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ASYMPTOTIC STUDY OF MIXED ROTATING
MHD SYSTEM

Ridha Selmi

Abstract. Asymptotic behavior of three-dimensional mixed, periodic
and rotating magnetohydrodynamic system is investigated as the Rossby
number goes to zero. The system presents the difficulty to be singular
and mixed, that is hyperbolic in the vertical direction and parabolic in
the horizontal one. The divergence free condition and the spectral prop-
erties of the penalization operator are crucial in the proofs. The main
tools are the energy method, the Schochet’s method and products laws
in anisotropic Sobolev spaces.

1. Introduction

In this paper, we deal with the asymptotic study of the following incom-
pressible, rotating and anisotropic magnetohydrodynamic model denoted by
(MHDε):




∂tu− ν∆hu + u · ∇u− curl b× b +
1
ε
curl b× e2 +

1
ε
u× e3 = −∇p in R+ × T3

∂tb− η∆hb + u · ∇b− b · ∇u +
1
ε
curl (u× e2) = 0 in R+ × T3

div u = 0 in R+ × T3

div b = 0 in R+ × T3

(u, b)|t=0 = (u0, b0) in T3,

where the velocity field u, the induced magnetic perturbation b and the pressure
p are unknown functions of time t and space variable x = (x1, x2, x3) = (xh, x3),
the torus T3 denotes the unit periodic box in R3 defined by

T3 := Π3
j=1 R/Z,

e2 and e3 are the second and the third vector of the Cartesian coordinate
system, ν and η designate respectively the dynamic viscosity and the magnetic
diffusivity and ε is the Rossby number destined to tend to zero and defined
as the ratio between the fluid’s typical velocity to the earth rotation velocity
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around the axis e3. Here, ∆h denotes the horizontal Laplace operator given by
∆h = ∂2

1 + ∂2
2 .

About physical motivation, as it is stated in [3], MHD systems model the
magnetohydrodynamic flow in the Earth’s core which is believed to support
a self exited dynamo process generating the Earth’s magnetic field. However,
the system (MHDε) we are considering in this paper is just a mathematical
model. As it is detailed in [3, 4], MHD systems are a coupling between fluid
equations and Maxwell’s equations where the electrical field can be expressed
as a function of the magnetic one via the induction equation.

Applying P, the L2(T3)-orthogonal projection onto divergence free vector
fields, to the first equation of (MHDε), one sees that U = (u, b) satisfies the
following abstract system:

(Sε)





∂tU + Q(U,U) + a2(D)U + Lε(U) = 0 in R+ × T3

div u = 0 in R+ × T3

div b = 0 in R+ × T3

U |t=0 = U0 in T3,

where, after simplification [1], the quadratic term Q is defined by

Q(U,U) =
( P(u · ∇u)− P(b · ∇b)

u · ∇b− b · ∇u

)
,

the viscous term is
a2(D)U = (−ν∆hu,−η∆hb)

and the linear perturbation Lε is given by

Lε(U) =
1
ε
L(U) =

1
ε

( ∂2b + P(u× e3)
∂2u

)
.

We note that Lε is a skew-symmetric linear operator. This skew-symmetry
is an important property for several reasons. Indeed, the singular perturba-
tion disappears while using energy methods in the proof of the existence and
uniqueness results. Moreover, such skew-symmetry is a necessary condition to
apply the Schochet’s method, a fact which will be detailed below.

To announce the mathematical results, we begin by introducing a kind of
functional spaces which are well suited for anisotropic systems such as (MHDε).
For any real number s and s′ the anisotropic Sobolev space Hs,s′(T3) is the
space with Sobolev regularity Hs in xh = (x1, x2) and Hs′ in x3. That is the
tempered distributions f satisfying

‖f‖Hs,s′ := ‖(1 + |kh|2) s
2 (1 + |k3|2) s′

2 F(f)‖L2 < ∞,

where F designates the Fourier transform and kh = (k1, k2).
As in our previous work ([2]), we prove the following theorem:

Theorem 1. Let s > 1
2 be a real number and U0 = (u0, b0) ∈ H0,s(T3), such

that div u0 = 0 and div b0 = 0. There exists a positive time T such that for all
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ε > 0, there exists a unique solution Uε of (Sε) satisfying Uε ∈ C0
T (H0,s(T3))

and ∇hUε ∈ L2
T (H0,s(T3)).

Moreover, for all t ≤ T , Uε satisfies the following energy estimate:

(1) ‖Uε(t, ·)‖2H0,s(T3) + min(ν, η)
∫ t

0

‖∇hUε(τ, ·)‖2H0,s(T3)dτ ≤ ‖U0‖2H0,s(T3).

Furthermore, there exists a constant c such that if

‖U0‖H0,s(T3) ≤ c min(ν, η),

then the solution is global.

The proof is almost similar to the ones given in [2]. In fact, Lemma 1 and
Lemma 4 stated there in the case of R3, still apply in the case of the tore T3

and are the bases of the existence and uniqueness results. Especially, about
Lemma 4, we note the basic fact that if any integral converges in +∞, its
corresponding series has the same fate.

The aim of this work is to focus on the asymptotic behavior of the unique
solution, as the Rossby number ε goes to zero. To do so, let (Uε) be the family
of strong solutions of the system (Sε) with initial data U0 given by Theorem 1.
It is clear that when trying to take the limit when ε → 0, the classical proofs (for
example [11], [14]) no longer work because (∂tU

ε) is not bounded with respect
to ε. To overcome this difficulty, we use the method introduced by S. Schochet
in [13]. This can be done since the penalization operator Lε is skew symmetric.
Such procedure consists in filtering the system by the group L(t) associated to
Lε. It allows to obtain a new system called, in the literature, a filtered system,
where the penalized part disappears. Thus, it will be possible to look, in the
sense of distributions, for the limit system satisfied by the eventual limit V of
the filtered solution V ε given by V ε := L(− t

ε )Uε. Namely, we establish the
following convergence result:

Theorem 2. Let s > 1
2 and U0 = (u0, b0) ∈ H0,s(T3) such that div u0 =

div b0 = 0. Let Uε = (uε, bε) be the family of solutions of (Sε) given by The-
orem 1. Then, for all s′ < s, the family V ε = (vε, cε) converges strongly in
C0

T (H0,s′) to the solution V of the following limit system:

(LS)





∂tV + Q0(V, V ) + a2(D)V = 0 in [0, T ]× T3

div v = 0 in [0, T ]× T3

div c = 0 in [0, T ]× T3

V |t=0 = U0 = (u0, b0) in T3,

where we set, in the sense of distributions,

Q0(V, V ) := lim
ε→0

Qε(V, V ).

Here, since we will focus on justifying a local in time convergence result, T
is any uniform time of existence of both systems (Sε) and (LS).

By taking the limit as ε → 0, we want to approximate the solution of (MHDε)
when ε is very small with the solution V of (LS). According to [4, 5], this limit
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is relevant to the Earth’s core which is believed to be in the asymptotic regime
of the small Rossby number (ε ∼ 10−7), so that this approximation works well.

Contrarily to our previous work ([12]) and references therein, where a large
Sobolev exponent was needed to establish convergence results, the main con-
vergence result here is proved in the space H0,s′ for any s′ < s. This is done
thanks to the divergence free condition and some anisotropic product laws in-
troduced in [10]. In fact, the system is Euler type in the vertical direction so
such condition allows us to fill the gap in the regularity caused by the lack of
the operator ∂2

3 . The fundamental idea is to use ∂3U3 = −divh Uh, and to infer
that the solution is more regular, with respect to the vertical variable x3, then
expected. Such regularity is disposed in the system by the horizontal diffu-
sion process. Certainly, this needs some extra technicalities like commutator
inequalities and properties of the projection P. The proof uses energy method
and estimations are done in H0,− 1

2 because of the presence of terms like w3∂3vj

for 1 ≤ j ≤ 2. Also, some decomposition into high frequencies part and low
frequencies part of the forcing term is dictated. Indeed, those terms converge
weakly to zero but not strongly; a matter which is undesirable while applying
Gronwall Lemma.

2. Convergence result

2.1. Study of the limit system

We begin by considering the following “wave equation”:

(2)





∂tU + L(U) = 0 in R+ × T3

div u = 0 in R+ × T3

div b = 0 in R+ × T3

U(0) = U0 in T3,

where L is the operator defined by
(

∂2b + P(u× e3)
∂2u

)
.

Denote by L its associate evolution equation group. L(t) is explicitly given by
(7) and formally

L(t) = exp(−tL).
Moreover, using the skew-symmetry of L, classical L2-scalar product compu-
tation leads to

tL(t) = L(−t).
For the above “wave equation” system, we prove the following lemma:

Lemma 1. The above system has a global solution denoted by

U(t) = L(t)U0,

such that for all s and s′ ∈ R, and for all U0 in Hs,s′(T3),

(3) ‖L(t)U0‖Hs,s′ (T3) = ‖U0‖Hs,s′ (T3) = ‖tL(t)U0‖Hs,s′ (T3).
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As it will appear in the proof, equality (3) is due to the skew-symmetry
of the operator L and it is the main tools for the proof of our convergence
result. In fact, thanks to this equality estimates on anisotropic Sobolev norms
of filtered solution V ε applies for the anisotropic Sobolev norms of Uε. An
elementary model is the following: Consider the differential equation

(E) :
du

dt
= f(u) +

i

ε
u,

multiplying (E) by e−
i
ε t and putting v = e−

i
ε tu, then (E) will be equivalent to

(E′) :
dv

dt
= e−

i
ε tf(e

i
ε tv).

In this way, we note the two important facts: the first is that the singular
perturbation which prevent us to take the limit directly in the system will
disappear; the second is that |v| = |u| so that estimations obtained for |v|
holds for |u|.
Proof of Lemma 1. The system (2) is equivalent to

(4)





∂tu + P(u× e3) + ∂2b = 0 in R+ × T3

∂tb + ∂2u = 0 in R+ × T3

div u = 0 in R+ × T3

div b = 0 in R+ × T3

U(0) = U0 in T3.

If we apply the operator “curl” to the first equation, then by the partial Fourier
transform with respect to the space variable, we get

(5)





∂tiM(k)û(t, k) + ik3û(t, k)− k2M(k)b̂(t, k) = 0 in R+ × Z3

∂tb̂(t, k) + ik2û(t, k) in R+ × Z3

k · û = 0 in R+ × Z3

k · b̂ = 0 in R+ × Z3

Û(0, k) = Û0(k) in Z3,

where

M(k) =




0 −k3 k2

k3 0 −k1

−k2 k1 0


 .

We recall that the eigenvalues of M(k) are ±i|k| and 0. The corresponding
eigenvectors are ρ(k)± and ρ(k)0 = k

|k| which is not divergence free. Vectors
ρ(k)± are respectively given by

ρ(k)+ =





√
2

2

(
1, − i

k3

|k3| , 0
)

if k2
1 + k2

2 = 0,
(
α(k), β(k), γ(k)

)
(|α(k)|2 + |β(k)|2 + |γ(k)|2)

1
2

if k2
1 + k2

2 6= 0,
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where
(
α(k), β(k), γ(k)

)
=

(− k1k3 − i k2 |k|, −k2k3 + i k1|k|, k2
1 + k2

2

)

and
ρ(k)− = ρ(k)+.

In this eigenbase, the velocity field u and the magnetic perturbation b can be
expressed as follows:

û(t, k) = û+(t, k)ρ(k)+ + û−(t, k)ρ(k)−

and
b̂(t, k) = b̂+(t, k)ρ(k)+ + b̂−(t, k)ρ(k)−.

In term of variables û+, û−, b̂+ and b̂−, system (5) splits into four equations
summarized in the following system

(6)
{

∂tÛ
±(t, k) + A±(k)Û±(t, k) = 0 in R+ × T3

Û±(0, k) = (û±(0, k), b̂±(0, k)) in T3,

where
Û± = (û±, b̂±)

and

A±(k) =


 ∓i

k3

|k| ±ik2

±ik2 0


 .

Here we note that
û0(t, k) = 〈û(t, k)|ρ(k)0〉 = 0

because div u = 0 which reads in frequency space

k1û1 + k2û2 + k3û3 = 0

and so does b̂0(t, k). Let
A = diag(A+, A−).

The eigenvalues of A are ω1, ω2, ω3 and ω4 defined by

ω1(k) =
i

2|k|
(
−k3 +

√
k2
3 + 4k2

2|k|2
)

,

ω2(k) =
i

2|k|
(
−k3 −

√
k2
3 + 4k2

2|k|2
)

,

ω3(k) =
i

2|k|
(

k3 +
√

k2
3 + 4k2

2|k|2
)

and

ω4(k) =
i

2|k|
(

k3 −
√

k2
3 + 4k2

2|k|2
)

.
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If we denote by %1, %2, %3 and %4 the corresponding eigenvectors, U will be
explicitly given by

F(U)(t, k) =
∑

1≤j≤4

exp
(
ωj(k)t

)〈F(U)(0, k)|%j(k)〉%j(k).

Then,

(7)
U(t, k) = F−1

( ∑

1≤j≤4

exp
(
ωj(k)t

)〈F(U0)(k)|%j(k)〉%j(k)
)

= L(t)U0. ¤

For our case, system (Sε) deals with the operator

Lε(U) =
1
ε
L(U) =

1
ε

( ∂2b + P(u× e3)
∂2u

)
.

So, if we define V ε by

V ε(t, x) := L
(
− t

ε

)
Uε(t, x) = (vε, cε),

then
V ε(0, x) = Uε(0, x) = U0

and

(8) F(
V ε

)
(t, k) =

∑

1≤j≤4

exp
(− ωj(k)

t

ε

)〈F(U0)(k)|%j(k)〉%j(k).

V ε satisfies the following system:

(S̃ε)





∂tV
ε + Qε(V ε, V ε) + a2(D)V ε = 0 in R+ = ×T3

div vε = 0 in R+ × T3

div cε = 0 in R+ × T3

V ε|t=0 = U0 = (u0, b0) in T3,

where the filtered quadratic form Qε is given by

Qε(V ε, V ε) = L
(
− t

ε

)
PQε

(
L

( t

ε

)
V ε,L

( t

ε

)
V ε

)
.

In Fourier variables,

2F
(
Qε(V ε

1 , V ε
2 )

)
(n) =

(
a11

a21

)
,

where

a11 =
∑

1≤j,j′,j′′≤4

∑

k+m=n

e−i t
ε ωj,j′,j′′

k,m,n P (n)〈(vj′
1 (k)mvj′′

2 (m)
)|%j(n)〉%j(n)

+
∑

1≤j,j′,j′′≤4

∑

k+m=n

e−i t
ε ωj,j′,j′′

k,m,n P (n)〈(vj′
2 (k)mvj′′

1 (m)
)|%j(n)〉%j(n)

−
∑

1≤j,j′,j′′≤4

∑

k+m=n

e−i t
ε ωj,j′,j′′

k,m,n P (n)〈(cj′
1 (k)mcj′′

2 (m)
)|%j(n)〉%j(n)
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−
∑

1≤j,j′,j′′≤4

∑

k+m=n

e−i t
ε ωj,j′,j′′

k,m,n P (n)〈(cj′
2 (k)mcj′′

1 (m)
)|%j(n)〉%j(n)

and

a21 =
∑

1≤j,j′,j′′≤4

∑

k+m=n

e−i t
ε ωj,j′,j′′

k,m,n 〈(vj′
1 (k)mcj′′

1 (m)
)|%j(n)〉%j(n)

+
∑

1≤j,j′,j′′≤4

∑

k+m=n

e−i t
ε ωj,j′,j′′

k,m,n 〈(vj′
2 (k)mcj′′

2 (m)
)|%j(n)〉%j(n)

−
∑

1≤j,j′,j′′≤4

∑

k+m=n

e−i t
ε ωj,j′,j′′

k,m,n 〈(cj′
1 (k)mvj′′

1 (m)
)|%j(n)〉%j(n)

−
∑

1≤j,j′,j′′≤4

∑

k+m=n

e−i t
ε ωj,j′,j′′

k,m,n 〈(cj′
2 (k)mvj′′

2 (m)
)|%j(n)〉%j(n).

In the expression above, we have denoted

ωj,j′,j′′

k,m,n := ωj′(k) + ωj′′(m)− ωj(n),

P (n) := Id− 1
n2

1 + n2
2 + n2

3




n2
1 n1n2 n1n3

n2n1 n2
2 n2n3

n3n1 n3n2 n2
3




and for any vector X,

xj := 〈F(X)(n)|%j(n)〉%j(n).

The filtering procedure presents the advantage that the singular perturbation
disappears. So, contrarily to ∂tU

ε in system (Sε), ∂tV
ε in system (S̃ε) is

bonded in L∞([0, T ],H−N (T3)) for some sufficiently large integer N . Conse-
quently, classical compactness argument leads to Uε → U in C([0, T ],Hs,s′(T3))
for all s < 0 and s′ < 1

2 .
As in [8], one uses the stationary phase theorem to show that, in D′,

lim
ε→0

Qε(V ε, V ε) = Q0(V, V ).

Here Q0 is defined by

F
(
Q0(V, V )

)
(n) =

(
a0
11

a0
21

)
,

where

a0
11 =

∑

1≤j,j′,j′′≤4

∑
k+m=n

ω
j,j′,j′′
k,m,n

=0

P (n)〈(vj′(k)mvj′′(m)
)|%j(n)〉%j(n)

−
∑

1≤j,j′,j′′≤4

∑
k+m=n

ω
j,j′,j′′
k,m,n

=0

P (n)〈(cj′(k)mcj′′(m)
)|%j(n)〉%j(n)
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and

a0
12 =

∑

1≤j,j′,j′′≤4

∑
k+m=n

ω
j,j′,j′′
k,m,n

=0

〈(vj′(k)mcj′′(m)
)|%j(n)〉%j(n)

−
∑

1≤j,j′,j′′≤4

∑
k+m=n

ω
j,j′,j′′
k,m,n

=0

〈(cj′(k)mvj′′(m)
)|%j(n)〉%j(n).

When ε goes to 0, one obtains formally the following limit system:

(LS)





∂tV + Q0(V, V ) + a2(D)V = 0 in [0, T ]× T3

div v = 0 in [0, T ]× T3

div c = 0 in [0, T ]× T3

V |t=0 = U0 = (u0, b0) in T3.

The study of (LS) is given in the following theorem:

Theorem 3. Let s > 1
2 be a real number and U0 = (u0, b0) ∈ H0,s(T3) be

a pair of divergence-free vector fields. Then, there exist a time T > 0 and a
unique solution V = (v, c) of (LS) satisfying

V ∈ L∞T (H0,s(T3)) ∩ L2
T (H1,s(T3)).

Moreover, V satisfies the following energy estimate

(9)
‖V (t, .)‖2H0,s(T3) + ν

∫ t

0

‖∇hv(τ, .)‖2H0,s(T3)dτ

+ η

∫ t

0

‖∇hc(τ, .)‖2H0,s(T3)dτ ≤ ‖U0‖2H0,s(T3).

Furthermore, there exists a constant c such that if

‖U0‖H0,s(T3) ≤ c min(ν, η),

then the solution is global.

The proof follows the lines of the one of Theorem 1.

Remark 1. Note that the time T appearing in Theorem 3 can be different from
the one of Theorem 1. Note, also, that we are not dealing, here, with the
possible relation between the life span of the solution of the system (Sε) and
the life span of the solution of the corresponding limit system (LS). But since
we are proving a local in time convergence result, any uniform time of existence
of both systems, denoted also T , is suitable for our purpose.

2.2. Proof of Theorem 2

Let
W ε = V ε − V = (vε − v, cε − c) = (W ε

1 , W ε
2 ).
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W ε satisfies

(10)





∂tW
ε + Qε(W ε,W ε + 2V ) + a2(D)W ε = Rε

osc in [0, T ]× T3

divW ε
1 = 0 in [0, T ]× T3

divW ε
2 = 0 in [0, T ]× T3

W ε|t=0 = (0, 0) in T3,

where
Rε

osc = Q0(V, V )−Qε(V, V ),

that is the part of Qε(V, V ) fulfilling the condition ωj,j′,j′′

k,m,n 6= 0. In Fourier
variables, we have

F
(
Rε

osc

)
(n) =

(
a11osc

a21osc

)
,

where

a11osc =
∑

1≤j,j′,j′′≤4

∑
k+m=n

ω
j,j′,j′′
k,m,n

6=0

e−i t
ε ωj,j′,j′′

k,m,n P (n)〈(vj′(k)mvj′′(m)
)|%j(n)〉%j(n)

−
∑

1≤j,j′,j′′≤4

∑
k+m=n

ω
j,j′,j′′
k,m,n

6=0

e−i t
ε ωj,j′,j′′

k,m,n P (n)〈(cj′(k)mcj′′(m)
)|%j(n)〉%j(n)

and

a21osc =
∑

1≤j,j′,j′′≤4

∑
k+m=n

ω
j,j′,j′′
k,m,n

6=0

e−i t
ε ωj,j′,j′′

k,m,n 〈(vj′(k)mcj′′(m)
)|%j(n)〉%j(n)

−
∑

1≤j,j′,j′′≤4

∑
k+m=n

ω
j,j′,j′′
k,m,n

6=0

e−i t
ε ωj,j′,j′′

k,m,n 〈(cj′(k)mvj′′(m)
)|%j(n)〉%j(n).

The right hand side of system (10) is an oscillating term which converges weakly
to zero but not strongly. The method we use here to deal with Rε

osc is inspired
from the ideas introduced by S. Schochet in [13]. It consists in dividing Rε

osc into
high frequency term Rε,N

osc and low frequency term Rε
osc,N defined respectively,

for any arbitrary cut-off integer N ≥ 1, by

Rε,N
osc = Rε

osc −Rε
osc,N

and
F

(
Rε

osc,N

)
(t, n) = 1{|n|≤N}F(Rε

osc;|k|,|m|≤N )(t, n).

Here, Rε
osc;|k|,|m|≤N is the part of Rε

osc for which the variables k and m are such
that |k|, |m| ≤ N . Explicitly, we have

F
(
Rε

osc,N

)
(n) =

(
a11osc,N

a21osc,N

)
,
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where

a11osc,N

=
∑

1≤j,j′,j′′≤4

1{|n|≤N}
∑

k+m=n

ω
j,j′,j′′
k,m,n

6=0

|k|,|m|≤N

e−i t
ε ωj,j′,j′′

k,m,n P (n)〈(vj′(k)mvj′′(m)
)|%j(n)〉%j(n)

−
∑

1≤j,j′,j′′≤4

1{|n|≤N}
∑

k+m=n

ω
j,j′,j′′
k,m,n

6=0

|k|,|m|≤N

e−i t
ε ωj,j′,j′′

k,m,n P (n)〈(cj′(k)mcj′′(m)
)|%j(n)〉%j(n)

and

a21osc,N

=
∑

1≤j,j′,j′′≤4

1{|n|≤N}
∑

k+m=n

ω
j,j′,j′′
k,m,n

6=0

|k|,|m|≤N

e−i t
ε ωj,j′,j′′

k,m,n 〈(vj′(k)mcj′′(m)
)|%j(n)〉%j(n)

−
∑

1≤j,j′,j′′≤4

1{|n|≤N}
∑

k+m=n

ω
j,j′,j′′
k,m,n

6=0

|k|,|m|≤N

e−i t
ε ωj,j′,j′′

k,m,n 〈(cj′(k)mvj′′(m)
)|%j(n)〉%j(n).

To absorb the low frequency term, we adopt the following change of function:

(11) ϕε
N = W ε + εR̃ε

osc,N .

In term of Fourier variables, R̃ε
osc,N is defined by

F
(
R̃ε

osc,N

)
(n) =

(
ã11osc,N

ã21osc,N

)
,

where

ã11osc,N

=
∑

1≤j,j′,j′′≤4

1{|n|≤N}
∑

k+m=n

ω
j,j′,j′′
k,m,n

6=0

|k|,|m|≤N

e−i t
ε ωj,j′,j′′

k,m,n

iωj,j′,j′′
k,m,n

P (n)〈(vj′(k)mvj′′(m)
)|%j(n)〉%j(n)

−
∑

1≤j,j′,j′′≤4

1{|n|≤N}
∑

k+m=n

ω
j,j′,j′′
k,m,n

6=0

|k|,|m|≤N

e−i t
ε ωj,j′,j′′

k,m,n

iωj,j′,j′′
k,m,n

P (n)〈(cj′(k)mcj′′(m)
)|%j(n)〉%j(n)

and
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ã21osc,N

=
∑

1≤j,j′,j′′≤4

1{|n|≤N}
∑

k+m=n

ω
j,j′,j′′
k,m,n

6=0

|k|,|m|≤N

e−i t
ε ωj,j′,j′′

k,m,n

iωj,j′,j′′
k,m,n

〈(vj′(k)mcj′′(m)
)|%j(n)〉%j(n)

−
∑

1≤j,j′,j′′≤4

1{|n|≤N}
∑

k+m=n

ω
j,j′,j′′
k,m,n

6=0

|k|,|m|≤N

e−i t
ε ωj,j′,j′′

k,m,n

iωj,j′,j′′
k,m,n

〈(cj′(k)mvj′′(m)
)|%j(n)〉%j(n).

The new function ϕε
N satisfies the following equation:

(12) ∂tϕ
ε
N + Qε(ϕε

N , ϕε
N − 2εR̃ε

osc,N + 2V ) + a2(D)ϕε
N = Rε,N

osc + εrε
osc,N ,

where

εrε
osc,N = −Qε(εR̃ε

osc,N , εR̃ε
osc,N − 2V )− εa2(D)(R̃ε

osc,N ) + εR̃ε,t
osc,N .

In Fourier variables, R̃ε,t
osc,N is explicitly given by

F
(
R̃ε,t

osc,N

)
(n) =

(
ãt
11osc,N

ãt
21osc,N

)
,

where

ãt
11osc,N

=
∑

1≤j,j′,j′′≤4

1{|n|≤N}
∑

k+m=n

ω
j,j′,j′′
k,m,n

6=0

|k|,|m|≤N

e−i t
ε ωj,j′,j′′

k,m,n

iωj,j′,j′′
k,m,n

∂t

[
P (n)〈(vj′(k)mvj′′(m)

)|%j(n)〉
]
%j(n)

−
∑

1≤j,j′,j′′≤4

1{|n|≤N}
∑

k+m=n

ω
j,j′,j′′
k,m,n

6=0

|k|,|m|≤N

e−i t
ε ωj,j′,j′′

k,m,n

iωj,j′,j′′
k,m,n

∂t

[
P (n)〈(cj′(k)mcj′′(m)

)|%j(n)〉
]
%j(n)

and

ãt
21osc,N

=
∑

1≤j,j′,j′′≤4

1{|n|≤N}
∑

k+m=n

ω
j,j′,j′′
k,m,n

6=0

|k|,|m|≤N

e−i t
ε ωj,j′,j′′

k,m,n

iωj,j′,j′′
k,m,n

∂t

[
〈(vj′(k)mcj′′(m)

)|%j(n)〉
]
%j(n)

−
∑

1≤j,j′,j′′≤4

1{|n|≤N}
∑

k+m=n

ω
j,j′,j′′
k,m,n

6=0

|k|,|m|≤N

e−i t
ε ωj,j′,j′′

k,m,n

iωj,j′,j′′
k,m,n

∂t

[
〈(cj′(k)mvj′′(m)

)|%j(n)〉
]
%j(n).
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We note that the equation satisfied by ϕε
N has the advantage that the low

frequency terms have disappeared up to an ε. Let us denote for any real
number x, by 〈x〉 the quantity (1 + |x|2) 1

2 and by Λ3 the operator defined by

(13) Λ3 = (1 + ∂2
3)

1
2 ,

that is the operator of multiplication by 〈k3〉 in the frequency space. Clearly,
for all real numbers s and s′, Λ3 is an isometry from Hs,s′ to Hs,s′−1.
Taking the scalar product in H0,− 1

2 (T3), equation (12) gives

(14)

‖ϕε
N‖20,− 1

2
+ 2ν

∫ t

0

‖∇hϕε
N,1‖20,− 1

2
dτ + 2η

∫ t

0

‖∇hϕε
N,2‖20,− 1

2
dτ

= − 2
∫ t

0

∫

T3
Qε(ϕε

N , ϕε
N − 2εR̃ε

osc,N + 2V )Λ−1
3 ϕε

Ndxdτ

− 2
∫ t

0

∫

T3

(
Rε,N

osc + εrε
osc,N

)
Λ−1

3 ϕε
Ndxdτ.

To estimate the nonlinear part, we note that
∫

T3
Qε(ϕε

N , ϕε
N − 2εR̃ε

osc,N + 2V )Λ−1
3 ϕε

Ndxdτ =
4∑

i=1

Ii,

where

I1 =
∫

T3
L(−t

ε

)
P
[(
L( t

ε

)
(ϕε

N − 2εR̃ε
osc,N + 2V )

)
h
∇h

(
L( t

ε

)
ϕε

N

)]
Λ−1

3 ϕε
Ndx,

I2 =
∫

T3
L(−t

ε

)
P
[(
L( t

ε

)
(ϕε

N − 2εR̃ε
osc,N + 2V )

)
3
∂3

(
L( t

ε

)
ϕε

N

)]
Λ−1

3 ϕε
Ndx,

I3 =
∫

T3
L(−t

ε

)
P
[(
L( t

ε

)
ϕε

N

)
h
∇h

(
L( t

ε

)
(ϕε

N − 2εR̃ε
osc,N + 2V )

)]
Λ−1

3 ϕε
Ndx

and

I4 =
∫

T3
L(−t

ε

)
P
[(
L( t

ε

)
ϕε

N

)
3
∂3

(
L( t

ε

)
(ϕε

N − 2εR̃ε
osc,N + 2V )

)]
Λ−1

3 ϕε
Ndx.

To estimate I1, one uses that L is an isometry and P is a projection to obtain,
by duality, that

|I1| ≤
∥∥∥L

( t

ε

)(
ϕε

N − 2εR̃ε
osc,N + 2V

)
h
∇h

(L( t

ε

)
ϕε

N

)∥∥∥
− 1

2 ,− 1
2

∥∥∥Λ−1
3 ϕε

N

∥∥∥
1
2 , 1

2

.

Before going any farther, we recall the following anisotropic law stated in [10].

Lemma 2. Let s, t < 1, s + t > 0 and s′ > 1
2 . If f belongs to Hs,s′ and g

belongs to Hs,− 1
2 , then fg belongs to Hs+t−1,− 1

2 and there exists a constant C
such that

‖fg‖
Hs+t−1,− 1

2
≤ C‖f‖Hs,s′‖g‖

Ht,− 1
2
.
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Its originality, as said in [10], is to give a product law in anisotropic Sobolev
spaces, where the regularities in the vertical direction are supercritical for one
of the terms and subcritical for the other. Then using Lemma 2, and the fact
that L and Λ3 are both isometries, one deduces that

|I1| ≤ ‖ϕε
N − 2εR̃ε

osc,N + 2V ‖ 1
2 ,s‖ϕε

N‖1,− 1
2
‖ϕε

N‖ 1
2 ,− 1

2
.

Finally, interpolation inequality implies that

(15) |I1| ≤ ‖ϕε
N − 2εR̃ε

osc,N + 2V ‖ 1
2 ,s‖ϕε

N‖
1
2
0,− 1

2
‖ϕε

N‖
3
2
1,− 1

2
.

The same holds for I3, and one has

|I3| ≤
∥∥∥
(
L( t

ε

)
ϕε

N

)
h
∇h

(
L( t

ε

)
(ϕε

N − 2εR̃ε
osc,N + 2V )

)∥∥∥
− 3

4 ,− 1
2

∥∥∥Λ−1
3 ϕε

N

∥∥∥
3
4 , 1

2

≤ C‖(ϕε
N − 2εR̃ε

osc,N + 2V )‖ 1
2 ,s‖ϕε

N‖23
4 ,− 1

2
.

This leads to

(16) |I3| ≤ C‖(ϕε
N − 2εR̃ε

osc,N + 2V )‖ 1
2 ,s‖ϕε

N‖
1
2
0,− 1

2
‖ϕε

N‖
3
2
1,− 1

2
.

To estimate I4, one has by duality that

|I4| ≤
∥∥∥
(
L( t

ε

)
ϕε

N

)
3
∂3

(
L( t

ε

)
(ϕε

N − 2εR̃ε
osc,N + 2V )

)∥∥∥
− 1

2 , 2s−3
4

∥∥∥Λ−1
3 ϕε

N

∥∥∥
1
2 , 3−2s

4

.

To continue investigating I4, we recall the following product law proved in [9]:

Lemma 3. Let s, t < 1, s + t > 0 and s′, t′ < 1
2 , s′ + t′ > 0. If f belongs to

Hs,s′ and g belongs to Ht,t′ , then fg belongs to Hs+t−1,s′+t′− 1
2 and there exists

a constant C such that

‖fg‖
Hs+t−1,s′+t′− 1

2
≤ C‖f‖Hs,s′‖g‖Ht,t′ .

This lemma implies that

|I4| ≤ C‖(ϕε
N )3‖0, 3−2s

4
‖∂3(ϕε

N − 2εR̃ε
osc,N + 2V )‖ 1

2 ,s−1‖ϕε
N‖ 1

2 ,−2s−1
4

.

Without loss of generality, we can assume that s < 1, to obtain

|I4| ≤ C‖(ϕε
N )3‖0, 1

2
‖ϕε

N − 2εR̃ε
osc,N + 2V ‖ 1

2 ,s‖ϕε
N‖ 1

2 ,− 1
2
.

However, since we are working in the framework of divergence free condition,
ϕε

N is also a divergence free vector satisfying

‖(ϕε
N )3‖0, 1

2
≤ ‖ϕε

N‖0,− 1
2

+ ‖∂3ϕ
ε
N,3‖0,− 1

2≤ ‖ϕε
N‖0,− 1

2
+ ‖divh ϕε

N,h‖0,− 1
2≤ ‖ϕε

N‖0,− 1
2

+ ‖ϕε
N‖1,− 1

2
.

By interpolation, we infer that
(17)

|I4| ≤ C‖ϕε
N − 2εR̃ε

osc,N + 2V ‖ 1
2 ,s

(‖ϕε
N‖

3
2
0,− 1

2
‖ϕε

N‖
1
2
1,− 1

2
+ ‖ϕε

N‖
1
2
0,− 1

2
‖ϕε

N‖
3
2
1,− 1

2

)
.
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To estimate I2, we note that

I2 =
∫

T3
L(−t

ε

)
P
[(
L( t

ε

)
(ϕε

N − 2εR̃ε
osc,N + 2V )

)
3
∂3

(
L( t

ε

)
ϕε

N

)]
Λ−1

3 ϕε
N .

Using Parseval’s formula, we have

I2 = (2π)−3
∑

k∈Z
F

(
L(−t

ε

)
P
[(L( t

ε

)
(ϕε

N − 2εR̃ε
osc,N + 2V )

)
3
∂3

(L( t

ε

)
ϕε

N

)])
(k)

×F
(
Λ−1

3 ϕε
N

)
(−k).

According to the definition of Λ3, we have

I2 = (2π)−3
∑

k∈Z
F

(
L(−t

ε

)
P
[(L( t

ε

)
(ϕε

N − 2εR̃ε
osc,N + 2V )

)
3
∂3

(L( t

ε

)
ϕε

N

)])
(k)

× 1
〈k3〉F

(
ϕε

N

)
(−k).

Using the following property of P:

(18) F(Pu) = F(u)− 〈F(u),
k

|k| 〉
k

|k| ,

we can rewrite I2 in the following form:

I2 = (2π)−3
∑

k∈Z

{
F

(
L(−t

ε

)[(L( t

ε

)
(ϕε

N − 2εR̃ε
osc,N + 2V )

)
3
∂3

(L( t

ε

)
ϕε

N

)])
(k)

−〈F
(
L(−t

ε

)[(L( t

ε

)
(ϕε

N − 2εR̃ε
osc,N +2V )

)
3
∂3

(L( t

ε

)
ϕε

N

)])
(k),

k

|k| 〉
k

|k|
} 1
〈k3〉F

(
ϕε

N

)
(−k).

Since

L(
t

ε
)(U)(t, k) = F−1

( ∑

j∈{1,2,3,4}
exp(ωj(k)

t

ε
)〈F(U)(k), %j(k)〉%j(k)

)
,

we can deduce that

F
(
L(−t

ε

)[(L( t

ε

)
(ϕε

N − 2εR̃ε
osc,N + 2V )

)
3
∂3

(L( t

ε

)
ϕε

N

)])
(k)

=
∑

n∈Z

∑

j,j′,j′′
n3 exp

(
ωj,j′,j′′

k−n,n,k

t

ε

)〈(ϕε
N−2εR̃ε

osc,N +2V )j′(k−n)(ϕε
N )j′′(n)|%j(k)〉%j(k).

Using the change of variable (k, n) ↔ (−n,−k), we obtain

I2 = C
∑

j,j′,j′′

∑

n∈Z

∑

k∈Z
exp

(
ωj,j′,j′′

k−n,n,k

t

ε

)( n3

〈k3〉 −
k3

〈n3〉
)
×F

(
ϕε

N

)
(−k)

{
〈(ϕε

N − 2εR̃ε
osc,N + 2V )j′(k − n)(ϕε

N )j′′(n)|%j(k)〉%j(k)−

〈〈(ϕε
N − 2εR̃ε

osc,N + 2V )j′(k − n)(ϕε
N )j′′(n)|%j(k)〉%j(k),

k

|k| 〉
k

|k|
}

.
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We recall the following elementary equality, due to [10]:

n3

〈k3〉 −
k3

〈n3〉 =
n3 − k3

〈k3〉 +
(n3 − k3)k3(n3 + k3)
〈n3〉〈k3〉(〈n3〉+ 〈k3〉) .

It implies that
∣∣∣ n3

〈k3〉 −
k3

〈n3〉
∣∣∣ ≤ |n3 − k3|

( 1
〈n3〉 +

1
〈k3〉

)
.

Then, it follows that

|I2| ≤ C
∑

n∈Z

∑

k∈Z
|n3 − k3|

( 1
〈n3〉 +

1
〈k3〉

)
|F((ϕε

N − 2εR̃ε
osc,N + 2V )3)(k − n)|

× |F(ϕε
N )(n)||F(ϕε

N )(−k)|.

Using again the change of variables (k, n) ↔ (−n,−k), we obtain

|I2| ≤ C
∑

n∈Z

∑

k∈Z

|n3 − k3|
〈k3〉 |F((ϕε

N − 2εR̃ε
osc,N + 2V )3)(k − n)||F(ϕε

N )(n)||F(ϕε
N )(−k)|.

As W , V and ϕε
N are divergence free, we infer that

|I2| ≤ C
∑

n∈Z

∑

k∈Z

( |n1 − k1||F((ϕε
N − 2εR̃ε

osc,N + 2V )1)|
〈k3〉

+
|n2 − k2||F((ϕε

N − 2εR̃ε
osc,N + 2V )2)|

〈k3〉
)

× |F(ϕε
N )(n)||F(ϕε

N )(−k)|.

Let V ′ be the vector fields whose components satisfy

F(V ′
j ) = |F(Vj)|

and so on. It is clear that for any real number s and s′ we have

‖V ′
j ‖s,s′ = ‖Vj‖s,s′ .

Denote |Dj | the operator of multiplication by |ξj | and using Parseval’s formula
we deduce that

|I2| ≤ C
∑

k∈Z

(
|D1|(ϕε

N−2εR̃ε
osc,N +2V )′1+|D2|(ϕε

N−2εR̃ε
osc,N +2V )′2

)
ϕ′εNΛ3ϕ

′ε
N .

Since |Dj |V ′
j and ∂jV

′
j has the same Hs,s′ norm, then as for I3

(19) |I2| ≤ C‖ϕε
N − 2εR̃ε

osc,N + 2V ‖ 1
2 ,s‖ϕε

N‖
1
2
0,− 1

2
‖ϕε

N‖
3
2
1,− 1

2
.
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Using estimations (15), (16), (17) and (19), equation (14) becomes

(20)

‖ϕε
N‖20,− 1

2
+ 2ν

∫ t

0

‖∇hϕε
N,1‖20,− 1

2
dτ + 2η

∫ t

0

‖∇hϕε
N,2‖20,− 1

2
dτ

≤ C

∫ t

0

‖ϕε
N‖

3
2
1,− 1

2
‖ϕε

N‖
1
2
0,− 1

2
‖ϕε

N − 2εR̃ε
osc,N + 2V ‖ 1

2 ,sdτ

+ C

∫ t

0

‖ϕε
N‖

1
2
1,− 1

2
‖ϕε

N‖
3
2
0,− 1

2
‖ϕε

N − 2εR̃ε
osc,N + 2V ‖ 1

2 ,sdτ

+ C

∫ t

0

‖Rε,N
osc + εrε

osc,N‖20,− 1
2
dτ + C

∫ t

0

‖ϕε
N‖20,− 1

2
dτdτ.

Using that ab ≤ 1
4a4 + 3

4a
4
3 for suitable choice of a and b, we deduce that

(21)

‖ϕε
N‖20,− 1

2
+ 2ν

∫ t

0

‖∇hϕε
N,1‖20,− 1

2
dτ + 2η

∫ t

0

‖∇hϕε
N,2‖20,− 1

2
dτ

≤ 2min(ν, η)
∫ t

0

‖ϕε
N‖21,− 1

2
dτ + C

∫ t

0

‖Rε,N
osc + εrε

osc,N‖2−1,− 1
2
dτ

+ C

∫ t

0

‖ϕε
N‖20,− 1

2
(‖ϕε

N − 2εR̃ε
osc,N + 2V ‖41

2 ,s + 1)dτ.

About the low frequencies terms, we have the following lemma:

Lemma 4. There exists a constant CN (T ) which depends only on T and N
such that

‖rε
osc,N‖L2

T (H−1,− 1
2 )
≤ CN (T )

and

‖R̃ε
osc,N‖L∞T (H0,s)∩L2

T (H1,s) ≤ CN (T ).

Proof. Recall that all the functions considered here are truncated in low fre-
quencies and the fact that

ωj,j′,j′′

k,m,n 6= 0

implies that
1

|ωj,j′,j′′
k,m,n |

≤ C(N).

By Lemma 2, one can conclude about rε
osc,N . Lemma 3 with the fact that V ε

belongs to L∞T (H0,s) ∩ L2
T (H1,s) gives the result for R̃ε

osc,N . ¤

Since

ϕε
N = V ε − V + Rε,N

osc ,
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then equation (21) becomes

(22)

‖ϕε
N‖20,− 1

2
+ 2ν

∫ t

0

‖∇hϕε
N,1‖20,− 1

2
dτ + 2η

∫ t

0

‖∇hϕε
N,2‖20,− 1

2
dτ

≤ 2min(ν, η)
∫ t

0

‖ϕε
N‖21,− 1

2
dτ + C

∫ t

0

‖Rε,N
osc + εrε

osc,N‖20,− 1
2
dτ

+ C

∫ t

0

‖ϕε
N‖20,− 1

2
(‖V ε‖41

2 ,s + ‖V ε‖41
2 ,s + ε4C(N) + 1)dτ.

It follows that

(23) ‖ϕε
N‖20,− 1

2
≤ C‖Rε,N

osc ‖2
L2

T (H0,− 1
2 )

+ ε2CN (T ) + C

∫ t

0

‖ϕε
N‖20,− 1

2
h(τ)dτ,

where
h(τ) = ‖V ε‖41

2 ,s + ‖V ε‖41
2 ,s + ε4C(N) + 1.

By interpolation inequality, we have

‖V ε‖ 1
2 ,s ≤ ‖V ε‖

1
2
0,s‖V ε‖

1
2
1,s.

Then, ∫ T

0

‖V ε‖41
2 ,s(τ)dτ ≤ ‖V ε‖2L∞T (H0,s)‖V ε‖2L2

T (H1,s).

Since the same holds for V , then the function h belongs to L1
T .

Applying Gronwall’s lemma, we deduce that

(24)

‖ϕε
N‖20,− 1

2
≤ (

C‖Rε,N
osc ‖2

L2
T (H0,− 1

2 )
+ ε2CN (T )

)

× exp
((

C + ε4C(N)
)
T + C‖V ε‖L∞T (H0,s)‖V ε‖2L2

T (H1,s)

+ C‖V ‖L∞T (H0,s)‖V ‖2L2
T (H1,s)

)
.

To deal with the high frequencies term Rε,N
osc , we introduce the following lemma:

Lemma 5. For any function f ∈ C0
T (H0,s) with s ∈ R, the high frequency term

fN = F−1
(
1[N,+∞[F(f)

)

goes to zero when N goes to infinity in C0
T (H0,s).

Proof. Following ideas from [6] and [7], we recall that

‖fN (t)‖2Hs =
∑

|k|≥N

|k|2s|F(f)(t, k)|2.

The desired result is due to Dini’s Theorem which implies that ‖fN (t)‖2Hs goes
to zero uniformly in t. ¤

This lemma implies in a straightforward way the following proposition:
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Proposition 1. The high frequency term Rε,N
osc goes to zero in C0

T (H0,s) ∩
L2

T (H0,− 1
2 ), uniformly in ε, when N goes to infinity.

Using Proposition 1 and letting ε → 0, N → +∞, we get

W ε → 0 in C0([0, T ],H0,− 1
2 (T3)).

An interpolation argument completes the proof.

Remark 2. Depending on which is the minimum of the couple (ν, η), we can
conclude that if min(ν, η) = η, then

W ε
1 → 0 in L2([0, T ],H1,− 1

2 (T3))

and if min(ν, η) = ν, then

W ε
2 → 0 in L2([0, T ],H1,− 1

2 (T3)).
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