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Abstract. In this paper we prove the Hyers–Ulam–Rassias stability by considering the
cases that the approximate remainder ϕ is defined by f(x∗y)+f(x∗y−1)−2g(x)−2g(y) =
ϕ(x, y), f(x ∗ y) + g(x ∗ y−1) − 2h(x) − 2k(y) = ϕ(x, y), where (G, ∗) is a group, X is a
real or complex Hausdorff topological vector space and f, g, h, k are functions from G into
X.

1. Introduction

In 1940, S. M. Ulam [23] raised the following question: Under what conditions does
there exist an additive mapping near an approximately additive mapping?

In 1941, D. H. Hyers [7] proved that if f : V → X is a mapping satisfying

‖f(x + y)− f(x)− f(y)‖ ≤ δ

for all x, y ∈ V , where V and X are Banach spaces and δ is a given positive number, then
there exists a unique additive mapping T : V → X such that

‖f(x)− T (x)‖ ≤ δ

for all x ∈ V .
Th.M. Rassias [17] gave a generalization of the Hyers’ result(see also [5], [17], [20],

[21]). This is the first theorem that has been proved in the subject of stability of func-
tional equations which allows the Cauchy difference to be unbounded. P. Găvruta [6]
following Th. M. Rassias’s approach for the Cauchy difference to be unbounded, obtained
a generalization of the Hyers-Rassias theorem. (see also [8], [15],[ 16]).
Lee and Jun [13], [14] also obtained the Hyers-Ulam-Rassias stability of the Pexider equa-
tion of f(x + y) = g(x) + h(y)(see also [12]).
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In 1983, the stability theorem for the quadratic functional equation

f(x + y) + f(x− y)− 2f(x)− 2f(y) = 0

was proved F. Skof [22] for the function f : V → X. In 1984, P. W. Cholewa [1] ex-
tended the Skof’s result to the case where V is an Abelian group G. In 1992, S. Czerwik
[3] gave a generalization of the Skof-Cholewa’s result. Since then, the stability problem
of the quadratic equation has been extensively investigated by a number of mathemati-
cian([2],[4],[18],[19]). In 2001, the authors [11] proved the stability of the Pexiderized
quadratic inequalities :

‖f(x + y) + f(x− y)− 2g(x)− 2g(y)‖ ≤ ϕ(x, y),

‖f(x + y) + g(x− y)− 2h(x)− 2k(y)‖ ≤ ϕ(x, y).

Throughout this paper, we denote by G a group and by X a real or complex Hausdorff
topological vector space. By N we denote the set of positive integers. e stands for the unit
of G, while it is 0 instead of e if G is an abelian group. W. Jian [9] obtained the Hyers-
Ulam-Rassias stability theory by considering the cases where the approximate remainder
ϕ is defined by

f(x ∗ y)− f(x)− f(y) = ϕ(x, y) for all x, y ∈ G,

f(x ∗ y)− g(x)− h(y) = ϕ(x, y) for all x, y ∈ G,

where f, g, h are functions from G into X. In 2004, the authors [10] obtained the Hyers-
Ulam-Rassias stability theory by considering the cases where the approximate remainder
ϕ is defined by

f(x ∗ y) + f(x ∗ y−1)− 2g(x)− 2g(y) = ϕ(x, y) for all x, y ∈ G\{e},
f(x ∗ y) + g(x ∗ y−1)− 2h(x)− 2k(y) = ϕ(x, y) for all x, y ∈ G\{e},

where f, g, h, k are functions from G into X. In this paper, using the direct method, we
obtain some generalization of the Hyers-Ulam-Rassias stability theory by considering the
cases where the approximate remainder ϕ is defined by

f(x ∗ y) + f(x ∗ y−1)− 2g(x)− 2g(y) = ϕ(x, y) for all x, y ∈ G,(1.1)

f(x ∗ y) + g(x ∗ y−1)− 2h(x)− 2k(y) = ϕ(x, y) for all x, y ∈ G.(1.2)

A function Q : G → X is called quadratic on G if Q(x∗y)+Q(x∗y−1)−2Q(x)−2Q(y) = 0.

2. Stability of the equation

In this section, we prove the stability of the functional equation (1.1).

Theorem 2.1. Let ϕ : G×G → X be a mapping satisfying the conditions

lim
n→∞

ϕ(x2n

, y2n

)

4n
= 0,(2.1)

ϕ̃(xi, xj) := lim
n→∞

nX

k=0

1

4k+1
ϕ(xi·2k

, xj·2k

) ∈ X(2.2)
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for all x, y ∈ G and for any fixed i, j = 0, 1, 2, 3, · · · . Suppose that the functions f, g : G →
X satisfy

f(x ∗ y) + f(x ∗ y−1)− 2g(x)− 2g(y) = ϕ(x, y),(2.3)

f((x ∗ y)2
n

) = f(x2n ∗ y2n

), g((x ∗ y)2
n

) = g(x2n ∗ y2n

)(2.4)

for all x, y ∈ G and n ∈ N. Then the limit Q(x) = limn→∞ f(x2n

)/4n = limn→∞ g(x2n

)/4n

exists for all x ∈ G and Q is quadratic. In this case, the equations

f(x)− f(e)−Q(x) = −ϕ̃(x, x) + 2ϕ̃(x, e)− ϕ(e, e)

3
,(2.5)

g(x)− g(e)−Q(x) =
1

2
ϕ̃(x2, e)− ϕ̃(x, x) +

1

6
ϕ(e, e)(2.6)

hold for all x ∈ G.

Proof. Let x be an arbitrary fixed element of G. From (2.3), we have

f(e)

2
− g(e) =

1

4
ϕ(e, e),(2.7)

f(x)− g(x)− g(e) =
1

2
ϕ(x, e),(2.8)

1

4
(f(x2) + f(e))− g(x) =

1

4
ϕ(x, x)(2.9)

for all x ∈ G. From (2.7), (2.8) and (2.9), we get

f(x)− f(e)− 1

4
(f(x2)− f(e)) = f(x)− g(x)− g(e)(2.10)

− [
1

4
f(x2) + f(e)− g(x)]− [

f(e)

2
− g(e)]

= −1

4
ϕ(x, x) +

1

2
ϕ(x, e)− 1

4
ϕ(e, e).

for all x ∈ G. Induction argument implies

(2.11) f(x)− f(e)− 1

4n
(f(x2n

)− f(e)) =

n−1X
i=0

−ϕ(x2i

, x2i

) + 2ϕ(x2i

, e)− ϕ(e, e)

4i+1
.

for all x ∈ G and for all n ∈ N . From (2.1) and (2.11), limn→∞
f(x2n

)−f(e)
4n exists for any

x ∈ G. From this, we can define Q : G → X by

Q(x) = lim
n→∞

f(x2n

)

4n

for any x ∈ G and the equation (2.5) holds for all x ∈ G. Replacing x by x2n

and dividing
by 4n in (2.8), we get

(2.12)
1

4n
f(x2n

)− 1

4n
g(x2n

)− 1

4n
g(e) =

ϕ(x2n

, e)

2 · 4n

for all n ∈ N . Taking the limit in (2.12) as n →∞, the equation Q(x) = limn→∞ g(x2n

)/4n

holds. From (2.5) and (2.8), we have the equation (2.6). Replacing x, y by x2n

, y2n

,
respectively and dividing by 4n in (2.3), we have

f(x2n ∗ y2n

)

4n
+

f(x2n ∗ y−2n

)

4n
− 2g(x2n

)

4n
− 2g(y2n

)

4n
=

ϕ(x2n

, y2n

)

4n
,
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for all x, y ∈ G and for all n ∈ N . Taking the limit in the above equation as n → ∞, we
easily obtain

Q(x ∗ y) + Q(x ∗ y−1)− 2Q(x)− 2Q(y) = 0

for all x, y ∈ G. From (2.5), (2.7) and (2.8), we easily get (2.6). �

Corollary 2.1. Let V be a vector space and X a Banach space. Let ϕ : V × V → [0,∞)
be a mapping such that

ϕ̃(x, y) :=

∞X
i=0

1

4i+1
ϕ(2ix, 2iy) < ∞

for all x, y ∈ V . Suppose that the functions f, g : V → X satisfy

‖f(x + y) + f(x− y)− 2g(x)− 2g(y)‖ ≤ ϕ(x, y) for all x, y ∈ V.

Then there exists exactly one quadratic function Q : V → X such that

‖f(x)− f(0)−Q(x)‖ ≤ ϕ̃(x, x) + 2ϕ̃(x, 0) +
1

3
ϕ(0, 0)

‖g(x)− g(0)−Q(x)‖ ≤ 1

2
ϕ̃(2x, 0) + ϕ̃(x, x) +

1

6
ϕ(0, 0)

for all x ∈ V . The function Q is given by

Q(x) = lim
n→∞

f(2nx)

4n
= lim

n→∞
g(2nx)

4n

for all x ∈ V .

Proof. Let f(x + y) + f(x− y)− 2g(x)− 2g(y) = ϕ1(x, y). Since V is a vector space, the
equation (2.4) holds for any x, y ∈ V . Since ‖ϕ1(x, y)‖ ≤ ϕ(x, y) and X is a Banach space,
ϕ1 : V × V → X is a mapping satisfying the two conditions

lim
n→∞

ϕ1(2
nx, 2ny)

4n
= 0

for all x, y ∈ V and

ϕ̃(ix, jx) := lim
n→∞

nX

k=0

1

4k+1
ϕ1(2

k · ix, 2k · jx) ∈ X

for all x ∈ V and for any fixed i, j = 0, 1, 2, 3, · · · . By Theorem 2.1, the limit Q(x) =
limn→∞ f(2nx)/4n exists for any x ∈ V and Q satisfies

Q(x + y) + Q(x− y)− 2Q(x)− 2Q(y) = 0

for all x, y ∈ V . In this case, the equations

‖f(x)− f(0)−Q(x)‖ = ‖ − ϕ̃1(x, x) + 2ϕ̃1(x, 0)− ϕ1(0, 0)

3
‖

≤ ϕ̃(x, x) + 2ϕ̃(x, 0) +
1

3
ϕ(0, 0),

‖g(x)− g(0)−Q(x)‖ = ‖1

2
ϕ̃1(2x, 0)− ϕ̃1(x, x) +

1

6
ϕ1(0, 0)‖

≤ 1

2
ϕ̃(2x, 0) + ϕ̃(x, x) +

1

6
ϕ(0, 0)
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hold for all x ∈ V . It remains to show that Q is uniquely determined. Let Q′ : V → X be
another function satisfying (). Then

‖Q(x)−Q′(x)‖ ≤ ‖f(2nx)− f(0)

4n
−Q(x)‖+ ‖f(2nx)− f(0)

4n
−Q′(x)‖

= ‖f(2nx)− f(0)−Q(4nx)

4n
‖+ ‖f(2nx)− f(0)−Q′(2nx)

4n
‖

≤ 1

4n
[ϕ̃(2n+1x, 0) + 2ϕ̃(2nx, 2nx) +

1

3
ϕ(0, 0)]

for every x ∈ V and n ∈ N. Taking the limit in the above inequality as n →∞, we obtain

Q(x) = Q′(x) for all x ∈ V.

�

3. Stability of the equation (1.2)

In this section, we prove the stability of the Pexiderized quadratic equation (1.2). If
a function f : G → X satisfies f(x) = f(x−1) for all x ∈ G, then the function f is called
an even function. If a function f : G → X satisfies f(x) = −f(x−1) for all x ∈ G, then
the function f is called an odd function.

Theorem 3.1 (even function). Let ϕ : G×G → X be a mapping satisfying the conditions
in Theorem 2.1. Suppose that the even functions f, g, h, k : G → X satisfy

f(x ∗ y) + g(x ∗ y−1)− 2h(x)− 2k(y) = ϕ(x, y)(3.1)

and the condition (2.4). Then there exists exactly one quadratic function Q : G → X such
that

f(x2)− f(e)−Q(x2) = M(x2) +
1

2
[ϕ(x, x)− ϕ(x, x−1)]− 1

3
ϕ(e, e)

g(x2)− g(e)−Q(x2) = M(x2)− 1

2
[ϕ(x, x)− ϕ(x, x−1)]− 1

3
ϕ(e, e)

h(x)− h(e)−Q(x) = M(x) +
1

6
ϕ(e, e)− 1

2
ϕ(x, e)

k(x)− k(e)−Q(x) = M(x) +
1

6
ϕ(e, e)− 1

2
ϕ(e, x)

for all x ∈ G, where

M(x) =
1

2
[−ϕ̃(x, x) + 2ϕ̃(e, x) + 2ϕ̃(x, e)− ϕ̃(x, x−1)].

The function Q is given by

Q(x) = lim
n→∞

f(x2n

)

4n
= lim

n→∞
g(x2n

)

4n
= lim

n→∞
h(x2n

)

4n
= lim

n→∞
k(x2n

)

4n
.

for all x ∈ G.
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Proof. Since f, g, h, k are the even functions, from (3.1), we can easily obtain

f(x) + g(x)− 2h(x)− 2k(e) = ϕ(x, e)(3.2)

f(x2) + g(e)− 2h(x)− 2k(x) = ϕ(x, x)(3.3)

f(x) + g(x)− 2h(e)− 2k(x) = ϕ(e, x)(3.4)

f(e) + g(x2)− 2h(x)− 2k(x) = ϕ(x, x−1)(3.5)

f(e) + g(e)− 2h(e)− 2k(e) = ϕ(e, e)(3.6)

for all x ∈ G. From (3.2), (3.3) and (3.4), we get

f(x2)− 2f(x)− 2g(x) + g(e) + 2h(e) + 2k(e)(3.7)

= [f(x2) + g(e)− 2h(x)− 2k(x)]− [f(x) + g(x)− 2h(e)− 2k(x)]

− [f(x) + g(x)− 2h(x)− 2k(e)] = ϕ(x, x)− ϕ(e, x)− ϕ(x, e)

for all x ∈ G. From (3.2), (3.4) and (3.5), we get

g(x2)− 2f(x)− 2g(x) + f(e) + 2h(e) + 2k(e)(3.8)

= [f(e) + g(x2)− 2h(x)− 2k(x)]− [f(x) + g(x)− 2h(x)− 2k(e)]

− [f(x) + g(x)− 2h(e)− 2k(x)] = ϕ(x, x−1)− ϕ(x, e)− ϕ(e, x)

for all x ∈ G. From (3.6), (3.7) and (3.8), we get

4(f(x) + g(x)− f(e)− g(e))− (f(x2) + g(x2)− f(e)− g(e))

= −[f(x2)− 2f(x)− 2g(x) + g(e) + 2h(e) + 2k(e)]

−[g(x2)− 2f(x)− 2g(x) + f(e) + 2h(e) + 2k(e)]

−2[f(e) + g(e)− 2h(e)− 2k(e)]

= −ϕ(x, x) + 2ϕ(e, x) + 2ϕ(x, e)− ϕ(x, x−1)− 2ϕ(e, e)

for all x ∈ G. Induction argument implies

f(x) + g(x)− f(e)− g(e)− f(x2n

) + g(x2n

)− f(e)− g(e)

4n
(3.9)

=

n−1X
i=0

−ϕ(x2i

, x2i

) + 2ϕ(e, x2i

) + 2ϕ(x2i

, e)− ϕ(x2i

, x−2i

)− 2ϕ(e, e)

4i+1

for all n ∈ N and x ∈ G. From (2.2) and the above equation, we can define Q : G → X by

2Q(x) = lim
n→∞

f(x2n

) + g(x2n

)− f(e)− g(e)

4n

for all x ∈ G. From (3.9) and the definition of Q, we have

f(x) + g(x)− f(e)− g(e)− 2Q(x)(3.10)

= −ϕ̃(x, x) + 2ϕ̃(e, x) + 2ϕ̃(x, e)− ϕ̃(x, x−1)− 2

3
ϕ(e, e)

for all x ∈ G. Form (3.3), (3.5) and (3.10), we get

2f(x2)− 2f(e)− 2Q(x2) = f(x2) + g(x2)− f(e)− g(e)− 2Q(x2)

+ [f(x2) + g(e)− 2h(x)− 2k(x)]− [f(e) + g(x2)− 2h(x)− 2k(x)]

= 2M(x2)− 2

3
ϕ(e, e) + ϕ(x, x)− ϕ(x, x−1)
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and

2g(x2)− 2g(e)− 2Q(x2) = f(x2) + g(x2)− f(e)− g(e)− 2Q(x2)

− [f(x2) + g(e)− 2h(x)− 2k(x)] + [f(e) + g(x2)− 2h(x)− 2k(x)]

= 2M(x2)− 2

3
ϕ(e, e)− ϕ(x, x) + ϕ(x, x−1)

for all x ∈ G. From (3.2), (3.6) and (3.10), we get

2h(x)− 2h(e)− 2Q(x)

= f(x) + g(x)− f(e)− g(e)− 2Q(x)− [f(x) + g(x)− 2h(x)− 2k(e)]

+ [f(e) + g(e)− 2k(e)− 2h(e)] = M(x) +
1

3
ϕ(e, e)− ϕ(x, e)

for all x ∈ G. From (3.4), (3.6) and (3.10), we get

2k(x)− 2k(e)− 2Q(x)

= f(x) + g(x)− f(e)− g(e)− 2Q(x)− [f(x) + g(x)− 2h(e)− 2k(x)]

+ [f(e) + g(e)− 2k(e)− 2h(e)]

= −ϕ̃(x, x) + 2ϕ̃(e, x) + 2ϕ̃(x, e)− ϕ̃(x, x−1) +
1

3
ϕ(e, e)− ϕ(e, x)

for all x ∈ G. Replacing x by x2n

and dividing by 4n in (3.2), we have

(3.11)
f(x2n

) + g(x2n

)

4n
− 2h(x2n

) + 2k(e)

4n
=

ϕ(x2n

, e)

4n

for all n ∈ N and x ∈ G. Taking the limit in (3.11), we have

Q(x) = lim
n→∞

h(x2n

)

4n

for all x ∈ G. By the similar method, we obtain

Q(x) = lim
n→∞

f(x2n

)

4n
= lim

n→∞
g(x2n

)

4n
= lim

n→∞
k(x2n

)

4n

for all x ∈ G. Replacing x by x2n

and y by y2n

and dividing 4n on both sides, the equation
(3.1) implies

f(x2n ∗ y2n

)

4n
+

g(x2n ∗ y−2n

)

4n
− 2h(x2n

)

4n
− 2k(y2n

)

4n
=

ϕ(x2n

, y2n

)

4n
(∀x, y ∈ G).

Taking the limit in the above equation, we have

Q(x ∗ y) + Q(x ∗ y−1)− 2Q(x)− 2Q(y) = 0

for all x, y ∈ G. �

Corollary 3.1 (even function). Let ϕ be a mapping as in Corollary 2.1. Suppose that the
even functions f, g, h, k : V → X satisfy

‖f(x + y) + g(x− y)− 2h(x)− 2k(y)‖ ≤ ϕ(x, y) for all x, y ∈ V.
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Then there exists exactly one quadratic function Q : V → X such that

‖f(x)− f(0)−Q(x)‖ ≤ M(x) +
1

2
[ϕ(

x

2
,
x

2
) + ϕ(

x

2
,−x

2
)] +

1

3
ϕ(0, 0),

‖g(x)− g(0)−Q(x)‖ ≤ M(x) +
1

2
[ϕ(

x

2
,
x

2
) + ϕ(

x

2
,−x

2
)] +

1

3
ϕ(0, 0),

‖h(x)− h(0)−Q(x)‖ ≤ M(x) +
1

2
ϕ(x, 0) +

1

6
ϕ(0, 0) and

‖k(x)− k(0)−Q(x)‖ ≤ M(x) +
1

2
ϕ(0, x) +

1

6
ϕ(0, 0)

for all x ∈ V , where

M(x) =
1

2
[ϕ̃(x, x) + 2ϕ̃(0, x) + 2ϕ̃(x, 0) + ϕ̃(x,−x)].

The function Q is given by

Q(x) = lim
n→∞

f(2nx)

4n
= lim

n→∞
g(2nx)

4n
= lim

n→∞
h(2nx)

4n
= lim

n→∞
k(2nx)

4n

for all x ∈ V .

Theorem 3.2 (odd function). Let ϕ : G×G → X be a mapping satisfying the conditions

(3.12) lim
n→∞

ϕ(x2n

, y2n

)

2n
= 0

(3.13) ϕ̂(xi, xj) := lim
n→∞

nX

k=0

1

2k
ϕ(xi·2k

, xj·2k

) ∈ X

for all x, y ∈ G and for any fixed i, j = 0, 1, 2, 3, · · · . Suppose that the odd functions
f, g, h, k : G → X satisfy

(3.14) f(x ∗ y) + g(x ∗ y−1)− 2h(x)− 2k(y) = ϕ(x, y)

and the condition (2.4) for all x, y ∈ G. Then the limits T (x) = limn→∞ f(x2n

)/2n and
T ′(x) = limn→∞ g(x2n

)/2n exist for any x ∈ G, and T, T ′ satisfy the equation

(3.15) T (x ∗ y) + T (y ∗ x) = 2T (x) + 2T (y)

for all x, y ∈ G. In this case the equations

f(x)− T (x) =
1

2
[−ϕ̂(x, x) + ϕ̂(x, e) + ϕ̂(e, x)](3.16)

g(x)− T ′(x) =
1

2
[−ϕ̂(x, x−1) + ϕ̂(x, e)− ϕ̂(e, x)](3.17)

h(x)− T (x) + T ′(x)

2
=

1

4
[−ϕ̂(x, x)− ϕ̂(x, x−1) + 2ϕ̂(x2, e)](3.18)

k(x)− T (x)− T ′(x)

2
=

1

4
[−ϕ̂(x, x) + ϕ̂(x, x−1) + 2ϕ̂(e, x2)](3.19)

hold for all x ∈ G.
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Proof. From (3.14), we can easily obtain

f(x ∗ y−1) + g(x ∗ y)− 2h(x) + 2k(y) = ϕ(x, y−1),(3.20)

f(y ∗ x−1) + g(y ∗ x)− 2h(y) + 2k(x) = ϕ(y, x−1),(3.21)

f(y ∗ x)− g(x ∗ y−1)− 2h(y)− 2k(x) = ϕ(y, x)(3.22)

f(x2)− 2h(x)− 2k(x) = ϕ(x, x),(3.23)

f(x) + g(x)− 2h(x) = ϕ(x, e),(3.24)

f(x)− g(x)− 2k(x) = ϕ(e, x),(3.25)

g(x2)− 2h(x) + 2k(x) = ϕ(x, x−1)(3.26)

for all x, y ∈ G. From (3.23), (3.24), (3.25) and (3.26), we obtain the equations

f(x)− f(x2)

2
=

−ϕ(x, x) + ϕ(x, e) + ϕ(e, x)

2

g(x)− g(x2)

2
=

−ϕ(x, x−1) + ϕ(x, e)− ϕ(e, x)

2

for all x ∈ G. Applying the similar method as in the Theorem 3.1 to the above equations,
we easily see that the limits T (x) = limn→∞ f(x2n

)/2n and T ′(x) = limn→∞ g(x2n

)/2n

exist for all x ∈ G and the equations (3.16) and (3.17) hold for all x ∈ G. From (3.24),
(3.25) and the definition of T and T ′, the limits

lim
n→∞

h(x2n

)

2n
=

T (x) + T ′(x)

2
, lim

n→∞
k(x2n

)

2n
=

T (x)− T ′(x)

2

exist for all x ∈ G. From (3.16), (3.17), (3.24) and (3.25), we easily see that the equations
(3.18) and (3.19) hold for all x ∈ G. From (3.14) and (3.22), we obtain

(3.27) f(x ∗ y) + f(y ∗ x)− 2h(x)− 2h(y)− 2k(x)− 2k(y) = ϕ(x, y) + ϕ(y, x)

for all x, y ∈ G. From (3.20) and (3.21), we obtain

(3.28) g(x ∗ y) + g(y ∗ x)− 2h(x)− 2h(y) + 2k(x) + 2k(y) = ϕ(x, y−1) + ϕ(y, x−1)

for all x, y ∈ G. Replacing x, y by x2n

, y2n

and dividing 2n on both sides in the equation
(3.27) and (3.28) implies

f(x2n ∗ y2n

) + f(y2n ∗ x2n

)− 2h(x2n

)− 2h(y2n

)

− 2k(x2n

)− 2k(y2n

) = ϕ(x2n

, y2n

) + ϕ(y2n

, x2n

),

g(x2n ∗ y2n

) + g(y2n ∗ x2n

)− 2h(x2n

)− 2h(y2n

)

+ 2k(x2n

) + 2k(y2n

) = ϕ(x2n

, (y−1)
2n

) + ϕ(y2n

, (x−1)
2n

)

for all x, y ∈ G. Taking the limit in the above equations as n →∞, we see that T and T ′

satisfy the equation (3.15). �

Corollary 3.2 (odd function). Let ϕ : V × V → [0,∞) be a mapping such that

ϕ̂(x, y) :=

∞X
i=0

1

2i
ϕ(2ix, 2iy) < ∞
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for all x, y ∈ V . Suppose that the odd functions f, g, h, k : V → X satisfy

‖f(x + y) + g(x− y)− 2h(x)− 2k(y)‖ ≤ ϕ(x, y) for all x, y ∈ V.

Then there exist two unique additive functions T, T ′ : V → X such that

‖f(x)− T (x)‖ ≤ 1

2
[ϕ̂(x, x) + ϕ̂(x, 0) + ϕ̂(0, x)]

‖g(x)− T ′(x)‖ ≤ 1

2
[ϕ̂(x,−x) + ϕ̂(x, 0) + ϕ̂(0, x)]

‖h(x)− T (x) + T ′(x)

2
‖ ≤ 1

4
[ϕ̂(x, x) + ϕ̂(x,−x) + 2ϕ̂(2x, 0)]

‖k(x)− T (x)− T ′(x)

2
‖ ≤ 1

4
[ϕ̂(x, x) + ϕ̂(x,−x) + 2ϕ̂(0, 2x)]

for all x ∈ V .

Now we prove the stability of the general Pexiderized quadratic equation.
From Theorem 3.1 and Theorem 3.2, we can easily obtain the following theorem.

Theorem 3.3. Let ϕ1, ϕ2 : G × G → X be mappings satisfying the conditions (2.1),
(2.2) in Theorem 2.1 and the conditions (3.12), (3.13) in Theorem 3.2. Suppose that the
functions f, g, h, k : G → X satisfy

(3.29) f(x ∗ y) + g(x ∗ y−1)− 2h(x)− 2k(y) = ϕ1(x, y),

(3.30) f(y−1 ∗ x−1) + g(y ∗ x−1)− 2h(x−1)− 2k(y−1) = ϕ2(x, y)

for all x, y ∈ G. Then there exist exactly one quadratic function Q : G → X and the two
limits T (x) = limn→∞[f(x2n

)−f(x−2n

)]/(2·2n), T ′(x) = limn→∞[g(x2n

)−g(x−2n

)]/(2·2n)
satisfying (3.15) for all x ∈ G. The equations

f(x2)− f(e)−Q(x2)− 2T (x)(3.31)

= M(x2) +
1

2
[ϕ(x, x)− ϕ(x, x−1)]− 1

3
ϕ(e, e) +

1

2
[−ψ̂(x2, x2) + ψ̂(x2, e) + ψ̂(e, x2)],

g(x2)− g(e)−Q(x2)− 2T ′(x)

= M(x2)− 1

2
[ϕ(x, x)− ϕ(x, x−1)]− 1

3
ϕ(e, e) +

1

2
[−ψ̂(x2, x−2) + ψ̂(x2, e)− ψ̂(e, x2)],

h(x)− h(e)−Q(x)− T (x) + T ′(x)

2

= M(x) +
1

6
ϕ(e, e)− 1

2
ϕ(x, e) +

1

4
[−ψ̂(x, x)− ψ̂(x, x−1) + 2ψ̂(x2, e)],

k(x)− k(e)−Q(x)− T (x)− T ′(x)

2

= M(x) +
1

6
ϕ(e, e)− 1

2
ϕ(e, x) +

1

4
[−ψ̂(x, x) + ψ̂(x, x−1) + 2ψ̂(e, x2)]

hold for all x ∈ G, where

M(x) =
1

2
[−ϕ̃(x, x) + 2ϕ̃(e, x) + 2ϕ̃(x, e)− ϕ̃(x, x−1)],

ϕ(x, y) = (ϕ1(x, y) + ϕ2(x, y))/2,

ψ(x, y) = (ϕ1(x, y)− ϕ2(x, y))/2.
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The function Q is given by

Q(x) = lim
n→∞

f(x2n

)

4n
= lim

n→∞
g(x2n

)

4n
= lim

n→∞
h(x2n

)

4n
= lim

n→∞
k(x2n

)

4n

for all x ∈ G.

Proof. Let fe, ge, he, ke be even parts and fo, go, ho, ko be odd parts of f, g, h, k, respec-
tively. From (3.29) and (3.30), we get

fe(x ∗ y) + ge(x ∗ y−1)− 2he(x)− 2ke(y)

=
1

2
[f(x ∗ y) + g(x ∗ y−1)− 2h(x)− 2k(y)]

+
1

2
[f(y−1 ∗ x−1) + g(y ∗ x−1)− 2h(x−1)− 2k(y−1)]

=
ϕ1(x, y) + ϕ2(x, y)

2
= ϕ(x, y)

for all x, y ∈ G. By Theorem 3.1, there exists exactly one quadratic function Q : G → X
such that

(3.32) fe(x
2)− f(e)−Q(x) = M(x2) +

1

2
[ϕ(x, x)− ϕ(x, x−1)]− 1

3
ϕ(e, e)

for all x ∈ G, where
Q(x) = lim

n→∞
[f(x2n

) + f(x−2n

)]/(2 · 4n).

From (3.29) and (3.30), we get

fo(x ∗ y) + go(x ∗ y−1)− 2ho(x)− 2ko(y) =
ϕ1(x, y)− ϕ2(x, y)

2
= ψ(x, y)

for all x ∈ G. By Theorem 3.2, the limits T (x) = limn→∞[f(x2n

) − f(x−2n

)]/(2 · 2n),
T ′(x) = limn→∞[g(x2n

) − g(x−2n

)]/(2 · 2n) exist for all x ∈ G. And the two functions
T, T ′ : G → X satisfy (3.15) and

(3.33) fo(x
2)− 2T (x) =

1

2
[−ψ̂(x2, x2) + ψ̂(x2, e) + ψ̂(e, x2)]

for all x ∈ G \ {e}. From (3.32), (3.33) and the equation

f(x2)− f(e)− 4Q(x)− 2T (x) = fe(x
2)− f(e)−Q(x2) + fo(x

2)− T (x2),

we get (3.31). The equation

lim
n→∞

f(x2n

)

4n
= lim

n→∞
f(x2n

) + f(x−2n

)

2 · 4n
+ lim

n→∞
f(x2n

)− f(x−2n

)

2 · 4n

= lim
n→∞

f(x2n

) + f(x−2n

)

2 · 4n
+ lim

n→∞
1

2n
lim

n→∞
f(x2n

)− f(x−2n

)

2 · 2n

= Q(x) + 0 · T (x)

holds for all x ∈ G. By the similar method, we obtain the remaining results. �

Corollary 3.3. Let ϕ : V × V → X be a mapping satisfying the conditions in Corollary
3.1 and Corollary 3.2. Suppose that the functions f, g, h, k : V → X satisfy

(3.34) ‖f(x + y) + g(x− y)− 2h(x)− 2k(y)‖ ≤ ϕ(x, y) for all x, y ∈ V.
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Then there exist exactly one quadratic function Q : V → X and two unique additive
functions T, T ′ : V → X such that

‖f(x)− f(0)−Q(x)− T (x)‖
≤ M(x) +

1

2
[ψ(

x

2
,
x

2
) + ψ(

x

2
,−x

2
)] +

1

2
[ψ̂(x, x) + ψ̂(x, 0) + ψ̂(0, x)] +

1

3
ψ(0, 0),

‖g(x)− g(0)−Q(x)− T ′(x)|
≤ M(x) +

1

2
[ψ(

x

2
,
x

2
) + ψ(

x

2
,−x

2
)] +

1

2
[ψ̂(x,−x) + ψ̂(x, 0) + ψ̂(0, x)] +

1

3
ψ(0, 0),

‖h(x)− h(0)−Q(x)− 1

2
(T (x) + T ′(x))‖

≤ M(x) +
1

2
ψ(x, 0) +

1

6
ψ(0, 0) +

1

4
[ψ̂(x, x) + ψ̂(x,−x) + 2ψ̂(2x, 0)], and

‖k(x)− k(0)−Q(x)− 1

2
(T (x)− T ′(x))‖

≤ M(x) +
1

2
ψ(0, x) +

1

6
ψ(0, 0) +

1

4
[ψ̂(x, x) + ψ̂(x,−x) + 2ψ̂(0, 2x)]

for all x ∈ V , where ψ(x, y) = (ϕ(x, y) + ϕ(−x,−y))/2 and

M(x) =
1

2
[ψ̃(x, x) + 2ψ̃(0, x) + 2ψ̃(x, 0) + ψ̃(x,−x)].

The function Q is given by

Q(x) = lim
n→∞

f(2nx)

4n
= lim

n→∞
g(2nx)

4n
= lim

n→∞
h(2nx)

4n
= lim

n→∞
k(2nx)

4n

and the functions T, T ′ are given by

T (x) = lim
n→∞

f(2nx)− f(−2nx)

2n+1
, T ′(x) = lim

n→∞
g(2nx)− g(−2nx)

2n+1
. �
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