• Title/Summary/Keyword: sSOI

Search Result 156, Processing Time 0.037 seconds

Carrier Mobility Enhancement in Strained-Si-on-Insulator (sSOI) n-/p-MOSFETs (Strained-SOI(sSOI) n-/p-MOSFET에서 캐리어 이동도 증가)

  • Kim, Kwan-Su;Jung, Myung-Ho;Choi, Chel-Jong;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.73-74
    • /
    • 2007
  • We fabricated strained-SOI(sSOI) n-/p-MOSFETs and investigated the electron/hole mobility characteristics. The subthreshold characteristics of sSOI MOSFETs were similar to those of conventional SOI MOSFET. However, The electron mobility of sSOI nMOSFETs was larger than that of the conventional SOI nMOSFETs. These mobility enhancement effects are attributed to the subband modulation of silicon conduction band.

  • PDF

High Mobility Characteristics of Strained-Si-on-insulator (sSOI) Metal-oxide-semiconductors Field-effect-transistors (MOSFETs) (높은 이동도 특성을 가지는 Strained-Si-on-insulator (sSOI) MOSFETs)

  • Kim, Kwan-Su;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.695-698
    • /
    • 2008
  • We investigated the characteristics of Strained-Si-on-Insulator (sSOI) MOSFETs with 0.7% tensile strain. The sSOI MOSFETs have superior subthreshold swing under 70 mV/dec and output current. Especially, the electron and hole were increased in sSOI MOSFET. The electron and hole mobility in sSOI MOSFET were 286$cm^2/Vs$ and 151$cm^2/Vs$, respectively. The carrier mobility enhancement is due to the subband splitting by 0.7% tensile strain.

Current-Voltage Characteristics of Schottky Barrier SOI nMOS and pMOS at Elevated Temperature (고온에서 Schottky Barier SOI nMOS 및 pMOS의 전류-전압 특성)

  • Ka, Dae-Hyun;Cho, Won-Ju;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.21-27
    • /
    • 2009
  • In this work, Er-silicided SB-SOI nMOSFET and Pt-silicided SB-SOI pMOSFET have been fabricated to investigate the current-voltage characteristics of Schottky barrier SOI nMOS and pMOS at elevated temperature. The dominant current transport mechanism of SB nMOS and pMOS is discussed using the measurement results of the temperature dependence of drain current with gate voltages. It is observed that the drain current increases with the increase of operating temperature at low gate voltage due to the increase of thermal emission and tunneling current. But the drain current is decreased at high gate voltage due to the decrease of the drift current. It is observed that the ON/Off current ratio is decreased due to the increased tunneling current from the drain to channel region although the ON current is increased at elevated temperature. The threshold voltage variation with temperature is smaller and the subthreshold swing is larger in SB-SOI nMOS and pMOS than in SOI devices or in bulk MOSFETs.

Reduction of short channel Effects in Ground Plane SOI MOSFET′s (Growld Plane SOI MOSFET의 단채널 현상 개선)

  • ;;;;Jean-Pierre Colinge
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.9-14
    • /
    • 2004
  • This paper reports the measurement and analysis of the short channel effects and the punchthrough voltage of SOI-MOSFET with a self-aligned ground plane electrode in the silicon mechanical substrate underneath the buried oxide. When the channel length is reduced below 0.2${\mu}{\textrm}{m}$ it is observed that the threshold voltage roll-off and the subthreshold swing with channel length are reduced and DIBL is improved more significantly in GP-SOI devices than FD-SOI devices. It is also observed from the dependence of threshold voltage with substrate biases that the body factor is a higher in GP-SOI devices than FD-SOI devices. From the measurement results of punchthrough voltage, GP-SOI devices show the higher punchthrough voltages than FD-SOI devices

A Capacitorless 1-Transistor DRAM Device using Strained-Silicon-on-Insulator (sSOI) Substrate (Strained-Silicon-on-Insulator (sSOI) 기판을 이용한 Capacitorless 1-Transistor DRAM 소자)

  • Kim, Min-Soo;Oh, Jun-Seok;Jung, Jong-Wan;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.95-96
    • /
    • 2009
  • A fully depleted capacitorless 1-transistor dynamic random access memory (FD 1T-DRAM) based on a sSOI strained-silicon-on-insulator) wafer was investigated. The fabricated device showed excellent electrical characteristics of transistor such as low leakage current, low subthreshold swing, large on/off current ratio, and high electron mobility. The FD sSOI 1T-DRAM can be operated as memory device by the floating body effect when the substrate bias of -15 V is applied, and the FD sSOI 1T-DRAM showed large sensing margin and several milli seconds data retention time.

  • PDF

Characteristics of Short channel effect and Mobility in Triple-gate MOSFETs using strained Silicon-on-Insulator (sSOI) substrate (Strained Silicon-on-Insulator (sSOI) 기판으로 제작된 Triple-gate MOSFETs의 단채널 효과와 이동도 특성)

  • Kim, Jae-min;Sorin, Cristoloveanu;Lee, Yong-hyun;Bae, Young-ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.92-92
    • /
    • 2009
  • 본 논문에서는 strained Silicon-on-Insulator (sSOI) 기판에 제작된 triple-gate MOSFETs 의 이동도와 단채널 효과에 대하여 분석 하였다. Strained 실리콘에 제작된 소자는 전류의 방향이 <110> 밤항일 경우 전자의 이동도는 증가하나 정공의 이동도는 오히려 감소하는 문제점이 있다. 이를 극복하기 위하여 소자에서 전류의 방향이 <110>방향에서 45 도 회전된 <100> 방향으로 흐르게 제작하였다. Strain이 가해지지 않은 기판에 제작된 동일한 구조의 소자와 비교하여 sSOI 에 제작된 소자에서 전자의 이동도는 약 40% 정공의 이동도는 약 50% 증가하였다. 채널 길이가 100 nm 내외로 감소함에 따라 나타나는 drain induced barrier lowering (DIBL) 현상, subthreshold slope (SS)의 증가 현상에서 sSOI에 제작된 소자가 상대적으로 우수한 특성을 보였으며 off-current leakage ($I_{off}$) 특성도 sSOI기판이 더 우수한 특성을 보였다.

  • PDF

Impact of Gate Structure On Hot-carrier-induced Performance Degradation in SOI low noise Amplifier (SOI LAN에서 게이트구조가 핫캐리어에 의한 성능저하에 미치는 영향)

  • Ohm, Woo-Yong;Lee, Byong-Jin
    • 전자공학회논문지 IE
    • /
    • v.47 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • This paper presents new results of the impact of gate structure on hot-carrier-induced performance degradation in SOI low noise amplifier. Circuit simulations were carried out using the measured S-parameters of H--gate and T-gate SOI MOSFETs and Agilent's Advanced Design System (ADS) to compare the performance of H-gate LNA and T-gate LNA before and after stress. We will discuss the figure of merit for the characterization of low noise amplifier in terms of impedance matching (S11), noise figure, and gain as well as the relation between device degradation and performance degradation of LNA.

Evaluation of nano-sSOI wafer using pseudo-MOSFET (Pseudo-MOSFET을 이용한 nano-sSOI 기판의 특성 평가)

  • Jung, Myung-Ho;Kim, Kwan-Su;Choi, Chel-Jong;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.11-12
    • /
    • 2007
  • The electrical characteristics of strained-SOI wafer were evaluated by using pseudo-MOSFET. The electrical characteristics of sSOI pseudo-MOSFET were superior to conventional SOI device. Moreover, the electrical characteristics were enhanced by forming gas anneal due to reduction of back interface trap density between substrate and buried oxide.

  • PDF

Performance Degradation of RF SOI MOSFETs in LNA Design Guide Line (RF SOI MOSFETs의 성능저하에 의한 LNA 설계 가이드 라인)

  • Ohm, Woo-Yong;Lee, Byung-Jin
    • 전자공학회논문지 IE
    • /
    • v.45 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • In this work, RF performance degradation due to hot carrier effects in SOI MOSFET have been measured and analyzed. The LNA that designed at $V_{GS}=0.8V$, f=2.5GHz, gain is 16.51dB and noise figure is 1.195dB. After stress at SOI, the LNA's gain and noise figure change of 15.3dB and 1.44dB with before stress.

A Study on Partially-Depleted SOI MOSFET with Multi-gate (다중 게이트을 이용한 부분 공핍형 SOI MOSFET 특성에 관한 연구)

  • Shin, K.S.;Park, Y.K.;Lee, S.J.;Kim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1286-1288
    • /
    • 1997
  • In this study, partially-depleted SOI MOSFET with multi-gate was fabricated on p-type SIMOX(Seperation by Implanted Oxygen). As increase the number of its gate, increase the breakdown voltage. But kink effect was not affected by the number of its gate. However, it is known that the asymmetric gate structure reduce kink effect. So if asymmetric multi-gate applied to partially-depleted SOI MOSFET, it is expected that the breakdown voltage of SOI MOSET with asymmetric multi-gate is higher than that of SOI MOSFET with single gate and that kink effect is reduced by SOI MOSFET with asymmetric multi-gate.

  • PDF