1 |
J. S. Arora, Introduction to Optimum Design, McGraw-Hill Book Co., New York, 19-th edition, 1989.
|
2 |
G. J. Davis, Numerical solution of a quadratic matrix equation, SIAM J. Sci. Statist. Comput. 2 (1981), no. 2, 164-175.
DOI
|
3 |
G. J. Davis, Algorithm 598: An algorithm to compute solvents of the matrix equation + BX + C = 0, ACM Trans. Math. Software 9 (1983), no. 2, 246-254.
DOI
|
4 |
C.-H. Guo and A. J. Laub, On the iterative solution of a class of nonsymmetric algebraic equations, SIAM J. Matrix Anal. Appl. 22 (2000), no. 2, 376-391.
DOI
ScienceOn
|
5 |
N. J. Higham and H.-M. Kim, Numerical analysis of a quadratic matrix equation, IMA J. Numer. Anal. 20 (2000), no. 4, 499-519.
DOI
ScienceOn
|
6 |
N. J. Higham and H.-M. Kim, Solving a quadratic matrix equation by Newton's method with exact line searches, SIAM J. Matrix Anal. Appl. 23 (2001), no. 2, 303-316.
DOI
ScienceOn
|
7 |
H.-M. Kim, Convergence of Newton's method for solving a class of quadratic matrix equations, Honam Math. J. 30 (2008), no. 2, 399-409.
DOI
ScienceOn
|
8 |
W. Kratz and E. Stickel, Numerical solution of matrix polynomial equations by Newton's method, IMA J. Numer. Anal. 7 (1987), no. 3, 355-369.
DOI
|
9 |
G. M. Phillips and P. J. Taylor, Theory and Applications of Numerical Analysis, Academic Press. 2nd edition, London, 1996.
|
10 |
D. X. Xie, L. Zhang, and X. Y. Hu, The solvability conditions for the inverse problem of bisymmetric nonnegative definite matrices, J. Comput. Math. 6 (2000), no. 6, 597-608.
|
11 |
X. Y. Peng, X. Y. Hu, and L. Zhang, The bisymmetric solutions of the matrix equation and its optimal approximation, Linear Algebra Appl. 426 (2007), no. 2-3, 583-595.
DOI
ScienceOn
|
12 |
L. Zhao, X. Hu and L. Zhang, Least square solutions to AX = B for bisymmetric matrices under a central principal submatrix constrain and the optimal approximation, Linear Algebra Appl. 428 (2008), no. 4, 871-880.
DOI
ScienceOn
|