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ABSTRACT. In this paper we prove the Hyers—Ulam—Rassias stability by considering the
cases that the approximate remainder ¢ is defined by f(z*y)+ f(zxy™*) —2g(z) —29(y) =
o(x,y), flxxy)+glx*xy™ ) — 2h(x) — 2k(y) = o(z,y), where (G, *) is a group, X is a
real or complex Hausdorff topological vector space and f, g, h, k are functions from G into
X.

1. Introduction

In 1940, S. M. Ulam [23] raised the following question: Under what conditions does
there exist an additive mapping near an approximately additive mapping?
In 1941, D. H. Hyers [7] proved that if f: V — X is a mapping satisfying

If(@+y) = flz) = f)ll <0

for all x,y € V, where V and X are Banach spaces and ¢ is a given positive number, then
there exists a unique additive mapping 7" : V — X such that

[f(2) = T(x)] <6

forall z € V.

Th.M. Rassias [17] gave a generalization of the Hyers’ result(see also [5], [17], [20],
[21]). This is the first theorem that has been proved in the subject of stability of func-
tional equations which allows the Cauchy difference to be unbounded. P. Givruta [6]
following Th. M. Rassias’s approach for the Cauchy difference to be unbounded, obtained
a generalization of the Hyers-Rassias theorem. (see also (8], [15],[ 16]).

Lee and Jun [13], [14] also obtained the Hyers-Ulam-Rassias stability of the Pexider equa-
tion of f(xz 4+ y) = g(z) + h(y)(see also [12]).
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In 1983, the stability theorem for the quadratic functional equation

fle+y)+ f@—y) —2f(x) —2f(y) =0

was proved F. Skof [22] for the function f : V — X. In 1984, P. W. Cholewa [1] ex-
tended the Skof’s result to the case where V is an Abelian group G. In 1992, S. Czerwik
[3] gave a generalization of the Skof-Cholewa’s result. Since then, the stability problem
of the quadratic equation has been extensively investigated by a number of mathemati-
cian([2],[4],[18],[19]). In 2001, the authors [11] proved the stability of the Pexiderized
quadratic inequalities :

Ilf(x+y)+ flz—y) —2g9(x) — 29(y) ||
1 f(z+y) +g(z —y) — 2h(z) — 2k(y)]|

Throughout this paper, we denote by G a group and by X a real or complex Hausdorff
topological vector space. By N we denote the set of positive integers. e stands for the unit
of G, while it is O instead of e if G is an abelian group. W. Jian [9] obtained the Hyers-
Ulam-Rassias stability theory by considering the cases where the approximate remainder
© is defined by

w(z,9),

<
< e(z,y).

flexy) —f(x) = fly) = ¢(z,y) forallz,y € G,
flxxy) —g(x) —hly) = o(z,y) forall z,y € G,

where f, g, h are functions from G into X. In 2004, the authors [10] obtained the Hyers-
Ulam-Rassias stability theory by considering the cases where the approximate remainder
@ is defined by

flaxy)+ flexy™ ") —29(x) —29(y) = o(z,y) for all z,y € G\{e},
flrxy)+gl@+y™ ') —2h(x) —2k(y) = @(z,y) for all z,y € G\{e},

where f, g, h, k are functions from G into X. In this paper, using the direct method, we
obtain some generalization of the Hyers-Ulam-Rassias stability theory by considering the
cases where the approximate remainder ¢ is defined by

(1.1) flaxy)+ flxxy™) —29(x) —29(y) = o(a,y) forall 2,y € G,
(1.2) fl@sy)+glxsxy™ ') —2h(z) —2k(y) = o(x,y) for all z,y € G.

A function Q : G — X is called quadratic on G if Q(x*y)+Q(z+y™ ') —2Q(z) —2Q(y) = 0.

2. Stability of the equation
In this section, we prove the stability of the functional equation (1.1).

Theorem 2.1. Let ¢ : G X G — X be a mapping satisfying the conditions

on on
(2.1) lim 2 V") i ),
o x ok ok
(2.2) @z’ 2?) = lim el 7" )eX
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for all x,y € G and for any fized i,j5 = 0,1,2,3,---. Suppose that the functions f,g: G —
X satisfy

(2:3) flaxy) + flzxy ") —29(z) —29(y) = p(z,y),

(24) F@xy)®) = f@® «y* ), 9((@xy)”) = 9@ xy™")

forallz,y € G andn € N. Then the limit Q(z) = lim,, .o f(z2")/4™ = lim, o0 g(x?")/4"
exists for all x € G and Q is quadratic. In this case, the equations

(25) F@) 5@ - Q) = —ple,z) +2p(m,e) — X&),
(26) 9@ — 90 - Q) = 8% e) — $(w2) + glere)

hold for oll x € G.
Proof. Let x be an arbitrary fixed element of G. From (2.3), we have

(27) T ge) = oleo)

(28) 7@~ 9(@) ~ g(e) = 5o(w,e),

(2.9) TG + () — ge) = pole,)

for all x € G. From (2.7), (2.8) and (2.9), we get

(210) F(@) ~ 7(e) = {() = F(e)) = (z) — g(x) — g(¢)

L) + 10 - o) - (1D oo

2
1 1 1
- _Z@(x,x) + 5()0(3:7 6) - Z@(ef 6)-
for all z € G. Induction argument implies

L
471,

2" >R _o@®,2%) + 2022, €) — ple, e
(P~ fley = PELEIFRAT O 00

=0

211)  fl=) = f(e)

for all z € G and for all n € N. From (2.1) and (2.11), lim, - w exists for any
z € G. From this, we can define Q : G — X by
2n
Q(z) = lim f@7)
n— oo 4n
for any z € G and the equation (2.5) holds for all # € G. Replacing z by 22" and dividing
by 4™ in (2.8), we get

1 on 1 on 1 B o(z*" e)
(2.12) @) = @) = mgle) = =—r—
for all n € N. Taking the limit in (2.12) as n — oo, the equation Q(x) = limp—oo g(xQn)/éL’L
holds. From (2.5) and (2.8), we have the equation (2.6). Replacing z, y by =z , 3 ,
respectively and dividing by 4™ in (2.3), we have

FE e y™) fET ey 207 2007 ele®y™)
i i A 4n m
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for all x,y € G and for all n € N. Taking the limit in the above equation as n — oo, we
easily obtain

Qr*y) +Qzxy ) —2Q(z) = 2Q(y) =0
for all z,y € G. From (2.5), (2.7) and (2.8), we easily get (2.6).

Corollary 2.1. Let V be a vector space and X a Banach space. Let ¢ : V XV — [0, 00)
be a mapping such that

i >
Play) = ez, 2y) <oo
0

for all x,y € V. Suppose that the functions f,g:V — X satisfy
1f(z+y) + flz—y) —29(z) = 29W)|| < p(x,y) forall z,yeV.
Then there exists exactly one quadratic function Q : V — X such that

[f(z) = f(0) = Q@) < @(w7ﬂf)+2¢(w,0)+%w(070)

lo@) ~ 9(0) - Q@) < (22,0) +3(z,2) + £(0,0)

6
for all x € V. The function Q is given by
2TL 27L
Q(z) = lim it nx) = lim g(4n:c)

forallz e V.

Proof. Let f(z+y) + f(x —y) — 2g9(z) — 29(y) = ¢1(=x,y). Since V is a vector space, the
equation (2.4) holds for any z,y € V. Since ||p1(z,y)|| < ¢(z,y) and X is a Banach space,

p1:V xV — X is a mapping satisfying the two conditions
2", 2"
lim P 491 ,2"y)

=0

for all z,y € V and

X
@(iz, jz) := lim

W‘Pl@k i, 28 jr) e X
0

for all z € V and for any fixed 4,5 = 0,1,2,3,---. By Theorem 2.1, the limit Q(z) =
limp oo f(272)/4™ exists for any € V and @ satisfies

Qlz+y)+Q(z —y) —2Q(z) —2Q(y) =0

for all z,y € V. In this case, the equations

15@) = 70) = Q@I = 1|~ pa(e,2) + 21, 0) - 20D
< Ble,2) +26(2,0) + 50(0,0)

lo(e) = 90~ Q@) = lI51(22,0) ~ $1(w2) + 51 (0.0)]
< 5P(20,0) + Blaw) + 5(0,0)
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hold for all 2 € V. It remains to show that Q is uniquely determined. Let Q' : V — X be
another function satisfying (). Then

Q@) - Q@) < )= 2 Q'@
@) = J(0) - Q) f(2"e) — £(0) - Q(2"a)
— o I+ 4n n
< 1B, 0) 4 25(22,272) + £9(0,0)]

for every z € V and n € N. Taking the limit in the above inequality as n — oo, we obtain

Q(zx)=Q'(z) forallzecV.

3. Stability of the equation (1.2)

In this section, we prove the stability of the Pexiderized quadratic equation (1.2). If
a function f : G — X satisfies f(x) = f(z™"') for all z € G, then the function f is called
an even function. If a function f : G — X satisfies f(x) = —f(z~") for all z € G, then
the function f is called an odd function.

Theorem 3.1 (even function). Let ¢ : G X G — X be a mapping satisfying the conditions
in Theorem 2.1. Suppose that the even functions f,g,h,k: G — X satisfy

(3.1) flaxy)+gl@xy™ ") — 2h(z) — 2k(y) = (z,y)

and the condition (2.4). Then there exists exactly one quadratic function Q : G — X such
that

@) = f©) - QEA) = M)+ Slelw,2) - ole,a)] - gele,e)
9@ 90— QEY) = M) - Hlelw,2) - elw,2 )] - 3e(ee)
M) —h(e) = Q) = M)+ gole,e) = 5olw,e)
K@) —he) = Q) = M)+ ge(e,e) = 5ole,n)
for all x € G, where
M(z) = 5l-$(2,2) +26(e,2) +25(a, ) — $(, ")
The function Q is given by
Q) = Jim H = i A5 = i MG = i S

forallz € G.
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Proof. Since f, g, h, k are the even functions, from (3.1), we can easily obtain

(3.2) f(@) + g(x) = 2h(x) = 2k(e) = ¢(z,¢)
(3:3) F(@®) + g(e) — 2h(z) — 2k(z) p(z,z)
(34) f(@) +g(x) —2h(e) = 2k(z) = ¢(e,z)
(3.5) f(e) + g(a®) = 2h(z) = 2k(z) = (27"
(3.6) fle) +gle) —2h(e) —2k(e) = (e e)
for all z € G. From (3.2), (3.3) and (3.4), we get

(37) F(&?) ~ 2£(2) ~ 29(2) + 9(e) + 20() + 2K(c)

= [f(@®) +g(e) — 2h(z) — 2k(x)] - [f(2) + g(2) — 2h(e) — 2Kk(x)]
= [f(2) + g(x) — 2h(x) — 2k(e)] = p(z,2) — p(e, x) — p(x,€)
for all z € G. From (3.2), (3.4) and (3.5), we get
(3.8) 9(z®) = 2f(z) — 2g(x) + f(e) + 2h(e) + 2k(e)
= [f(e) +g(z®) — 2h(z) — 2k(x)] - [f(2) + g(2) — 2h(x) — 2k(e)]
— [f(2) + g(2) — 2h(e) — 2k(z)] = p(z,27") = p(z,¢) — p(e,z)
for all z € G. From (3.6), (3.7) and (3.8), we get
A(f(z) + g(z) = f(e) — g(e) — (f(&®) + g(z®) = f(e) — g(e))
= —[f(=®) — 2f(x) — 29(2) + g(e) + 2h(e) + 2k(e)]
—lg(z®) — 2f(x) — 2g(2) + f(e) + 2h(e) + 2k(e)]
—2[f(e) +g(e) — 2h(e) — 2k(e)]
= —p(z,2) +20(e, ) + 20(z,€) — p(z,27") — 2p(e, €)

for all z € G. Induction argument implies

F@") +g(=*") — f(e) — g(e)

(3.9) 1) + g(x) = f(e) — gle) - -
_ X @2 +2p(e,5%) + 2007 €) — 0@ 27) — 2(e,e)
o 41+1

for all n € N and « € G. From (2.2) and the above equation, we can define Q : G — X by

20(z) = tim L) +9@) = J(e) ~ g(e)

n—oo 4n

for all € G. From (3.9) and the definition of @, we have
(3.10) f(@) +9(z) = f(e) — g(e) — 2Q(x)

= (@) + 2p(e,7) +26(z,) ~ B,z 7) ~ Slere)
for all z € G. Form (3.3), (3.5) and (3.10), we get

),
2f(2®) — 2f(e) — 2Q(2°) = f(2°) + g(z®) — f(e) — gle) — 2Q(z7)
+ [f(2®) + gle) — 2h(x) — 2k(x)] — [f(e) + g(z®) — 2h(z) — 2k(z)]

)

M(2®) — *w(e e) + oz, x) — p(z,z
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and
29(z”) — 2g(e) — 2Q(¢%) = f(a®) + g(*) — f(e) — g(e) — 2Q(z?)
— 1) + gle) — 2h(x) — 2k(w)] + [£(€) + g(&) — 2h() — 2h()
= 2M(@) - Sele.e) — plww) + w27
for all = € G. From (3.2), (3.6) and (3.10), we get
2h(z) — 2h(e) — 2Q(x)
= J(@)+9(x) ~ f() ~ g(e) ~ 2Q@) ~ [f(2) + g(z) — 2h(z) — 2K(e)
/() + gle) — 2k(e) — 2h(e)] = M(z) + 5ole,€) — o(z, )
for all z € G. From (3.4), (3.6) and (3.10), we get
2%(z) — 2k(e) — 2Q(z)

= f@) +9(@) - fle) —gle) = 2Q(z) — [f(x) + g(x) — 2h(e) — 2k(x)]
+[f(e) +g(e) — 2k(e) — 2h(e)]

= —p(,2) + 25(e, ) + 26(w,€) — (a7 + 3e(e ) — ple,)

for all z € G. Replacing = by z>" and dividing by 4" in (3.2), we have

(3.11) @) + 9@ 2h) + 2h(e) _ o(a o)

for all n € N and = € G. Taking the limit in (3.11), we have

Q) = tim M)

n—oo 4n

for all x € G. By the similar method, we obtain

Q@) = tim @) oy 9@ k@)

n— o0 4n n—oo 4n n— 00 4n

for all x € G. Replacing x by z?" and y by yQ" and dividing 4™ on both sides, the equation
(3.1) implies
i 9@ xy™*")  2m(="")  2k(T) _ e,y

f@® xy”) _
T 4n w = o (el

Taking the limit in the above equation, we have
Qzxy)+ Qzxy™") —2Q(z) — 2Q(y) = 0
for all z,y € G.

Corollary 3.1 (even function). Let ¢ be a mapping as in Corollary 2.1. Suppose that the
even functions f,g,h,k:V — X satisfy

If(z+y) +g(x —y) —2h(z) = 2k(y)|| < @(x,y) forall z,y€V.
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Then there exists exactly one quadratic function Q : V — X such that

17@) = £O0) = Q@I < M)+ 3le(5, 5) +0(5,~ 50+ 30(0,0),
lo@@) — 9(0) = Q@) < M)+ 3le(5, ) +p(5, ~ 50+ 30(0,0),
Ih(@) = h©0) ~ Q@) < M() + 50(z,0) + 5(0,0) and

Ikz) —KO) ~ Q@) < M(x)+ 1 0(0,2) + £0(0,0)

for all x € V, where

M(z) = =[p(z,x) + 29(0, z) + 2¢(x,0) + @(z, —x)].

N =

The function Q is given by

Q@) = tim LD _ gy 920) _ yy D)y, K2

n— oo n n—oo n n—oo n n—oo 4n

forallz e V.

Theorem 3.2 (odd function). Let ¢ : G x G — X be a mapping satisfying the conditions

-
(3.12) lim P& V) g

n—oo 2”

~~ 1 ok
(3.13) Pla’,a?) = nlgrolo Q—kcp(xl 2k,x] 2k) eX
k=0

for oll x,y € G and for any fixed i,5 = 0,1,2,3,---. Suppose that the odd functions
f,9,hk:G— X satisfy

(3.14) fl@xy) +glzxy™ ") — 2h(z) — 2k(y) = @(z,y)

and the condition (2.4) for all z,y € G. Then the limits T(z) = lim, .o f(2*")/2" and
T (x) = limy oo g(@2") /2" eist for any x € G, and T, T" satisfy the equation

(3.15) T(xxy)+T(y*z)=2T(x)+ 2T (y)

for all xz,y € G. In this case the equations
1

(3.16) f@) -T@) = Sl-e.w)+ o)+ ole,)
(3.17) o@) - T'@) = Spa)+ oo - ole.)
(318)  h)- TOATD L pea ) + 206 )
(3.19) k(z) — M — i[—@(m,x) + oz, 2Y) + 20(e, 7))

hold for all x € G.
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Proof. From (3.14), we can easily obtain

(3.20) Flaxy™") + 9@ y) = 2h(z) + 2k(y) = o(z,y ),

(3.21) Flyxa™") +g(y* o) = 2h(y) + 2k(z) = @(y,27"),

(3.22) fly=a) —glzxy™") = 2h(y) — 2k(z) = p(y, z)

(3.23) f(z®) = 2h(z) — 2k(z) = p(, @),

(3.24) f(@) + g(x) = 2h(z) = ¢(z,¢),

(3.25) f(z) = g(x) = 2k(z) = (e, z),

(3.26) g(z”) = 2h(z) + 2k(z) = p(z,z ")

for all z,y € G. From (3.23), (3.24), (3.25) and (3.26), we obtain the equations
flz) — f(;f ) _ —e@a)+ s@(zx&) + ple,x)

9@ _ —plwaT) +ple) — plew)

g(@) - == = 5

for all x € G. Applying the similar method as in the Theorem 3.1 to the above equations,
we easily see that the limits T'(z) = lim,—o f(z* )/2" and T’(z) = limp—oo g(z*" )/2"
exist for all z € G and the equations (3.16) and (3.17) hold for all z € G. From (3.24),
(3.25) and the definition of 7" and 7", the limits

k(@®) _ T(x) - T'(z)

g M) _T@)+T'@) _

n—ooo 27 2 7 nsoo  2m 2

exist for all z € G. From (3.16), (3.17), (3.24) and (3.25), we easily see that the equations
(3.18) and (3.19) hold for all z € G. From (3.14) and (3.22), we obtain

(3.27) fl@xy) + f(yxx) = 2h(z) — 2h(y) — 2k(z) — 2k(y) = ¢(z,y) + ¢(y, 7)
for all z,y € G. From (3.20) and (3.21), we obtain

(3.28)  glz*y)+g(y =) — 2h(x) — 2h(y) + 2k(x) + 2k(y) = ¢(z,y~ ) + o(y, 2~ )

for all z,y € G. Replacing z,y by 22", y2n and dividing 2™ on both sides in the equation
(3.27) and (3.28) implies

F@ ™) + f° #2™) = 20(2") — 2h(y7")
—2k(z”") = 2k(y”") = o(=*"y*) + oy, 27,
9= xy”") +g(y”" +2”") = 2h(2”") — 2h(y*")
+2k(@®) + 2k(y%) = 0@ (5 ) + ol @)

for all z,y € G. Taking the limit in the above equations as n — oo, we see that T and T"
satisfy the equation (3.15).

H

Corollary 3.2 (odd function). Let ¢ : V x V — [0,00) be a mapping such that

>
P(x,y) =

7=0

1
2Zg0(2232y)<oo
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for all xz,y € V. Suppose that the odd functions f,g,h,k:V — X satisfy

[f(z+y) +g9(x —y) —2h(z) = 2k(y)|| < p(z,y) forall z,yeV.
Then there exist two unique additive functions T, T' : V — X such that

15 =T < Sp(, )+ 3(e,0) + 3(0,2)

lo@) ~T'@) < Sl ) + $(2,0) + 5(0,)]
Inte) - TEETE < Y a) 4 (e, ) + 26(20,0)
i) - TETE < Y a) 4 pla, ) + 26(0,20)

forallz eV.

Now we prove the stability of the general Pexiderized quadratic equation.
From Theorem 3.1 and Theorem 3.2, we can easily obtain the following theorem.

Theorem 3.3. Let 1,02 : G X G — X be mappings satisfying the conditions (2.1),
(2.2) in Theorem 2.1 and the conditions (3.12), (3.13) in Theorem 3.2. Suppose that the
functions f,g,h,k: G — X satisfy

(3.29) fl@xy) +g(xxy™ ") — 2h(z) — 2k(y) = ¢1(z,y),

(3.30) Fly™ e ) +glyxah) —2h(z7h) = 2k(yT") = wa(z,y)

for all x,y € G. Then there exist exactly one quadratic function Q : G — X and the two
limits T(x) = limn—oo[f(2* )= f(z72")]/(2:2"), T'(2) = limp oo [g(2* ) —g(z™")]/(2:2")
satisfying (3.15) for all x € G. The equations

(331) f(*) - f(e) — Q) — 2T (a)
= M@+ gle(e,2) — (7)) - e ) + 3 [-B( 2% + e ) + (e, 2],
9a) ~ g(e) ~ Q*) ~ 2T ()

= M) - le(e,2) — (e, a)] - 3ol ) + B a7 + 9% ) — dle, ),
h(z) — h(e) - Qz) — LT

= M(@)+ gplee) - p(e.e) + 1B 2) - 9e,7) + 20 0]

6
() — h(e) -~ Qa) — T T
= M(@)+ golee) - gole,n) + 1= 2) + Yo,z ") + 2(e,2)]

hold for all x € G, where

M@) = 314 x) +26(e,7) +26(r, ) — G,
e(@,y) = (pi(z,y) +p2(z,9))/2,
Y(z,y) = (e(zy) —pa(z,9))/2.
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The function @Q is given by

Q(z) = lim f(xQH) = lim 9(3;2") = lim

n—oo 4n n— o0 4n n— oo n n—oo 4n
forallz € G.

Proof. Let fe, ge,he, ke be even parts and f,, go, ho, ko be odd parts of f,g,h,k, respec-
tively. From (3.29) and (3.30), we get

Je(z xy) + ge(z * y_l) — 2he(z) — 2ke(y)

= Sl xy) +glory™) — 2h(z) - 26(y)]
F ol e ) gy s a )~ 2h(a ) — 2k(y )
e1(z,y) + pa(z,y)

= 3 = ¢(z,y)

for all z,y € G. By Theorem 3.1, there exists exactly one quadratic function @ : G — X
such that

(332) L) - f(0) — Q) = M) + (e, 2) — plw, )] - gelee)
for all z € G, where . .

Q) = lim [£(=*") + f==2"))/(2-4").
From (3.29) and (3.30), we get

Fola )+ ol w ™) = 2ho(a) - 2koy) = LD )

for all z € G. By Theorem 3.2, the limits T'(z) = lim,—oo[f(z*") — f(z72")]/(2 - 2"),
T'(x) = limp—oo[g(z? ) — g(x72")]/(2 - 2™) exist for all x € G. And the two functions
T,T': G — X satisfy (3.15) and

(3.33) Fo(2?) — 2T(z) = %[-@(:& o) + b(%, ) + (e, %))

for all z € G \ {e}. From (3.32), (3.33) and the equation
f@®) = f(e) = 4Q(x) = 2T(x) = fo(+”) = f(e) = Q") + fo(a®) = T(a?),
we get (3.31). The equation

@ @)+ Y fET) = [
T L S v Ta—
o @)+ 1 fE@) = fa)
= o 2 4n LT 2. 2n

Qz) +0-T(z)
holds for all x € G. By the similar method, we obtain the remaining results.

Corollary 3.3. Let ¢ : V XV — X be a mapping satisfying the conditions in Corollary
3.1 and Corollary 3.2. Suppose that the functions f,g,h,k:V — X satisfy

(3.34) If(x+y) +g(z —y) — 2h(z) = 2k(y)|| < @(x,y) forall z,ycV.
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Then there exist exactly one quadratic function Q : V. — X and two unique additive
functions T, T : V — X such that

[f(z) = f(0) = Q(z) = T(z)||

< M@+ S0, )+ Y D+ 5[ ) + 9(2,0) + $(0,2)] + 2 9(0,0)
lg(x) — (0) ~ Q) ~ T'(x)]

< M@+ S, )+ UG D+ 5[0 ~2) + B, 0) + F(0,2)] + 5(0,0),
() = h(0) = Q) = 3 (T(x) +T'(2))]

< M(@)+ G, 0) + g0(0,0) + [0, 2) + Dla, —2) + 25(22,0)], and

< M@)+ 36(0,2) + 00,0 + 1 [H(w,2) + bz, —o) + 200, 20)
for all z € V, where (z,y) = (p(z,y) + ¢(—z, —y))/2 and
M(z) = S [(,2) +20(0,2) + 26(z,0) + Pz, —)].
The function Q is given by
Q) = Jim T = i 28 — i 25— i 2
and the functions T, T’ are given by
7@y = im P I iy 020 = g(2')
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