A Generalization of the Hyers-Ulam-Rassias Stability of the Pexiderized Quadratic Equations, II

Kil-Woung Jun
Department of Mathematics, Chungnam National University, Taejon 305-764, Korea
e-mail: kwjun@math.chungnam.ac.kr
Yang-Hi Lee
Department of Mathematics Education, Kongju National University of Education, Kongju 314-060, Korea
e-mail : yanghi2@hanmail.net

Abstract. In this paper we prove the Hyers-Ulam-Rassias stability by considering the cases that the approximate remainder φ is defined by $f(x * y)+f\left(x * y^{-1}\right)-2 g(x)-2 g(y)=$ $\varphi(x, y), f(x * y)+g\left(x * y^{-1}\right)-2 h(x)-2 k(y)=\varphi(x, y)$, where $(G, *)$ is a group, X is a real or complex Hausdorff topological vector space and f, g, h, k are functions from G into X.

1. Introduction

In 1940, S. M. Ulam [23] raised the following question: Under what conditions does there exist an additive mapping near an approximately additive mapping?

In 1941, D. H. Hyers [7] proved that if $f: V \rightarrow X$ is a mapping satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for all $x, y \in V$, where V and X are Banach spaces and δ is a given positive number, then there exists a unique additive mapping $T: V \rightarrow X$ such that

$$
\|f(x)-T(x)\| \leq \delta
$$

for all $x \in V$.
Th.M. Rassias [17] gave a generalization of the Hyers' result(see also [5], [17], [20], [21]). This is the first theorem that has been proved in the subject of stability of functional equations which allows the Cauchy difference to be unbounded. P. Găvruta [6] following Th. M. Rassias's approach for the Cauchy difference to be unbounded, obtained a generalization of the Hyers-Rassias theorem. (see also [8], [15],[16]).
Lee and Jun [13], [14] also obtained the Hyers-Ulam-Rassias stability of the Pexider equation of $f(x+y)=g(x)+h(y)$ (see also [12]).

Received December 14, 2005.
2000 Mathematics Subject Classification: Primary 39B72,47H15.
Key words and phrases: quadratic function, pexiderized quadratic equation.
"This work was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD)"(KRF-2005-070-C00009)

In 1983, the stability theorem for the quadratic functional equation

$$
f(x+y)+f(x-y)-2 f(x)-2 f(y)=0
$$

was proved F. Skof [22] for the function $f: V \rightarrow X$. In 1984, P. W. Cholewa [1] extended the Skof's result to the case where V is an Abelian group G. In 1992, S. Czerwik [3] gave a generalization of the Skof-Cholewa's result. Since then, the stability problem of the quadratic equation has been extensively investigated by a number of mathemati$\operatorname{cian}([2],[4],[18],[19])$. In 2001, the authors [11] proved the stability of the Pexiderized quadratic inequalities :

$$
\begin{aligned}
\|f(x+y)+f(x-y)-2 g(x)-2 g(y)\| & \leq \varphi(x, y) \\
\|f(x+y)+g(x-y)-2 h(x)-2 k(y)\| & \leq \varphi(x, y)
\end{aligned}
$$

Throughout this paper, we denote by G a group and by X a real or complex Hausdorff topological vector space. By \mathbb{N} we denote the set of positive integers. e stands for the unit of G, while it is 0 instead of e if G is an abelian group. W. Jian [9] obtained the Hyers-Ulam-Rassias stability theory by considering the cases where the approximate remainder φ is defined by

$$
\begin{aligned}
f(x * y)-f(x)-f(y) & =\varphi(x, y) \text { for all } x, y \in G \\
f(x * y)-g(x)-h(y) & =\varphi(x, y) \text { for all } x, y \in G
\end{aligned}
$$

where f, g, h are functions from G into X. In 2004, the authors [10] obtained the Hyers-Ulam-Rassias stability theory by considering the cases where the approximate remainder φ is defined by

$$
\begin{aligned}
& f(x * y)+f\left(x * y^{-1}\right)-2 g(x)-2 g(y)=\varphi(x, y) \text { for all } x, y \in G \backslash\{e\}, \\
& f(x * y)+g\left(x * y^{-1}\right)-2 h(x)-2 k(y)=\varphi(x, y) \text { for all } x, y \in G \backslash\{e\},
\end{aligned}
$$

where f, g, h, k are functions from G into X. In this paper, using the direct method, we obtain some generalization of the Hyers-Ulam-Rassias stability theory by considering the cases where the approximate remainder φ is defined by

$$
\begin{align*}
& f(x * y)+f\left(x * y^{-1}\right)-2 g(x)-2 g(y)=\varphi(x, y) \text { for all } x, y \in G \tag{1.1}\\
& f(x * y)+g\left(x * y^{-1}\right)-2 h(x)-2 k(y)=\varphi(x, y) \text { for all } x, y \in G \tag{1.2}
\end{align*}
$$

A function $Q: G \rightarrow X$ is called quadratic on G if $Q(x * y)+Q\left(x * y^{-1}\right)-2 Q(x)-2 Q(y)=0$.

2. Stability of the equation

In this section, we prove the stability of the functional equation (1.1).
Theorem 2.1. Let $\varphi: G \times G \rightarrow X$ be a mapping satisfying the conditions

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \frac{\varphi\left(x^{2^{n}}, y^{2^{n}}\right)}{4^{n}}=0 \tag{2.1}\\
\tilde{\varphi}\left(x^{i}, x^{j}\right):=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{4^{k+1}} \varphi\left(x^{i \cdot 2^{k}}, x^{j \cdot 2^{k}}\right) \in X \tag{2.2}
\end{gather*}
$$

for all $x, y \in G$ and for any fixed $i, j=0,1,2,3, \cdots$. Suppose that the functions $f, g: G \rightarrow$ X satisfy

$$
\begin{align*}
& f(x * y)+f\left(x * y^{-1}\right)-2 g(x)-2 g(y)=\varphi(x, y) \tag{2.3}\\
& f\left((x * y)^{2^{n}}\right)=f\left(x^{2^{n}} * y^{2^{n}}\right), g\left((x * y)^{2^{n}}\right)=g\left(x^{2^{n}} * y^{2^{n}}\right) \tag{2.4}
\end{align*}
$$

for all $x, y \in G$ and $n \in \mathbb{N}$. Then the limit $Q(x)=\lim _{n \rightarrow \infty} f\left(x^{2^{n}}\right) / 4^{n}=\lim _{n \rightarrow \infty} g\left(x^{2^{n}}\right) / 4^{n}$ exists for all $x \in G$ and Q is quadratic. In this case, the equations

$$
\begin{align*}
f(x)-f(e)-Q(x) & =-\tilde{\varphi}(x, x)+2 \tilde{\varphi}(x, e)-\frac{\varphi(e, e)}{3} \tag{2.5}\\
g(x)-g(e)-Q(x) & =\frac{1}{2} \tilde{\varphi}\left(x^{2}, e\right)-\tilde{\varphi}(x, x)+\frac{1}{6} \varphi(e, e) \tag{2.6}
\end{align*}
$$

hold for all $x \in G$.
Proof. Let x be an arbitrary fixed element of G. From (2.3), we have

$$
\begin{align*}
& \frac{f(e)}{2}-g(e)=\frac{1}{4} \varphi(e, e) \tag{2.7}\\
& f(x)-g(x)-g(e)=\frac{1}{2} \varphi(x, e) \tag{2.8}\\
& \frac{1}{4}\left(f\left(x^{2}\right)+f(e)\right)-g(x)=\frac{1}{4} \varphi(x, x) \tag{2.9}
\end{align*}
$$

for all $x \in G$. From (2.7), (2.8) and (2.9), we get

$$
\begin{align*}
& f(x)-f(e)-\frac{1}{4}\left(f\left(x^{2}\right)-f(e)\right)=f(x)-g(x)-g(e) \tag{2.10}\\
& \quad-\left[\frac{1}{4} f\left(x^{2}\right)+f(e)-g(x)\right]-\left[\frac{f(e)}{2}-g(e)\right] \\
& =-\frac{1}{4} \varphi(x, x)+\frac{1}{2} \varphi(x, e)-\frac{1}{4} \varphi(e, e) .
\end{align*}
$$

for all $x \in G$. Induction argument implies

$$
\begin{equation*}
f(x)-f(e)-\frac{1}{4^{n}}\left(f\left(x^{2^{n}}\right)-f(e)\right)=\sum_{i=0}^{n-1} \frac{-\varphi\left(x^{2^{i}}, x^{2^{i}}\right)+2 \varphi\left(x^{2^{i}}, e\right)-\varphi(e, e)}{4^{i+1}} \tag{2.11}
\end{equation*}
$$

for all $x \in G$ and for all $n \in N$. From (2.1) and (2.11), $\lim _{n \rightarrow \infty} \frac{f\left(x^{2^{n}}\right)-f(e)}{4^{n}}$ exists for any $x \in G$. From this, we can define $Q: G \rightarrow X$ by

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(x^{2^{n}}\right)}{4^{n}}
$$

for any $x \in G$ and the equation (2.5) holds for all $x \in G$. Replacing x by $x^{2^{n}}$ and dividing by 4^{n} in (2.8), we get

$$
\begin{equation*}
\frac{1}{4^{n}} f\left(x^{2^{n}}\right)-\frac{1}{4^{n}} g\left(x^{2^{n}}\right)-\frac{1}{4^{n}} g(e)=\frac{\varphi\left(x^{2^{n}}, e\right)}{2 \cdot 4^{n}} \tag{2.12}
\end{equation*}
$$

for all $n \in N$. Taking the limit in (2.12) as $n \rightarrow \infty$, the equation $Q(x)=\lim _{n \rightarrow \infty} g\left(x^{2^{n}}\right) / 4^{n}$ holds. From (2.5) and (2.8), we have the equation (2.6). Replacing x, y by $x^{2^{n}}, y^{2^{n}}$, respectively and dividing by 4^{n} in (2.3), we have

$$
\frac{f\left(x^{2^{n}} * y^{2^{n}}\right)}{4^{n}}+\frac{f\left(x^{2^{n}} * y^{-2^{n}}\right)}{4^{n}}-\frac{2 g\left(x^{2^{n}}\right)}{4^{n}}-\frac{2 g\left(y^{2^{n}}\right)}{4^{n}}=\frac{\varphi\left(x^{2^{n}}, y^{2^{n}}\right)}{4^{n}}
$$

for all $x, y \in G$ and for all $n \in N$. Taking the limit in the above equation as $n \rightarrow \infty$, we easily obtain

$$
Q(x * y)+Q\left(x * y^{-1}\right)-2 Q(x)-2 Q(y)=0
$$

for all $x, y \in G$. From (2.5), (2.7) and (2.8), we easily get (2.6).
Corollary 2.1. Let V be a vector space and X a Banach space. Let $\varphi: V \times V \rightarrow[0, \infty)$ be a mapping such that

$$
\tilde{\varphi}(x, y):=\sum_{i=0}^{\infty} \frac{1}{4^{i+1}} \varphi\left(2^{i} x, 2^{i} y\right)<\infty
$$

for all $x, y \in V$. Suppose that the functions $f, g: V \rightarrow X$ satisfy

$$
\|f(x+y)+f(x-y)-2 g(x)-2 g(y)\| \leq \varphi(x, y) \quad \text { for all } \quad x, y \in V
$$

Then there exists exactly one quadratic function $Q: V \rightarrow X$ such that

$$
\begin{aligned}
\|f(x)-f(0)-Q(x)\| & \leq \tilde{\varphi}(x, x)+2 \tilde{\varphi}(x, 0)+\frac{1}{3} \varphi(0,0) \\
\|g(x)-g(0)-Q(x)\| & \leq \frac{1}{2} \tilde{\varphi}(2 x, 0)+\tilde{\varphi}(x, x)+\frac{1}{6} \varphi(0,0)
\end{aligned}
$$

for all $x \in V$. The function Q is given by

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)}{4^{n}}
$$

for all $x \in V$.
Proof. Let $f(x+y)+f(x-y)-2 g(x)-2 g(y)=\varphi_{1}(x, y)$. Since V is a vector space, the equation (2.4) holds for any $x, y \in V$. Since $\left\|\varphi_{1}(x, y)\right\| \leq \varphi(x, y)$ and X is a Banach space, $\varphi_{1}: V \times V \rightarrow X$ is a mapping satisfying the two conditions

$$
\lim _{n \rightarrow \infty} \frac{\varphi_{1}\left(2^{n} x, 2^{n} y\right)}{4^{n}}=0
$$

for all $x, y \in V$ and

$$
\tilde{\varphi}(i x, j x):=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{4^{k+1}} \varphi_{1}\left(2^{k} \cdot i x, 2^{k} \cdot j x\right) \in X
$$

for all $x \in V$ and for any fixed $i, j=0,1,2,3, \cdots$. By Theorem 2.1, the limit $Q(x)=$ $\lim _{n \rightarrow \infty} f\left(2^{n} x\right) / 4^{n}$ exists for any $x \in V$ and Q satisfies

$$
Q(x+y)+Q(x-y)-2 Q(x)-2 Q(y)=0
$$

for all $x, y \in V$. In this case, the equations

$$
\begin{aligned}
\|f(x)-f(0)-Q(x)\| & =\left\|-\tilde{\varphi}_{1}(x, x)+2 \tilde{\varphi}_{1}(x, 0)-\frac{\varphi_{1}(0,0)}{3}\right\| \\
& \leq \tilde{\varphi}(x, x)+2 \tilde{\varphi}(x, 0)+\frac{1}{3} \varphi(0,0) \\
\|g(x)-g(0)-Q(x)\| & =\left\|\frac{1}{2} \tilde{\varphi}_{1}(2 x, 0)-\tilde{\varphi}_{1}(x, x)+\frac{1}{6} \varphi_{1}(0,0)\right\| \\
& \leq \frac{1}{2} \tilde{\varphi}(2 x, 0)+\tilde{\varphi}(x, x)+\frac{1}{6} \varphi(0,0)
\end{aligned}
$$

hold for all $x \in V$. It remains to show that Q is uniquely determined. Let $Q^{\prime}: V \rightarrow X$ be another function satisfying (). Then

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\| & \leq\left\|\frac{f\left(2^{n} x\right)-f(0)}{4^{n}}-Q(x)\right\|+\left\|\frac{f\left(2^{n} x\right)-f(0)}{4^{n}}-Q^{\prime}(x)\right\| \\
& =\left\|\frac{f\left(2^{n} x\right)-f(0)-Q\left(4^{n} x\right)}{4^{n}}\right\|+\left\|\frac{f\left(2^{n} x\right)-f(0)-Q^{\prime}\left(2^{n} x\right)}{4^{n}}\right\| \\
& \leq \frac{1}{4^{n}}\left[\tilde{\varphi}\left(2^{n+1} x, 0\right)+2 \tilde{\varphi}\left(2^{n} x, 2^{n} x\right)+\frac{1}{3} \varphi(0,0)\right]
\end{aligned}
$$

for every $x \in V$ and $n \in \mathbb{N}$. Taking the limit in the above inequality as $n \rightarrow \infty$, we obtain

$$
Q(x)=Q^{\prime}(x) \quad \text { for all } x \in V
$$

3. Stability of the equation (1.2)

In this section, we prove the stability of the Pexiderized quadratic equation (1.2). If a function $f: G \rightarrow X$ satisfies $f(x)=f\left(x^{-1}\right)$ for all $x \in G$, then the function f is called an even function. If a function $f: G \rightarrow X$ satisfies $f(x)=-f\left(x^{-1}\right)$ for all $x \in G$, then the function f is called an odd function.

Theorem 3.1 (even function). Let $\varphi: G \times G \rightarrow X$ be a mapping satisfying the conditions in Theorem 2.1. Suppose that the even functions $f, g, h, k: G \rightarrow X$ satisfy

$$
\begin{equation*}
f(x * y)+g\left(x * y^{-1}\right)-2 h(x)-2 k(y)=\varphi(x, y) \tag{3.1}
\end{equation*}
$$

and the condition (2.4). Then there exists exactly one quadratic function $Q: G \rightarrow X$ such that

$$
\begin{aligned}
f\left(x^{2}\right)-f(e)-Q\left(x^{2}\right) & =M\left(x^{2}\right)+\frac{1}{2}\left[\varphi(x, x)-\varphi\left(x, x^{-1}\right)\right]-\frac{1}{3} \varphi(e, e) \\
g\left(x^{2}\right)-g(e)-Q\left(x^{2}\right) & =M\left(x^{2}\right)-\frac{1}{2}\left[\varphi(x, x)-\varphi\left(x, x^{-1}\right)\right]-\frac{1}{3} \varphi(e, e) \\
h(x)-h(e)-Q(x) & =M(x)+\frac{1}{6} \varphi(e, e)-\frac{1}{2} \varphi(x, e) \\
k(x)-k(e)-Q(x) & =M(x)+\frac{1}{6} \varphi(e, e)-\frac{1}{2} \varphi(e, x)
\end{aligned}
$$

for all $x \in G$, where

$$
M(x)=\frac{1}{2}\left[-\tilde{\varphi}(x, x)+2 \tilde{\varphi}(e, x)+2 \tilde{\varphi}(x, e)-\tilde{\varphi}\left(x, x^{-1}\right)\right] .
$$

The function Q is given by

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(x^{2^{n}}\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{g\left(x^{2^{n}}\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{h\left(x^{2^{n}}\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{k\left(x^{2^{n}}\right)}{4^{n}}
$$

for all $x \in G$.

Proof. Since f, g, h, k are the even functions, from (3.1), we can easily obtain

$$
\begin{align*}
f(x)+g(x)-2 h(x)-2 k(e) & =\varphi(x, e) \tag{3.2}\\
f\left(x^{2}\right)+g(e)-2 h(x)-2 k(x) & =\varphi(x, x) \tag{3.3}\\
f(x)+g(x)-2 h(e)-2 k(x) & =\varphi(e, x) \tag{3.4}\\
f(e)+g\left(x^{2}\right)-2 h(x)-2 k(x) & =\varphi\left(x, x^{-1}\right) \tag{3.5}\\
f(e)+g(e)-2 h(e)-2 k(e) & =\varphi(e, e) \tag{3.6}
\end{align*}
$$

for all $x \in G$. From (3.2), (3.3) and (3.4), we get

$$
\begin{align*}
& f\left(x^{2}\right)-2 f(x)-2 g(x)+g(e)+2 h(e)+2 k(e) \tag{3.7}\\
= & {\left[f\left(x^{2}\right)+g(e)-2 h(x)-2 k(x)\right]-[f(x)+g(x)-2 h(e)-2 k(x)] } \\
& -[f(x)+g(x)-2 h(x)-2 k(e)]=\varphi(x, x)-\varphi(e, x)-\varphi(x, e)
\end{align*}
$$

for all $x \in G$. From (3.2), (3.4) and (3.5), we get

$$
\begin{align*}
& g\left(x^{2}\right)-2 f(x)-2 g(x)+f(e)+2 h(e)+2 k(e) \tag{3.8}\\
=\quad & {\left[f(e)+g\left(x^{2}\right)-2 h(x)-2 k(x)\right]-[f(x)+g(x)-2 h(x)-2 k(e)] } \\
& -[f(x)+g(x)-2 h(e)-2 k(x)]=\varphi\left(x, x^{-1}\right)-\varphi(x, e)-\varphi(e, x)
\end{align*}
$$

for all $x \in G$. From (3.6), (3.7) and (3.8), we get

$$
\begin{aligned}
& 4(f(x)+g(x)-f(e)-g(e))-\left(f\left(x^{2}\right)+g\left(x^{2}\right)-f(e)-g(e)\right) \\
= & -\left[f\left(x^{2}\right)-2 f(x)-2 g(x)+g(e)+2 h(e)+2 k(e)\right] \\
& -\left[g\left(x^{2}\right)-2 f(x)-2 g(x)+f(e)+2 h(e)+2 k(e)\right] \\
& -2[f(e)+g(e)-2 h(e)-2 k(e)] \\
= & -\varphi(x, x)+2 \varphi(e, x)+2 \varphi(x, e)-\varphi\left(x, x^{-1}\right)-2 \varphi(e, e)
\end{aligned}
$$

for all $x \in G$. Induction argument implies

$$
\begin{align*}
& f(x)+g(x)-f(e)-g(e)-\frac{f\left(x^{2^{n}}\right)+g\left(x^{2^{n}}\right)-f(e)-g(e)}{4^{n}} \tag{3.9}\\
= & \sum_{i=0}^{n-1} \frac{-\varphi\left(x^{2^{i}}, x^{2^{i}}\right)+2 \varphi\left(e, x^{2^{i}}\right)+2 \varphi\left(x^{2^{i}}, e\right)-\varphi\left(x^{2^{i}}, x^{-2^{i}}\right)-2 \varphi(e, e)}{4^{i+1}}
\end{align*}
$$

for all $n \in N$ and $x \in G$. From (2.2) and the above equation, we can define $Q: G \rightarrow X$ by

$$
2 Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(x^{2^{n}}\right)+g\left(x^{2^{n}}\right)-f(e)-g(e)}{4^{n}}
$$

for all $x \in G$. From (3.9) and the definition of Q, we have

$$
\begin{align*}
& f(x)+g(x)-f(e)-g(e)-2 Q(x) \tag{3.10}\\
= & -\tilde{\varphi}(x, x)+2 \tilde{\varphi}(e, x)+2 \tilde{\varphi}(x, e)-\tilde{\varphi}\left(x, x^{-1}\right)-\frac{2}{3} \varphi(e, e)
\end{align*}
$$

for all $x \in G$. Form (3.3), (3.5) and (3.10), we get

$$
\begin{aligned}
& 2 f\left(x^{2}\right)-2 f(e)-2 Q\left(x^{2}\right)=f\left(x^{2}\right)+g\left(x^{2}\right)-f(e)-g(e)-2 Q\left(x^{2}\right) \\
& +\left[f\left(x^{2}\right)+g(e)-2 h(x)-2 k(x)\right]-\left[f(e)+g\left(x^{2}\right)-2 h(x)-2 k(x)\right] \\
= & 2 M\left(x^{2}\right)-\frac{2}{3} \varphi(e, e)+\varphi(x, x)-\varphi\left(x, x^{-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& 2 g\left(x^{2}\right)-2 g(e)-2 Q\left(x^{2}\right)=f\left(x^{2}\right)+g\left(x^{2}\right)-f(e)-g(e)-2 Q\left(x^{2}\right) \\
& -\left[f\left(x^{2}\right)+g(e)-2 h(x)-2 k(x)\right]+\left[f(e)+g\left(x^{2}\right)-2 h(x)-2 k(x)\right] \\
= & 2 M\left(x^{2}\right)-\frac{2}{3} \varphi(e, e)-\varphi(x, x)+\varphi\left(x, x^{-1}\right)
\end{aligned}
$$

for all $x \in G$. From (3.2), (3.6) and (3.10), we get

$$
\begin{aligned}
& 2 h(x)-2 h(e)-2 Q(x) \\
= & f(x)+g(x)-f(e)-g(e)-2 Q(x)-[f(x)+g(x)-2 h(x)-2 k(e)] \\
& +[f(e)+g(e)-2 k(e)-2 h(e)]=M(x)+\frac{1}{3} \varphi(e, e)-\varphi(x, e)
\end{aligned}
$$

for all $x \in G$. From (3.4), (3.6) and (3.10), we get

$$
\begin{aligned}
& 2 k(x)-2 k(e)-2 Q(x) \\
= & f(x)+g(x)-f(e)-g(e)-2 Q(x)-[f(x)+g(x)-2 h(e)-2 k(x)] \\
& +[f(e)+g(e)-2 k(e)-2 h(e)] \\
= & -\tilde{\varphi}(x, x)+2 \tilde{\varphi}(e, x)+2 \tilde{\varphi}(x, e)-\tilde{\varphi}\left(x, x^{-1}\right)+\frac{1}{3} \varphi(e, e)-\varphi(e, x)
\end{aligned}
$$

for all $x \in G$. Replacing x by $x^{2^{n}}$ and dividing by 4^{n} in (3.2), we have

$$
\begin{equation*}
\frac{f\left(x^{2^{n}}\right)+g\left(x^{2^{n}}\right)}{4^{n}}-\frac{2 h\left(x^{2^{n}}\right)+2 k(e)}{4^{n}}=\frac{\varphi\left(x^{2^{n}}, e\right)}{4^{n}} \tag{3.11}
\end{equation*}
$$

for all $n \in N$ and $x \in G$. Taking the limit in (3.11), we have

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{h\left(x^{2^{n}}\right)}{4^{n}}
$$

for all $x \in G$. By the similar method, we obtain

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(x^{2^{n}}\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{g\left(x^{2^{n}}\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{k\left(x^{2^{n}}\right)}{4^{n}}
$$

for all $x \in G$. Replacing x by $x^{2^{n}}$ and y by $y^{2^{n}}$ and dividing 4^{n} on both sides, the equation (3.1) implies

$$
\frac{f\left(x^{2^{n}} * y^{2^{n}}\right)}{4^{n}}+\frac{g\left(x^{2^{n}} * y^{-2^{n}}\right)}{4^{n}}-\frac{2 h\left(x^{2^{n}}\right)}{4^{n}}-\frac{2 k\left(y^{2^{n}}\right)}{4^{n}}=\frac{\varphi\left(x^{2^{n}}, y^{2^{n}}\right)}{4^{n}} \quad(\forall x, y \in G) .
$$

Taking the limit in the above equation, we have

$$
Q(x * y)+Q\left(x * y^{-1}\right)-2 Q(x)-2 Q(y)=0
$$

for all $x, y \in G$.
Corollary 3.1 (even function). Let φ be a mapping as in Corollary 2.1. Suppose that the even functions $f, g, h, k: V \rightarrow X$ satisfy

$$
\|f(x+y)+g(x-y)-2 h(x)-2 k(y)\| \leq \varphi(x, y) \quad \text { for all } \quad x, y \in V
$$

Then there exists exactly one quadratic function $Q: V \rightarrow X$ such that

$$
\begin{aligned}
\|f(x)-f(0)-Q(x)\| & \leq M(x)+\frac{1}{2}\left[\varphi\left(\frac{x}{2}, \frac{x}{2}\right)+\varphi\left(\frac{x}{2},-\frac{x}{2}\right)\right]+\frac{1}{3} \varphi(0,0) \\
\|g(x)-g(0)-Q(x)\| & \leq M(x)+\frac{1}{2}\left[\varphi\left(\frac{x}{2}, \frac{x}{2}\right)+\varphi\left(\frac{x}{2},-\frac{x}{2}\right)\right]+\frac{1}{3} \varphi(0,0) \\
\|h(x)-h(0)-Q(x)\| & \leq M(x)+\frac{1}{2} \varphi(x, 0)+\frac{1}{6} \varphi(0,0) \text { and } \\
\|k(x)-k(0)-Q(x)\| & \leq M(x)+\frac{1}{2} \varphi(0, x)+\frac{1}{6} \varphi(0,0)
\end{aligned}
$$

for all $x \in V$, where

$$
M(x)=\frac{1}{2}[\tilde{\varphi}(x, x)+2 \tilde{\varphi}(0, x)+2 \tilde{\varphi}(x, 0)+\tilde{\varphi}(x,-x)] .
$$

The function Q is given by

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{h\left(2^{n} x\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{k\left(2^{n} x\right)}{4^{n}}
$$

for all $x \in V$.
Theorem 3.2 (odd function). Let $\varphi: G \times G \rightarrow X$ be a mapping satisfying the conditions

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \frac{\varphi\left(x^{2^{n}}, y^{2^{n}}\right)}{2^{n}}=0 \tag{3.12}\\
\hat{\varphi}\left(x^{i}, x^{j}\right):=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{2^{k}} \varphi\left(x^{i \cdot 2^{k}}, x^{j \cdot 2^{k}}\right) \in X \tag{3.13}
\end{gather*}
$$

for all $x, y \in G$ and for any fixed $i, j=0,1,2,3, \cdots$. Suppose that the odd functions $f, g, h, k: G \rightarrow X$ satisfy

$$
\begin{equation*}
f(x * y)+g\left(x * y^{-1}\right)-2 h(x)-2 k(y)=\varphi(x, y) \tag{3.14}
\end{equation*}
$$

and the condition (2.4) for all $x, y \in G$. Then the limits $T(x)=\lim _{n \rightarrow \infty} f\left(x^{2^{n}}\right) / 2^{n}$ and $T^{\prime}(x)=\lim _{n \rightarrow \infty} g\left(x^{2^{n}}\right) / 2^{n}$ exist for any $x \in G$, and T, T^{\prime} satisfy the equation

$$
\begin{equation*}
T(x * y)+T(y * x)=2 T(x)+2 T(y) \tag{3.15}
\end{equation*}
$$

for all $x, y \in G$. In this case the equations

$$
\begin{align*}
f(x)-T(x) & =\frac{1}{2}[-\hat{\varphi}(x, x)+\hat{\varphi}(x, e)+\hat{\varphi}(e, x)] \tag{3.16}\\
g(x)-T^{\prime}(x) & =\frac{1}{2}\left[-\hat{\varphi}\left(x, x^{-1}\right)+\hat{\varphi}(x, e)-\hat{\varphi}(e, x)\right] \tag{3.17}\\
h(x)-\frac{T(x)+T^{\prime}(x)}{2} & =\frac{1}{4}\left[-\hat{\varphi}(x, x)-\hat{\varphi}\left(x, x^{-1}\right)+2 \hat{\varphi}\left(x^{2}, e\right)\right] \tag{3.18}\\
k(x)-\frac{T(x)-T^{\prime}(x)}{2} & =\frac{1}{4}\left[-\hat{\varphi}(x, x)+\hat{\varphi}\left(x, x^{-1}\right)+2 \hat{\varphi}\left(e, x^{2}\right)\right] \tag{3.19}
\end{align*}
$$

hold for all $x \in G$.

Proof. From (3.14), we can easily obtain

$$
\begin{align*}
& f\left(x * y^{-1}\right)+g(x * y)-2 h(x)+2 k(y)=\varphi\left(x, y^{-1}\right), \tag{3.20}\\
& f\left(y * x^{-1}\right)+g(y * x)-2 h(y)+2 k(x)=\varphi\left(y, x^{-1}\right), \tag{3.21}\\
& f(y * x)-g\left(x * y^{-1}\right)-2 h(y)-2 k(x)=\varphi(y, x) \tag{3.22}\\
& f\left(x^{2}\right)-2 h(x)-2 k(x)=\varphi(x, x), \tag{3.23}\\
& f(x)+g(x)-2 h(x)=\varphi(x, e), \tag{3.24}\\
& f(x)-g(x)-2 k(x)=\varphi(e, x), \tag{3.25}\\
& g\left(x^{2}\right)-2 h(x)+2 k(x)=\varphi\left(x, x^{-1}\right) \tag{3.26}
\end{align*}
$$

for all $x, y \in G$. From (3.23), (3.24), (3.25) and (3.26), we obtain the equations

$$
\begin{aligned}
f(x)-\frac{f\left(x^{2}\right)}{2} & =\frac{-\varphi(x, x)+\varphi(x, e)+\varphi(e, x)}{2} \\
g(x)-\frac{g\left(x^{2}\right)}{2} & =\frac{-\varphi\left(x, x^{-1}\right)+\varphi(x, e)-\varphi(e, x)}{2}
\end{aligned}
$$

for all $x \in G$. Applying the similar method as in the Theorem 3.1 to the above equations, we easily see that the limits $T(x)=\lim _{n \rightarrow \infty} f\left(x^{2^{n}}\right) / 2^{n}$ and $T^{\prime}(x)=\lim _{n \rightarrow \infty} g\left(x^{2^{n}}\right) / 2^{n}$ exist for all $x \in G$ and the equations (3.16) and (3.17) hold for all $x \in G$. From (3.24), (3.25) and the definition of T and T^{\prime}, the limits

$$
\lim _{n \rightarrow \infty} \frac{h\left(x^{2^{n}}\right)}{2^{n}}=\frac{T(x)+T^{\prime}(x)}{2}, \quad \lim _{n \rightarrow \infty} \frac{k\left(x^{2^{n}}\right)}{2^{n}}=\frac{T(x)-T^{\prime}(x)}{2}
$$

exist for all $x \in G$. From (3.16), (3.17), (3.24) and (3.25), we easily see that the equations (3.18) and (3.19) hold for all $x \in G$. From (3.14) and (3.22), we obtain

$$
\begin{equation*}
f(x * y)+f(y * x)-2 h(x)-2 h(y)-2 k(x)-2 k(y)=\varphi(x, y)+\varphi(y, x) \tag{3.27}
\end{equation*}
$$

for all $x, y \in G$. From (3.20) and (3.21), we obtain

$$
\begin{equation*}
g(x * y)+g(y * x)-2 h(x)-2 h(y)+2 k(x)+2 k(y)=\varphi\left(x, y^{-1}\right)+\varphi\left(y, x^{-1}\right) \tag{3.28}
\end{equation*}
$$

for all $x, y \in G$. Replacing x, y by $x^{2^{n}}, y^{2^{n}}$ and dividing 2^{n} on both sides in the equation (3.27) and (3.28) implies

$$
\begin{aligned}
& f\left(x^{2^{n}} * y^{2^{n}}\right)+f\left(y^{2^{n}} * x^{2^{n}}\right)-2 h\left(x^{2^{n}}\right)-2 h\left(y^{2^{n}}\right) \\
& \quad-2 k\left(x^{2^{n}}\right)-2 k\left(y^{2^{n}}\right)=\varphi\left(x^{2^{n}}, y^{2^{n}}\right)+\varphi\left(y^{2^{n}}, x^{2^{n}}\right), \\
& g\left(x^{2^{n}} * y^{2^{n}}\right)+g\left(y^{2^{n}} * x^{2^{n}}\right)-2 h\left(x^{2^{n}}\right)-2 h\left(y^{2^{n}}\right) \\
& \quad+2 k\left(x^{2^{n}}\right)+2 k\left(y^{2^{n}}\right)=\varphi\left(x^{2^{n}},\left(y^{-1}\right)^{2^{n}}\right)+\varphi\left(y^{2^{n}},\left(x^{-1}\right)^{2^{n}}\right)
\end{aligned}
$$

for all $x, y \in G$. Taking the limit in the above equations as $n \rightarrow \infty$, we see that T and T^{\prime} satisfy the equation (3.15).

Corollary 3.2 (odd function). Let $\varphi: V \times V \rightarrow[0, \infty)$ be a mapping such that

$$
\hat{\varphi}(x, y):=\sum_{i=0}^{\infty} \frac{1}{2^{i}} \varphi\left(2^{i} x, 2^{i} y\right)<\infty
$$

for all $x, y \in V$. Suppose that the odd functions $f, g, h, k: V \rightarrow X$ satisfy

$$
\|f(x+y)+g(x-y)-2 h(x)-2 k(y)\| \leq \varphi(x, y) \quad \text { for all } \quad x, y \in V
$$

Then there exist two unique additive functions $T, T^{\prime}: V \rightarrow X$ such that

$$
\begin{aligned}
\|f(x)-T(x)\| & \leq \frac{1}{2}[\hat{\varphi}(x, x)+\hat{\varphi}(x, 0)+\hat{\varphi}(0, x)] \\
\left\|g(x)-T^{\prime}(x)\right\| & \leq \frac{1}{2}[\hat{\varphi}(x,-x)+\hat{\varphi}(x, 0)+\hat{\varphi}(0, x)] \\
\left\|h(x)-\frac{T(x)+T^{\prime}(x)}{2}\right\| & \leq \frac{1}{4}[\hat{\varphi}(x, x)+\hat{\varphi}(x,-x)+2 \hat{\varphi}(2 x, 0)] \\
\left\|k(x)-\frac{T(x)-T^{\prime}(x)}{2}\right\| & \leq \frac{1}{4}[\hat{\varphi}(x, x)+\hat{\varphi}(x,-x)+2 \hat{\varphi}(0,2 x)]
\end{aligned}
$$

for all $x \in V$.
Now we prove the stability of the general Pexiderized quadratic equation.
From Theorem 3.1 and Theorem 3.2, we can easily obtain the following theorem.
Theorem 3.3. Let $\varphi_{1}, \varphi_{2}: G \times G \rightarrow X$ be mappings satisfying the conditions (2.1), (2.2) in Theorem 2.1 and the conditions (3.12), (3.13) in Theorem 3.2. Suppose that the functions $f, g, h, k: G \rightarrow X$ satisfy

$$
\begin{gather*}
f(x * y)+g\left(x * y^{-1}\right)-2 h(x)-2 k(y)=\varphi_{1}(x, y), \tag{3.29}\\
f\left(y^{-1} * x^{-1}\right)+g\left(y * x^{-1}\right)-2 h\left(x^{-1}\right)-2 k\left(y^{-1}\right)=\varphi_{2}(x, y) \tag{3.30}
\end{gather*}
$$

for all $x, y \in G$. Then there exist exactly one quadratic function $Q: G \rightarrow X$ and the two limits $T(x)=\lim _{n \rightarrow \infty}\left[f\left(x^{2^{n}}\right)-f\left(x^{-2^{n}}\right)\right] /\left(2 \cdot 2^{n}\right), T^{\prime}(x)=\lim _{n \rightarrow \infty}\left[g\left(x^{2^{n}}\right)-g\left(x^{-2^{n}}\right)\right] /\left(2 \cdot 2^{n}\right)$ satisfying (3.15) for all $x \in G$. The equations
(3.31) $f\left(x^{2}\right)-f(e)-Q\left(x^{2}\right)-2 T(x)$
$=M\left(x^{2}\right)+\frac{1}{2}\left[\varphi(x, x)-\varphi\left(x, x^{-1}\right)\right]-\frac{1}{3} \varphi(e, e)+\frac{1}{2}\left[-\hat{\psi}\left(x^{2}, x^{2}\right)+\hat{\psi}\left(x^{2}, e\right)+\hat{\psi}\left(e, x^{2}\right)\right]$, $g\left(x^{2}\right)-g(e)-Q\left(x^{2}\right)-2 T^{\prime}(x)$
$=M\left(x^{2}\right)-\frac{1}{2}\left[\varphi(x, x)-\varphi\left(x, x^{-1}\right)\right]-\frac{1}{3} \varphi(e, e)+\frac{1}{2}\left[-\hat{\psi}\left(x^{2}, x^{-2}\right)+\hat{\psi}\left(x^{2}, e\right)-\hat{\psi}\left(e, x^{2}\right)\right]$,
$h(x)-h(e)-Q(x)-\frac{T(x)+T^{\prime}(x)}{2}$
$=M(x)+\frac{1}{6} \varphi(e, e)-\frac{1}{2} \varphi(x, e)+\frac{1}{4}\left[-\hat{\psi}(x, x)-\hat{\psi}\left(x, x^{-1}\right)+2 \hat{\psi}\left(x^{2}, e\right)\right]$,

$$
k(x)-k(e)-Q(x)-\frac{T(x)-T^{\prime}(x)}{2}
$$

$=M(x)+\frac{1}{6} \varphi(e, e)-\frac{1}{2} \varphi(e, x)+\frac{1}{4}\left[-\hat{\psi}(x, x)+\hat{\psi}\left(x, x^{-1}\right)+2 \hat{\psi}\left(e, x^{2}\right)\right]$
hold for all $x \in G$, where

$$
\begin{aligned}
M(x) & =\frac{1}{2}\left[-\tilde{\varphi}(x, x)+2 \tilde{\varphi}(e, x)+2 \tilde{\varphi}(x, e)-\tilde{\varphi}\left(x, x^{-1}\right)\right] \\
\varphi(x, y) & =\left(\varphi_{1}(x, y)+\varphi_{2}(x, y)\right) / 2 \\
\psi(x, y) & =\left(\varphi_{1}(x, y)-\varphi_{2}(x, y)\right) / 2
\end{aligned}
$$

The function Q is given by

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(x^{2^{n}}\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{g\left(x^{2^{n}}\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{h\left(x^{2^{n}}\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{k\left(x^{2^{n}}\right)}{4^{n}}
$$

for all $x \in G$.
Proof. Let $f_{e}, g_{e}, h_{e}, k_{e}$ be even parts and $f_{o}, g_{o}, h_{o}, k_{o}$ be odd parts of f, g, h, k, respectively. From (3.29) and (3.30), we get

$$
\begin{aligned}
& f_{e}(x * y)+g_{e}\left(x * y^{-1}\right)-2 h_{e}(x)-2 k_{e}(y) \\
= & \frac{1}{2}\left[f(x * y)+g\left(x * y^{-1}\right)-2 h(x)-2 k(y)\right] \\
& \quad+\frac{1}{2}\left[f\left(y^{-1} * x^{-1}\right)+g\left(y * x^{-1}\right)-2 h\left(x^{-1}\right)-2 k\left(y^{-1}\right)\right] \\
= & \frac{\varphi_{1}(x, y)+\varphi_{2}(x, y)}{2}=\varphi(x, y)
\end{aligned}
$$

for all $x, y \in G$. By Theorem 3.1, there exists exactly one quadratic function $Q: G \rightarrow X$ such that

$$
\begin{equation*}
f_{e}\left(x^{2}\right)-f(e)-Q(x)=M\left(x^{2}\right)+\frac{1}{2}\left[\varphi(x, x)-\varphi\left(x, x^{-1}\right)\right]-\frac{1}{3} \varphi(e, e) \tag{3.32}
\end{equation*}
$$

for all $x \in G$, where

$$
Q(x)=\lim _{n \rightarrow \infty}\left[f\left(x^{2^{n}}\right)+f\left(x^{-2^{n}}\right)\right] /\left(2 \cdot 4^{n}\right) .
$$

From (3.29) and (3.30), we get

$$
f_{o}(x * y)+g_{o}\left(x * y^{-1}\right)-2 h_{o}(x)-2 k_{o}(y)=\frac{\varphi_{1}(x, y)-\varphi_{2}(x, y)}{2}=\psi(x, y)
$$

for all $x \in G$. By Theorem 3.2, the limits $T(x)=\lim _{n \rightarrow \infty}\left[f\left(x^{2^{n}}\right)-f\left(x^{-2^{n}}\right)\right] /\left(2 \cdot 2^{n}\right)$, $T^{\prime}(x)=\lim _{n \rightarrow \infty}\left[g\left(x^{2^{n}}\right)-g\left(x^{-2^{n}}\right)\right] /\left(2 \cdot 2^{n}\right)$ exist for all $x \in G$. And the two functions $T, T^{\prime}: G \rightarrow X$ satisfy (3.15) and

$$
\begin{equation*}
f_{o}\left(x^{2}\right)-2 T(x)=\frac{1}{2}\left[-\hat{\psi}\left(x^{2}, x^{2}\right)+\hat{\psi}\left(x^{2}, e\right)+\hat{\psi}\left(e, x^{2}\right)\right] \tag{3.33}
\end{equation*}
$$

for all $x \in G \backslash\{e\}$. From (3.32), (3.33) and the equation

$$
f\left(x^{2}\right)-f(e)-4 Q(x)-2 T(x)=f_{e}\left(x^{2}\right)-f(e)-Q\left(x^{2}\right)+f_{o}\left(x^{2}\right)-T\left(x^{2}\right),
$$

we get (3.31). The equation

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{f\left(x^{2^{n}}\right)}{4^{n}} & =\lim _{n \rightarrow \infty} \frac{f\left(x^{2^{n}}\right)+f\left(x^{-2^{n}}\right)}{2 \cdot 4^{n}}+\lim _{n \rightarrow \infty} \frac{f\left(x^{2^{n}}\right)-f\left(x^{-2^{n}}\right)}{2 \cdot 4^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{f\left(x^{2^{n}}\right)+f\left(x^{-2^{n}}\right)}{2 \cdot 4^{n}}+\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \lim _{n \rightarrow \infty} \frac{f\left(x^{2^{n}}\right)-f\left(x^{-2^{n}}\right)}{2 \cdot 2^{n}} \\
& =Q(x)+0 \cdot T(x)
\end{aligned}
$$

holds for all $x \in G$. By the similar method, we obtain the remaining results.
Corollary 3.3. Let $\varphi: V \times V \rightarrow X$ be a mapping satisfying the conditions in Corollary 3.1 and Corollary 3.2. Suppose that the functions $f, g, h, k: V \rightarrow X$ satisfy

$$
\begin{equation*}
\|f(x+y)+g(x-y)-2 h(x)-2 k(y)\| \leq \varphi(x, y) \quad \text { for all } \quad x, y \in V \tag{3.34}
\end{equation*}
$$

Then there exist exactly one quadratic function $Q: V \rightarrow X$ and two unique additive functions $T, T^{\prime}: V \rightarrow X$ such that

$$
\begin{aligned}
& \|f(x)-f(0)-Q(x)-T(x)\| \\
\leq & M(x)+\frac{1}{2}\left[\psi\left(\frac{x}{2}, \frac{x}{2}\right)+\psi\left(\frac{x}{2},-\frac{x}{2}\right)\right]+\frac{1}{2}[\hat{\psi}(x, x)+\hat{\psi}(x, 0)+\hat{\psi}(0, x)]+\frac{1}{3} \psi(0,0), \\
& \| g(x)-g(0)-Q(x)-T^{\prime}(x) \mid \\
\leq & M(x)+\frac{1}{2}\left[\psi\left(\frac{x}{2}, \frac{x}{2}\right)+\psi\left(\frac{x}{2},-\frac{x}{2}\right)\right]+\frac{1}{2}[\hat{\psi}(x,-x)+\hat{\psi}(x, 0)+\hat{\psi}(0, x)]+\frac{1}{3} \psi(0,0), \\
& \left\|h(x)-h(0)-Q(x)-\frac{1}{2}\left(T(x)+T^{\prime}(x)\right)\right\| \\
\leq & M(x)+\frac{1}{2} \psi(x, 0)+\frac{1}{6} \psi(0,0)+\frac{1}{4}[\hat{\psi}(x, x)+\hat{\psi}(x,-x)+2 \hat{\psi}(2 x, 0)], \text { and } \\
& \left\|k(x)-k(0)-Q(x)-\frac{1}{2}\left(T(x)-T^{\prime}(x)\right)\right\| \\
\leq & M(x)+\frac{1}{2} \psi(0, x)+\frac{1}{6} \psi(0,0)+\frac{1}{4}[\hat{\psi}(x, x)+\hat{\psi}(x,-x)+2 \hat{\psi}(0,2 x)]
\end{aligned}
$$

for all $x \in V$, where $\psi(x, y)=(\varphi(x, y)+\varphi(-x,-y)) / 2$ and

$$
M(x)=\frac{1}{2}[\tilde{\psi}(x, x)+2 \tilde{\psi}(0, x)+2 \tilde{\psi}(x, 0)+\tilde{\psi}(x,-x)] .
$$

The function Q is given by

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{h\left(2^{n} x\right)}{4^{n}}=\lim _{n \rightarrow \infty} \frac{k\left(2^{n} x\right)}{4^{n}}
$$

and the functions T, T^{\prime} are given by

$$
T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)-f\left(-2^{n} x\right)}{2^{n+1}}, T^{\prime}(x)=\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)-g\left(-2^{n} x\right)}{2^{n+1}} .
$$

References

[1] P. W. Cholewa, Remarks on the stability of functional equations, Aeq. Math. 27(1984), 76-86.
[2] S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publ. Co., New Jersey, London, Singapore, Hong Kong, 2002.
[3] S. Czerwik On the stability of the quadratic mapping in the normed space, Abh. Math. Sem. Hamburg, 62(1992), 59-64.
[4] S. Czerwik, Stability of functional equations of Ulam-Hyers-Rassias, Hadronic Press, Palm Harbor, 2003.
[5] Z. Gajda, On the stability of additive mappings, Internat. J. Math. and Math. Sci., 14(1991), 431-434.
[6] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. and Appl., 184(1994), 431-436.
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27(1941), 222-224.
[8] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, 1998.
[9] W. Jian, Some further generalization of the Hyers-Ulam-Rassias Stability of functional equation, J. Math. Anal. Appl., 263(2001), 406-423.
[10] K. W. Jun and Y. H. Lee, A Generalization of the Hyers-Ulam-Rassias Stability of the Pexiderized Quadratic equations, J. Math. Anal. Appl., 297(2004), 70-86.
[11] K. W. Jun and Y. H. Lee, On the Hyers-Ulam-Rassias Stability of a Pexiderized quadratic inequality, Math. Ineq. Appl., 4(2001), 93-118.
[12] K. W. Jun, D. S. Shin and B. D. Kim, On the Hyers-Ulam-Rassias Stability of the Pexider Equation, J. Math. Anal. Appl., 239(1999), 20-29.
[13] Y. H. Lee and K. W. Jun, A Generalization of the Hyers-Ulam-Rassias Stability of Pexider Equation, J. Math. Anal. Appl., 246(2000), 627-638.
[14] Y. H. Lee and K. W. Jun, A Note on the Hyers-Ulam-Rassias Stability of Pexider Equation, J. Korean Math. Soc., 37(2000), 111-124.
[15] Y. H. Lee and K. W. Jun, On the Stability of Approximately Additive Mappings, Proc. Amer. Math. Soc., 128(2000), 1361-1369.
[16] Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 158(1991), 106-113.
[17] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[18] Th. M. Rassias, On the stability of the quadratic functional equation, Mathematica, to appear.
[19] Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. "Babes-Bolyai", to appear.
[20] Th. M. Rassias, Report of the 27th Internat. Symposium on Functional Equations, Aeq. Math., 39(1990), 292-293. Problem 16, 2°, Same report, p. 309.
[21] Th. M. Rassias and P. S̆emrl, On the behavior of mappings which does not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114(1992), 989-993.
[22] F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, 53(1983), 113-129.
[23] S. M. Ulam, Problems in Modern Mathematics, Chap. VI, Science eds., Wiley, Newyork, 1960.

