for capturing singularities, and apply a finite-difference approach to the scal-
ing functions at non-singular points. We use a total variation diminishing Runge—Kutta method
for the time integration. The computational cost is proportional to the number of points present
after compression. We provide several numerical examples to verify our approach.

1. INTRODUCTION

In this paper, we investigate an adaptive grid method for the simulation of hyperbolic con-
servation laws, which can be written as

U, + F(U), =0, (1.1)

with some initial conditions and boundary conditions, where U is a d-dimensional vector field
(d > 1) and F(U) is a vector-valued function of U. Equation (1.1) is said to be hyperbolic if
the Jacobian matrix A (U) = M has real eigenvalues and is diagonalizable.

It is well known that non-physical oscillations behind shocks cannot be avoided in tradi-
tional finite-difference schemes that use the interpolation of polynomials or some other type of
basic functions with fixed stencils. One of the main issues in the hyperbolic conservation laws
is the effective capture of sharp singularities, and special treatment must be given to computa-
tions around such points. Many studies concerning high-resolution schemes (HRSs) have been
conducted with the aim of capturing these shocks. For example, such schemes as MINMOD,
SMART, ENO, and WENO have been developed (see [13, 35, 11, 34, 18]). These HRSs use the
piecewise combination of several finite-difference schemes, either with different orders or with
different stencil positions. We need a certain number of points with high-resolution in order to
effectively resolve singularities along the wave. This causes the excessive assignment of grid
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points, even around regions where the waves are smooth. In evolution equations, the position
of a shock often moves with time. It is even possible for new shocks to be created in regions
where the wave was previously continuous. Therefore, the dynamic assignment of grid points
according to wave profiles will improve computational efficiency for high data compression
rates.

In order to determine smooth regions and sharp discontinuities in a function, we apply the
concept of multiresolution analysis (MRA) [30, 31]. If we perform a wavelet decomposition
of a given function, we obtain the information needed to reconstruct the original field. Not all
details are important, as long as the field itself is highly localized or has sharp discontinuities in
only a small part of the whole domain. We can obtain high accuracy with low-resolution mesh
points in the smooth regions of the field, or in regions with unimportant details (or wavelet
coefficients).

There have been several other papers concerning adaptive multiresolution methods for hy-
perbolic conservation laws [1, 5, 17, 6]. Although these papers treated shocks with HRSs,
the MRA they used belongs to a biorthogonal family of interpolating scaling functions and
interpolating wavelets without lifting. Theoretically, the interpolating wavelets proposed by
Donoho [7] have zero vanishing moments and are not a suitable basis for MRA. The order of
the vanishing moments was increased by the lifting scheme developed by Sweldens [36]. To
our knowledge, the biorthogonal family of interpolating scaling functions and lifted interpolat-
ing wavelets applied in MRA was first used by Vasilyev et al. [41] for adaptive grid simulations
of time evolution problems. In [41], the authors used only the finite-difference of scaling func-
tions to approximate the spatial derivatives. An adaptive grid approach for shock computations
was presented by Regele and Vasilyev [43]. They used the wavelet transform and an assistant
function to locate shock positions, and modified the original equation by adding an artificial
viscosity term. In this paper, we are interested in solving the original equation instead of the
modified equation with artificial viscosity.

We will briefly describe HRSs for shock computations in the following section. In Section 3,
we discuss the adaptive wavelet collocation method. Section 4 presents the hybrid AWCM and
HRS algorithm for solving evolution PDEs. We give several numerical examples in Section 3,
before ending the paper with discussions and conclusions in Section 6.

2. HIGH RESOLUTION SCHEMES

There are a number of HRSs for efficiently capturing shocks in conservation laws. Most
of them start with a finite volume frame and fix their target by constructing a suitable flux
term across the cell faces. Such techniques include slope limiter and flux limiter approaches,
which are essentially equivalent (see for example [28]). These use different finite-difference
schemes according to the local slope condition. Other popular approaches include essentially
non-oscillatory (ENO) schemes [14, 34] and weighted essentially non-oscillatory (WENO)
schemes [29]. These choose different stencils for polynomial interpolation according to a com-
parison of the differencing.
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We now discuss the flux limiter approach. First-order upwind schemes retain the mono-
tonicity of the solution, although the accuracy can drop due to dissipation, even for smooth
waves. Second-order schemes, such as Lax—Wendroff [19] or Beam-Warming [44], give solu-
tions with better accuracy in the smooth part of the wave. However, they perform very poorly
in shock-capturing without oscillations. The idea of the flux limiter approach is to unite the
best properties of two or more methods in order to keep the discontinuous part of the solution
non-oscillatory and obtain the smooth part of the solution with higher accuracy [28].

It is convenient to consider the flux terms in a normalized variable formulation (NVF) or
normalized variable space formulation (NVSF) [26, 27, 3]. The convective flux F' and the

coordinate z are normalized as
~ F—F, - T — Ty

F e s Tr= s

Fqg—F, Tq — Ty

2.1)

where the subindexes d and u are the downstream and upstream nodes, respectively, of the
central node c (see Figure 1). The direction of the stream is determined by the sign of the local
velocity (e.g., OF/OU for the scalar case). If we consider a cell centered at ¢ (uniform mesh),
the normalized flux F at the cell face f is a function of F,,

Fr=Q (F) . 2.2)
u c f d d f c u
i1 P2 il il il i
(a) positive local velocity (b) negative local velocity

FIGURE 1. Description of face flux nodes according to stream direction: the
main purpose of an HRS is to construct a suitable face flux using neighboring
flux values.

Gaskell and Lau [11] introduced the convective boundedness criterion (CBC) for choosing
the face flux Ff 8o as to avoid oscillations. In the normalized formulation, we assume values
of 0 at the upstream node u and 1 at the downstream node d. In order to avoid oscillations, ()
must satisfy the following conditions:

e () must be continuous;
« £,<Q (F) <1, for F, € [0, 1];
o Fy =F,, for F. ¢ [0,1].
There are many choices for the construction of the face flux Ff [28]. In most of our numer-
ical examples, we apply two popular schemes, MINMOD [13] and SMART [11], although in

the Eulerian gas dynamics problem, we used Roe’s method [33]. The fluxes given by MIN-
MOD and SMART are as follows:
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e MINMOD: F} = max (Fc,min (gF %FG + %))
~ - ~ 3~ 3
e SMART: Fy = max (FC, min <3FC, ZFC + 3’ 1))

MINMOD can also be understood from the perspective of a slope limiter [20]-[24], as it
chooses the smaller slope magnitude from the Lax—Wendroff and Beam-Warming methods. If
the two slopes have different signs, the slope reverts to a first-order upwind scheme, whose
limiter is zero. This is why it is called the MINMOD scheme. SMART exhibits better behavior
than MINMOD, because it uses a higher-order scheme, called quadratic upstream interpolation
for convective kinematics (QUICK), for smooth portions of the solution.

Before we calculate the normalized flux Ff, we must determine the direction of the stream
from the sign of the local velocity at the face. If the velocity is not known at a particular point,
we interpolate the local velocity using neighboring points on the face. We can then revert to
the original flux F; at face position f using (2.1),

Ff = F, + Fy(Fy— F,). (2.3)

By finite-differencing two successive face fluxes, we approximate the spatial derivative F},
at the center position, i.e.,
Fii12—Ficqy2
Ax '

F, =~ (2.4)

3. ADAPTIVE WAVELET COLLOCATION METHOD

Generally speaking, there are two adaptive wavelet methods for numerical solutions to
PDEs: adaptive wavelet Galerkin methods and adaptive wavelet collocation methods [16].
Wavelet Galerkin methods solve problems in wavelet space, and involve a complicated treat-
ment of non-linear terms and boundary values. We introduce an adaptive wavelet collocation
method (AWCM) that solves problems in physical space and easily handles non-linear terms
and boundary conditions. AWCM uses lifted interpolating wavelet transforms, and was first
proposed by Vasilyev et al. to solve evolution equations, mainly in the area of fluid mechanics
[41], [42].

We begin with the concept of wavelet decompositions [32, 7]. For a given L? function f, its
wavelet decomposition is defined as

+o00
f = Z aj07k;¢j0ak + Z Z ﬂj,mwj,ma (31)
keZ Jj=JjomeZ

where ¢ and 1 are a scaling function and a wavelet function, respectively. We denote the
dilating and shifting of a function g by the abbreviation g; x(-) = 2//2¢(27 - —k). In equation
(3.1), the first single sum is the rough information contained in f, and the double sum represents
details of f at various resolution levels. We call the detail coefficient 3} ,,, a wavelet coefficient.
It is clear that a denser set of grid points is needed around the region with larger |5, |. If a
field or function is highly localized, we do not need to store huge amounts of information at



ADAPTIVE GRID SIMULATION OF HYPERBOLIC EQUATIONS 283

regions that are far from the position where the fields are concentrated. We only need more
detailed information around the high peak, and some rough information in other regions.

There are many types of scaling functions and wavelets. In this paper, we choose the lifted
interpolating wavelet transform ([37, 41, 42]), because its interpolating property enables us to
treat non-linear terms and boundary conditions very conveniently, and the lifting property of
the scheme provides a better approximation of functions. As we are solving equation (1.1)
in finite intervals, basis functions that are close to the boundary should be changed according
to the contribution of basis functions outside the original interval. We take this idea from
Donoho [7], as did Vasilyev and his co-authors. Near the boundary, the shape of the basis
functions changes, and therefore the notation ¢; ; is not valid. This is not a problem if we
use the concept of second-generation wavelets [37, 41, 42], which discards the properties of
translating and shifting.

3.1. Adaptive grid with wavelet compression. Assume f to be a L? function with resolution
level jqz (€ N) defined on a finite interval, i.e.,

= 0 kB - (3.2)

k€EZ

We consider its wavelet decomposition to be

Jmaz—1
kEZ ]:]mzn meZ

The scaling and wavelet coefficients are calculated by the following normalized forward wavelet
transform (FWT),

1 -
djr = 3 (Cj+1,2k+l — Xl: S—le+1,2k+2l>7 (3.4a)
Cik = Cj+1.2k T Z S_1dj k41, (3.4b)
I

where ¢j . = 2//2a, djr = 2//%8, 1, and the coefficients s_; and §_; are Lagrangian in-
terpolating weights. We involve Lagrangian weights following [37]. Note that the difference
between this wavelet transform and other adaptive multiresolution methods [1, 5, 6, 17] lies in
the lifting term in (3.4b). The non-lifted interpolating wavelets have zero vanishing moments.
This may be dangerous for numerical approximations. Furthermore, the wavelet coefficients
cannot provide information at certain frequency levels while only showing low-pass filter in-
formation [41, 36]. With these facts in mind, we prefer to use the lifted interpolating wavelet
transform for grid adaptation.

In the double sum in (3.3), only a small number of wavelet coefficients are significant if f
is highly localized. We want to compress the information below a certain threshold tolerance,
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e (> 0). Thus, we obtain the following approximated information f,

Jmaz—1
keZ J=Imin meZL
1Bj,m|>€;

where €; = 277/2¢, Because ¥ is bounded and compactly supported, it is easy to estimate the
compression errof,

1f = felloo < Ce, (3.6)

where C is a constant.

3.2. Calculation of the spatial derivatives on the adaptive grid. When we calculate the
spatial derivatives at a point on the adaptive grid, we need to determine the corresponding
resolution level of that point and interpolate those neighboring points that are missing because
of the compression. For an adaptive grid G, the level of the point P is defined as

Lev(P) = jmaz — loga(dist(P, P')/Ax),

where Az is the finest mesh size. We can then approximate f locally in the neighborhood of
P by

f= Z ALev(P) kP Lev(P) k> in some neighborhood of P. (3.7)
keZ

We then differentiate the scaling function representation (3.7) of f at point P to approximate
the spatial derivative f, at P. This works well for problems with smooth functions. However,
it is not sufficient to use only scaling function derivatives for those functions that contain dis-
continuities. In this paper, we use an HRS at those points with the highest resolution level,
Jmaz- At other points, we simply differentiate the scaling function. Of course, the range of
points at which the HRS is used can be adjusted. It is clear that the computational burden will
become heavier if the HRS is used at more points. Our experience shows that it is sufficient to
use HRS only at points with the maximum level ;4.

4. ADAPTIVE GRID METHOD FOR CONSERVATION LAWS

In this section, we will discuss the proposed algorithm. We begin with an FWT of the
initial wave, and compress away unimportant information using a given threshold value (> 0).
After compression, we obtain a much lighter grid. Note that some points in the adaptive grid
with low resolution levels may become important with time if the propagating singularities
approach. Therefore, in each time step, we should extend the adjacent zone [41] of every
surviving grid point correspondingly. For spatial differentiation, we also need the values at
those points neighboring an adaptive grid point, if they are missing due to the compression.
We only perform FWT on a fully dense grid in the first time step. After this point, FWT is
applied on the adaptive grid. In order to perform FWT, some neighboring point values may
need to be interpolated if they are missing. We extend all these missing points into the adaptive
grid, and finally perform an inverse wavelet transform (IWT) to reconstruct the physical values.
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This completes the preparations for the spatial calculation on the adaptive grid, as discussed in
the previous section.

When the approximate spatial derivatives are obtained, we perform a time integration of the
wave using a total variation diminishing (TVD) Runge—Kutta method [34]. We now present
the second- and third-order TVD Runge—Kutta methods used in the numerical tests. Assume
that we want to integrate an ODE u; = L(u), where L is a differential operator.

e Second-order TVD-RK:

ut) = u" + AtL(u"),

e Third-order TVD-RK:
uM = u" + AtL(u™),

3 1 1
@ — 2 2@ L AL (W
u Y +4u +4 tL(u'),

1 2 2
u = gu" + gu@) + gAtL(u(Q)).
We summarize the proposed algorithm as follows.

The Algorithm: given u" at time step n and the corresponding adaptive grid mask G",

(1) perform an FWT of u™ at G",

(2) extend G" for computation of the next time step, n + 1,

(3) perform IWT to reconstruct physical values,

(4) calculate spatial derivatives (using HRS at points with level j,,42),
(5) use TVD Runge—Kautta time integration to update u" to "+,

(6) if n < Np: n=n+ 1, goto step 1; else: stop.

5. NUMERICAL EXAMPLES

In this section, we present the results of several numerical experiments using the linear ad-
vection equation, Burgers’ equation, and Euler gas dynamics problems. For the first two equa-
tions, we applied both continuous and discontinuous initial conditions. For the Euler systems,
we tested our algorithm with a well-known initial condition given by Sod [35]. In order to ob-
tain well-compressed but highly accurate results, we must be careful in our choice of threshold
value €. A large threshold value makes the computation faster at the expense of accuracy, and
vice versa. Our choice of threshold ¢ in the experiments varied from 10~% to 1075, We used
cp to denote the compression percentage of the adaptive grid, i.e.,

_ cardinality of adaptive grid points

cp = x 100%.

cardinality of full grid points



286 H. LI AND M. KANG

5.1. Linear advection equation. Our first numerical experiment considers the simplest case,
the linear advection equation

ur + uz =0, in €. 5.1

We solved (5.1) with two types of initial condition. One is a highly localized Gaussian peak,
which is continuous, and the other is a discontinuous wave. The boundary conditions in both
examples were the zero Neumann conditions, du/0n = 0 at J€2. We are aware that this is an
approximation in the case of the Gaussian peak example, but we ignore this influence from the
boundary to the propagating peak.

5.1.1. Highly localized Gaussian peak as the initial condition. In this example, the compu-
tational domain 2 was (—0.5,0.5), and the initial condition was a Gaussian pulse u(x,0) =
exp (—3200(z + 0.4)?) in Q. In this problem, as the Gaussian pulse is continuous even though
itis “steep,” we did not use an HRS to compute spatial derivatives anywhere. We used the scal-
ing function-based finite-difference scheme, as in AWCM [41]. The adaptive parameters in this
test were jmaz = 12, jmin = 3, and € = 1075, Figure 2 shows the evolution of the numerical
solution and the numerical grid. We can observe that the numerical grid points of finer levels
follow the peak region as the peak propagates to the right.

5.1.2. Discontinuous initial condition. In this experiment, the computational domain 2 =
(—0.5,0.5), and the initial condition was a discontinuous step function given by:

1.0, if x <0, .
u(z,0) = { —0.5, otherwise in £

For this problem, we used a hybrid differentiation for the spatial derivatives. The adaptive
parameters Were jiar = 12, jmin = 3, and € = 1076, Figure 3 shows the evolution of the
wave and the adaptive numerical grid.

5.2. Burgers’ equation. Burgers’ equation can be written as:
up + vty = 0, in Q=(-0.5,0.5). (5.2)

Unlike the linear wave equation, the shape of the solution to Burgers’ equation changes
during its evolution, because the local velocities are not constant. This creates a new singularity,
even if the initial wave is continuous. Therefore, for Burgers’ equation, we always use a hybrid
differentiation consisting of an HRS and scaling function-based finite-difference scheme. We
also test two cases for Burgers’ equation. One is a continuous initial condition, and the other is
a discontinuous initial condition.

5.2.1. Sine functions as the initial condition. We applied a continuous initial condition com-
posed of sine functions,

u(z,0) = sin(27(z + 0.5)) + sin(7(z + 0.5))/3, in Q.

The boundary condition in this test problem was the zero Dirichlet condition. We set jy,q: =
10, jimin = 3,and € = 1074,
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FIGURE 2. Evolution of linear advection equation: a Gaussian peak.

In the beginning, before the shock was created, the numerical grids were coarse. Therefore,
the spatial derivatives were obtained by finite-difference scheme. However, the steep part of the
domain became steeper and converted into a shock. After this, HRS was used to approximate
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FIGURE 3. Evolution of linear advection equation: a discontinuous wave.

the spatial derivatives at the points around the shock region. We can see that the levels of grid
points around the shock region reach the maximum (see Figure 4). If we tested this equation
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with an initial condition composed only of a sine function with a single frequency,

observe that the position of the newly created shock is fixed at its origin.
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FIGURE 4. Numerical solution of Burgers’ equation: sine functions as initial condition.
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5.2.2. Riemann problem. For the discontinuous case, we tested a Riemann problem:

0 1, z <0, o

u,0) = { -05, x>0,

with the boundary condition du/dz = 0. In this example, we considered the function before
the discontinuity reached the right boundary. Our adaptive parameters in this problem were
Jmaz = 12, jmin = 3, and € = 107°. The evolution of the wave and its adaptive grid is plotted
in Figure 5.

5.3. Euler conservation laws. We now consider the system:

a7 d g
orl R R pu?+p | =0,
E T\ w(E+p)
where
p : density
u : velocity
E : total energy
p : pressure
and p = (v — 1)(E — pu?/2) (in air, v = 1.4).
We solve a Riemann problem of this system:
(102.5), z<0,

Eli—n =
(0 pu B)li=o {(0.12500.25), )

In this example, we applied Roe’s scheme [33] for shock computations. We adapted the
grid according to the wavelet decomposition of the density p at each time step. The adaptive
parameters Were jimaz = 12, jmin = 3, and € = 1074, Figure 6 shows the evolution of density
with the corresponding adaptive grid.

6. CONCLUSIONS

In this paper, we tested an adaptive grid method for shock computations in one-dimensional
hyperbolic conservation laws by hybridizing HRS and AWCM. The effectiveness of the pro-
posed method was demonstrated by several numerical experiments that exhibited high com-
pression rates for the grid points. We used a wavelet representation for both grid adaptation
and discretization of the spatial derivatives at smooth points. The computation time of the al-
gorithm is proportional to the number of surviving grid points as time evolves. The higher the
compression rate of adaptive grid points, the faster the method. This method is suitable for
simulating highly localized problems.
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FIGURE 5. Numerical solution of Burgers’ equation: discontinuous initial condition.
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