• Title/Summary/Keyword: quadratic equations

Search Result 345, Processing Time 0.023 seconds

A Generalization of the Hyers-Ulam-Rassias Stability of the Pexiderized Quadratic Equations, II

  • Jun, Kil-Woung;Lee, Yang-Hi
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.91-103
    • /
    • 2007
  • In this paper we prove the Hyers-Ulam-Rassias stability by considering the cases that the approximate remainder ${\varphi}$ is defined by $f(x{\ast}y)+f(x{\ast}y^{-1})-2g(x)-2g(y)={\varphi}(x,y)$, $f(x{\ast}y)+g(x{\ast}y^{-1})-2h(x)-2k(y)={\varphi}(x,y)$, where (G, *) is a group, X is a real or complex Hausdorff topological vector space and f, g, h, k are functions from G into X.

  • PDF

GENERALIZED HYERS-ULAM STABILITY OF FUNCTIONAL EQUATIONS

  • Kwon, Young Hak;Lee, Ho Min;Sim, Jeong Soo;Yang, Jeha;Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.387-399
    • /
    • 2007
  • In this paper, we prove the generalized Hyers-Ulam stability of the following linear functional equations f(x + iy) + f(x - iy) + f(y + ix) + f(y - ix) = 2f(x) + 2f(y) and f((1 + i)x) = (1 + i)f(x), and of the following quadratic functional equations f(x + iy) + f(x - iy) + f(y + ix) + f(y - ix) = 0 and f((1 + i)x) = 2if(x) in complex Banach spaces.

  • PDF

NEWTON'S METHOD FOR SYMMETRIC AND BISYMMETRIC SOLVENTS OF THE NONLINEAR MATRIX EQUATIONS

  • Han, Yin-Huan;Kim, Hyun-Min
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.755-770
    • /
    • 2013
  • One of the interesting nonlinear matrix equations is the quadratic matrix equation defined by $$Q(X)=AX^2+BX+C=0$$, where X is a $n{\times}n$ unknown real matrix, and A, B and C are $n{\times}n$ given matrices with real elements. Another one is the matrix polynomial $$P(X)=A_0X^m+A_1X^{m-1}+{\cdots}+A_m=0,\;X,\;A_i{\in}\mathbb{R}^{n{\times}n}$$. Newton's method is used to find the symmetric and bisymmetric solvents of the nonlinear matrix equations Q(X) and P(X). The method does not depend on the singularity of the Fr$\acute{e}$chet derivative. Finally, we give some numerical examples.

Comparative analysis of multiple mathematical models for prediction of consistency and compressive strength of ultra-high performance concrete

  • Alireza Habibi;Meysam Mollazadeh;Aryan Bazrafkan;Naida Ademovic
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.539-555
    • /
    • 2023
  • Although some prediction models have successfully developed for ultra-high performance concrete (UHPC), they do not provide insights and explicit relations between all constituents and its consistency, and compressive strength. In the present study, based on the experimental results, several mathematical models have been evaluated to predict the consistency and the 28-day compressive strength of UHPC. The models used were Linear, Logarithmic, Inverse, Power, Compound, Quadratic, Cubic, Mixed, Sinusoidal and Cosine equations. The applicability and accuracy of these models were investigated using experimental data, which were collected from literature. The comparisons between the models and the experimental results confirm that the majority of models give acceptable prediction with a high accuracy and trivial error rates, except Linear, Mixed, Sinusoidal and Cosine equations. The assessment of the models using numerical methods revealed that the Quadratic and Inverse equations based models provide the highest predictability of the compressive strength at 28 days and consistency, respectively. Hence, they can be used as a reliable tool in mixture design of the UHPC.

Nonlinear spectral collocation analysis of imperfect functionally graded plates under end-shortening

  • Ghannadpour, S. Amir M.;Kiani, Payam
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.557-568
    • /
    • 2018
  • An investigation is made in the present work on the post-buckling and geometrically nonlinear behaviors of moderately thick perfect and imperfect rectangular plates made-up of functionally graded materials. Spectral collocation approach based on Legendre basis functions is developed to analyze the functionally graded plates while they are subjected to end-shortening strain. The material properties in this study are varied through the thickness according to the simple power law distribution. The fundamental equations for moderately thick rectangular plates are derived using first order shear deformation plate theory and taking into account both geometric nonlinearity and initial geometric imperfections. In the current study, the domain of interest is discretized with Legendre-Gauss-Lobatto nodes. The equilibrium equations will be obtained by discretizing the Von-Karman's equilibrium equations and also boundary conditions with finite Legendre basis functions that are substituted into the displacement fields. Due to effect of geometric nonlinearity, the final set of equilibrium equations is nonlinear and therefore the quadratic extrapolation technique is used to solve them. Since the number of equations in this approach will always be more than the number of unknown coefficients, the least squares technique will be used. Finally, the effects of boundary conditions, initial geometric imperfection and material properties are investigated and discussed to demonstrate the validity and capability of proposed method.

How To Teach The Quadratic Curves Through Historical Overview (역사적 고찰을 통한 이차곡선의 지도방안)

  • Jang, Mi-Ra;Kang, Soon-Ja
    • Communications of Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.731-744
    • /
    • 2010
  • Nowadays in school mathematics, the skill and method for solving problems are often emphasized in preference to the theoretical principles of mathematics. Students pay attention to how to make an equation mechanically before even understanding the meaning of the given problem. Furthermore they do not get to really know about the principle or theorem that were used to solve the problem, or the meaning of the answer that they have obtained. In contemporary textbooks the conic section such as circle, ellipse, parabola and hyperbola are introduced as the cross section of a cone. But they do not mention how conic section are connected with the quadratic equation or how these curves are related mutually. Students learn the quadratic equations of the conic sections introduced geometrically and are used to manipulating it algebraically through finding a focal point, vertex, and directrix of the cross section of a cone. But they are not familiar with relating these equations with the cross section of a cone. In this paper, we try to understand the quadratic curves better through the analysis of the discussion made in the process of the discovery and eventual development of the conic section and then seek for way to improve the teaching and learning methods of quadratic curves.

NEWTON'S METHOD FOR SOLVING A QUADRATIC MATRIX EQUATION WITH SPECIAL COEFFICIENT MATRICES

  • Seo, Sang-Hyup;Seo, Jong-Hyun;Kim, Hyun-Min
    • Honam Mathematical Journal
    • /
    • v.35 no.3
    • /
    • pp.417-433
    • /
    • 2013
  • We consider the iterative solution of a quadratic matrix equation with special coefficient matrices which arises in the quasibirth and death problem. In this paper, we show that the elementwise minimal positive solvent of the quadratic matrix equations can be obtained using Newton's method if there exists a positive solvent and the convergence rate of the Newton iteration is quadratic if the Fr$\acute{e}$chet derivative at the elementwise minimal positive solvent is nonsingular. Although the Fr$\acute{e}$chet derivative is singular, the convergence rate is at least linear. Numerical experiments of the convergence rate are given.

ESTIMATION OF NON-INTEGRAL AND INTEGRAL QUADRATIC FUNCTIONS IN LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS

  • Song, IL Young;Shin, Vladimir;Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.45-60
    • /
    • 2017
  • This paper focuses on estimation of an non-integral quadratic function (NIQF) and integral quadratic function (IQF) of a random signal in dynamic system described by a linear stochastic differential equation. The quadratic form of an unobservable signal indicates useful information of a signal for control. The optimal (in mean square sense) and suboptimal estimates of NIQF and IQF represent a function of the Kalman estimate and its error covariance. The proposed estimation algorithms have a closed-form estimation procedure. The obtained estimates are studied in detail, including derivation of the exact formulas and differential equations for mean square errors. The results we demonstrate on practical example of a power of signal, and comparison analysis between optimal and suboptimal estimators is presented.

A Study on the Written Texts of a High School Mathematics Textbook and Teacher's Classroom Discourse -A Focus on 'The Relationship between Quadratic Functions and Quadratic Equations'- (고등학교 수학교과서의 설명텍스트와 교사 설명담화에 대한 체계기능언어학적 비교 분석 - '이차함수와 이차방정식의 관계'를 중심으로 -)

  • Jeon, Soo Kyung;Cho, Cheong-Soo
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.4
    • /
    • pp.525-547
    • /
    • 2015
  • This study analyzed the written texts of textbook and the teacher's discourse explaining 'the relationship between quadratic functions and quadratic equations' in the 9th grade high school mathematics class. Data consisted of the lecture recordings and the textbooks were analyzed based on the Halliday's systemic functional linguistics. According to the results, the written texts of the textbook used lexico-grammatical strategies such as generalization using hyponomy of meanings, mathematical objectification through nominalization and materialization of meaning through change in themes to compose mathematical concepts. The textbook generalized from an example in the description of formulating mathematical concepts, and in this process the organizational interactions of discourse-semantic level and lexico-grammartical level appeared. On the other hand, the teacher's doscourse appeared the change in transitivity and the addition of the reasons and the process. Also the teacher used explanation process of formulating the relationship between quadratic functions and quadratic equations. The linguistic characteristics of the teacher were linguistic implication and omission of lexemes due to contextual ommission. And there was no use of structural lexico-grammatical resources that influence the discourse-semantic level. This results provide a new framework for analyzing mathematical discourse, and suggest the lexico-grammatical strategies that can be used to explain mathematical concepts by teachers in math classrooms.