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NEWTON’S METHOD FOR SYMMETRIC AND

BISYMMETRIC SOLVENTS OF THE NONLINEAR MATRIX

EQUATIONS

Yin-Huan Han and Hyun-Min Kim

Abstract. One of the interesting nonlinear matrix equations is the qua-
dratic matrix equation defined by

Q(X) = AX2 + BX + C = 0,

where X is a n×n unknown real matrix, and A,B and C are n×n given
matrices with real elements. Another one is the matrix polynomial

P (X) = A0X
m +A1X

m−1 + · · ·+ Am = 0, X,Ai ∈ R
n×n.

Newton’s method is used to find the symmetric and bisymmetric solvents
of the nonlinear matrix equations Q(X) and P (X). The method does not
depend on the singularity of the Fréchet derivative. Finally, we give some
numerical examples.

1. Introduction

We consider two kinds of nonlinear matrix equations, namely, the quadratic
matrix equation

(1) Q(X) = AX2 +BX + C = 0, A,B,C and X ∈ R
n×n,

and the matrix polynomial

(2) P (X) = A0X
m +A1X

m−1 + · · ·+Am = 0, Ai, X ∈ R
n×n.

Solving nonlinear matrix equations addresses many problems which occur in
many applications and in modeling of scientific problems.

Newton’s method is a natural approach in solving nonlinear matrix equa-
tions. For the quadratic case (1), Davis [2, 3] considered Newton’s method
and Higham and Kim [5, 6] incorporated the exact line searches into Newton’s
method, which reduced the number of iterations required for the most part.
For solving the matrix polynomial (2), Newton’s method was considered by
Kratz and Stickel [8].
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However, we need to overcome the following challenges when solving matrix
equations by Newton’s method.

(i) The method only works well when the Fréchet derivative is nonsingular.
(ii) How to guarantee the convergence of a particular starting matrix.

Guo and Laub [4] considered the nonsymmetric algebraic Riccati equation

R(X) = XEX +XG+HX + F = 0,

which arises from the transport theory. They proposed an algorithm for New-
ton’s method with a special starting matrix to find the elementwise minimal
positive solvent. Kim [7] presented that the elementwise minimal positive defi-
nite solvent for some different types of quadratic matrix equations can be found
by Newton’s method with a zero starting matrix.

In this paper, we introduce two iterative algorithms for solving the Newton
step with the symmetric and bisymmetric solutions. Then we apply Newton’s
method with iterative algorithms to solve the quadratic matrix equation (1) and
the matrix polynomial (2). We show that for the symmetric (bisymmetric)
starting matrix X0, our Newton’s method converges to a solvent which has
the same properties as X0. Finally, we give some numerical experiments that
confirm our Newton’s method is efficient for solving the case when the Fréchet
derivative is singular. The definition of a bisymmetric matrix is as follows.

Definition 1.1 ([12]). A matrix A ∈ R
n×n is called a bisymmetric (BS) matrix

if its elements aij satisfy the properties

aij = aji and aij = an−j+1,n−i+1 for 1 ≤ i, j ≤ n.

In order to construct an iterative method for finding a bisymmetric solution
of the Newton step, the following basic properties of bisymmetric matrices are
needed.

Lemma 1.2 ([10]). A matrix B is bisymmetric if and only if B = BT =
SnBSn, where Sn = [en, en−1, . . . , e1] and ei denotes the elementary standard

vector of Rn.

Lemma 1.3 ([11]). If the matrix X ∈ R
n×n is a symmetric matrix, then

X + SnXSn is a bisymmetric matrix.

2. Newton’s method

In this section, let us review Newton’s method for the general nonlinear
matrix equation G : Rn×n → R

n×n such that

(3) G(X) = 0.

Let the matrix S be a solvent of equation (3) and write

(4) Xk = S +Hk.
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Then by Taylor’s Theorem, we have

(5)

G(Xk) = G(S +Hk)

= G(S) +G
′

(S)Hk +O(H2
k )

= G
′

(S)Hk +O(H2
k ),

where G
′

: Rn×n → R
n×n is the Fréchet derivative as G(X) at X . If Hk is the

value that we know, then the matrix equation (3) can be automatically solved

from (4). Moreover, if we evaluate the Fréchet derivative G
′

at Xk, replace Hk

in (5) by Xk − Xk+1 rather than Xk − S and ignore the second order terms,
then we get

(6) G(Xk) = G
′

(Xk)(Xk −Xk+1).

So if G
′

(Xk) is nonsingular, then from (6), we obtain the next approximation
Xk+1 as

Xk+1 = Xk − [G
′

(Xk)]
−1G(Xk),

which is called Newton’s method [1, 9].
In the nonsingular Fréchet derivative case, the Kantorovich theorem gives

information on the convergence of Newton’s method for solving the nonlinear
matrix equation (3) [2].

Theorem 2.1 (Kantorovich). If there exists K such that

‖G′

(X)−G
′

(Y )‖ ≤ K‖X − Y ‖ for all X,Y ∈ Rn×n

in some closed ball Ū(X0, r) and h0 = B0η0K ≤ 1
2 with ‖[G′

(X0)]
−1‖ ≤ B0

and ‖X1−X0‖ ≤ η0, then the Newton sequence starting from X0 will converge

to a solvent S of G(X) which exists in Ū(X0, r), provided that

r ≥ r0 =
1−

√
1− 2h0

h0
η0.

However, Theorem 2.1 cannot affect the settlement for the weak points of
Newton’s method.

If we define Ek as the solution of the linear equation G(Xk)+G
′

(Xk)Ek = 0,
then Newton’s method for the nonlinear matrix equations (3) with the given
starting matrix X0 can be written in the iteration form

(7)

{

G
′

(Xk)Ek = −G(Xk),
Xk+1 = Xk + Ek,

where k = 0, 1, . . . .

Thus each step of Newton’s method requires finding of the solution E of the
linear equation

(8) G
′

(X)E = −G(X).

Now, we should derive the Fréchet derivatives of the quadratic matrix equa-
tions (1) and the matrix polynomial (2) to solve them using Newton’s method.
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From the definition of the quadratic matrix equation (1), we easily obtain

Q
′

(X)[E] = (AX +B)E +AEX,

which is the Fréchet derivative of equation (1) at X in the direction E. The
Fréchet derivative of the matrix polynomial (2) is

P
′

(X)[H ]

=

(

m−1
∑

ν=0

AνX
(m−1)−ν

)

H +

(

m−2
∑

ν=0

AνX
(m−2)−ν

)

HX + · · ·+A0HXm−1.

Therefore, each step of Newton’s method for equations (1) and (2) involves
finding the solution E and the solution H of

(9) (AX +B)E +AEX = −Q(X)

and
(10)
(

m−1
∑

ν=0

AνX
(m−1)−ν

)

H+

(

m−2
∑

ν=0

AνX
(m−2)−ν

)

HX+· · ·+A0HXm−1=−P (X),

respectively.

3. The symmetric solvents of Q(X) and P (X)

In Section 2, we have already seen that for solving Q(X) and P (X) using
Newton’s method, we need to solve the linear equations (9) and (10), respec-
tively. So we first give an iterative method to find a symmetric solution of (9),
then extend it to solve equation (10). Then we consider the convergence of our
Newton’s method. From here, ‖ · ‖ denotes the Euclidean norm of matrices.

3.1. An iterative method for solving equation (9)

The following algorithm is to find a symmetric solution of the qth Newton
step (9).

Algorithm 3.1. Let A,B,C ∈ R
n×n and a symmetric matrix Xq ∈ R

n×n be
given. Choose a symmetric starting matrix Eq0 ∈ R

n×n.
k = 0; R0 = −Q(Xq)− [(AXq +B)Eq0 +AEq0Xq]

Z0 = (AXq +B)TR0 +ATR0(Xq)
T

P0 = 1
2 (Z0 + ZT

0 )

α0 = ‖R0‖
2

‖P0‖2

while Rk 6= 0 or Pk 6= 0

αk = ‖Rk‖
2

‖Pk‖2

Eqk+1
= Eqk + αkPk

Rk+1 = −Q(Xq)−
[

(AXq +B)Eqk+1
+AEqk+1

Xq

]

Zk+1 = (AXq +B)TRk+1 +ATRk+1(Xq)
T

βk =
‖Rk+1‖

2

‖Rk‖2
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Pk+1 = 1
2 (Zk+1 + ZT

k+1) + βkPk

end

Remark 3.2. In Algorithm 3.1, the matrices Pk and Eqk are symmetric matrices
for all k = 0, 1, 2, . . ..

From Algorithm 3.1, we have some basic properties.

Lemma 3.3. Let Eq be a symmetric solution of the qth Newton step (9),
and the sequences {Zk}, {Rk}, {Eqk} be generated by Algorithm 3.1. Then the

following statement holds.

tr
[

ZT
k (Eq − Eqk)

]

= ‖Rk‖2 for all k = 0, 1, . . . .

Proof. From Algorithm 3.1, for any k, we have that

tr
[

ZT
k (Eq − Eqk )

]

= tr
{

[

(AXq +B)TRk +ATRk(Xq)
T
]T

(Eq − Eqk )
}

= tr
{

RT
k [(AXq +B)(Eq − Eqk) +A(Eq − Eqk)Xq]

}

= tr
{

RT
k [−Q(Xq)− (AXq +B)Eqk − AEqkXq]

}

= ‖Rk‖2. �

Lemma 3.4. Suppose Eq is a symmetric solution of equation (9). Then

(11) tr
[

PT
k (Eq − Eqk )

]

= ‖Rk‖2 for all k = 0, 1, . . . .

Proof. We prove the conclusion (11) by induction.
When k = 0, from Algorithm 3.1 and Lemma 3.3, we have

tr
[

PT
0 (Eq − Eq0)

]

= tr
[

ZT
0 (Eq − Eq0)

]

= ‖R0‖2.

Assume that the conclusion (11) holds for k = l. Then when k = l + 1,

tr
[

PT
l+1(Eq − Eql+1

)
]

= tr
[

ZT
l+1(Eq − Eql+1

)
]

+ βltr
[

PT
l (Eq − Eql+1

)
]

= ‖Rl+1‖2

by Lemma 3.3 since

tr
[

PT
l (Eq − Eql+1

)
]

= tr
[

PT
l (Eq − Eql − αlPl)

]

= tr
[

PT
l (Eq − Eql)

]

− αltr
(

PT
l Pl

)

= 0.
�

Remark 3.5. Lemma 3.4 implies that if the qth Newton step (9) has a symmetric
solution and Rk 6= 0 for some integer k, then Pk 6= 0 must hold for k.

Lemma 3.6. For the sequences {Ri} and {Pi} generated by Algorithm 3.1, we

have that

(12) tr
(

RT
i Rj

)

= 0 and tr
(

PT
i Pj

)

= 0 for i > j = 0, 1, . . . , k, k ≥ 1.
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Proof. We prove (12) by induction.
Step 1. When k = 1,

tr
(

RT
1 R0

)

= tr
{

[R0 − α0(AXq +B)P0 − α0AP0Xq]
T
R0

}

= ‖R0‖2 − α0tr
{

PT
0

[

(AXq +B)TR0 +ATR0(Xq)
T
]}

= ‖R0‖2 − α0tr
(

PT
0 P0

)

= 0,

and

tr
(

PT
1 P0

)

= tr(ZT
1 P0) + β0tr(P

T
0 P0)

= tr
{

RT [(AXq +B)P0 +AR0Xq]
}

+
‖R1‖2‖P0‖2

‖R0‖2

= − 1

α0
tr
(

RT
1 R1

)

+
‖R1‖2‖P0‖2

‖R0‖2
= 0.

Assume the statement (12) holds for k = l, i.e., tr(RT
l Rl−1) = 0 and tr(PT

l Pl−1)
= 0. Then

tr
(

RT
l+1Rl

)

= tr(RT
l Rl)− αltr

{

[(AXq +B)Pl +APlXq]
T
Rl

}

= ‖Rl‖2 − αltr
(

PT
l Zl

)

= ‖Rl‖2 − αltr
(

PT
l Pl

)

− αlβl−1tr
(

PT
l Pl−1

)

= 0,

and

tr
(

PT
l+1Pl

)

= tr
(

ZT
l+1Pl

)

+ βltr
(

PT
l Pl

)

= tr
{

RT
l+1 [(AXq +B)Pl +APlXq]

}

+
‖Rl+1‖2‖Pl‖2

‖Rl‖2

= − 1

αl

tr
(

RT
l+1Rl+1

)

+
‖Rl+1‖2‖Pl‖2

‖Rl‖2
= 0.

Step 2. Suppose that tr
(

RT
l Rj

)

= 0 and tr
(

PT
l Pj

)

= 0 for all j = 0, 1, . . . , l−1,

i.e., tr
(

PT
l Pj−1

)

= 0. Now we show that tr
(

RT
l+1Rj

)

= 0 and tr
(

PT
l+1Pj

)

= 0
for j = 0, 1, . . . , l − 1.

By Algorithm 3.1 and the accompanying assumptions, we have

tr
(

RT
l+1Rj

)

= tr
(

RT
l Rj

)

− αltr
{

[(AXq +B)Pl +APlXq]
T
Rj

}

= −αltr
(

PT
l Zj

)

= −αltr
[

PT
l (Pj − βj−1Pj−1)

]

= 0,
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and

tr
(

PT
l+1Pj

)

= tr
(

ZT
l+1Pj

)

+ βltr
(

PT
l Pj

)

= tr
{

RT
l+1 [(AXq +B)Pj +APjXq]

}

=
1

αj

tr
[

RT
l+1(Rj −Rj+1)

]

= 0.

Hence the statement (12) holds for k = l + 1. Therefore, from Steps 1 and 2,
we complete the proof. �

Theorem 3.7. Assume the qth Newton step (9) has a symmetric solution.

Then for any symmetric starting matrix Eq0 , its symmetric solution can be

obtained, at most, in n2 steps.

Proof. Suppose that Rk 6= 0 for k = 0, 1, . . . , n2−1. Then from Lemma 3.6, the
set {R0, R1, . . . , Rn2−1} is an orthogonal basis of the matrix space Rn×n. Since
the qth Newton step (9) has a symmetric solution, Pk 6= 0 for k = 0, 1, . . . , n2−1
by Lemma 3.6. Therefore, we can evaluate Eq

n2
and Rn2 in Algorithm 3.1, and

tr
(

RT
n2Rk

)

= 0 for k = 0, 1, . . . , n2 − 1 by Lemma 3.6. But tr
(

RT
n2Rk

)

= 0
holds only when Rn2 = 0, which implies that Eq

n2
is a solution of equation

(9). �

From Newton’s method and Theorem 3.7, we have the following main theo-
rem.

Theorem 3.8. Suppose that the quadratic matrix equation (1) has a symmetric

solvent and each Newton step is consistent for a symmetric starting matrix X0.

The sequence {Xk} is generated by Newton’s method with X0 such that

lim
k→∞

Xk = S,

and if the matrix S satisfies Q(S) = 0, then S is a symmetric solvent.

Proof. Let E0 be a symmetric solution of the first Newton step

(AX0 +B)E0 +AE0X0 = −Q(X0) = −AX2
0 −BX0 − C

with the symmetric starting matrix X0. Then according to Newton’s method
and Theorem 3.7, we obtain the symmetric matrix

Xk+1 = Xk + Ek

= X0 + E0 + · · ·+ Ek

for all k = 0, 1, . . . with starting matrix X0. Since the matrix X0 guarantees

lim
k→∞

Xk+1 = lim
k→∞

(X0 + E0 + · · ·+ Ek) = S,

the matrix S is a symmetric matrix. �
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3.2. An iterative method for solving (10)

We now propose an iterative method for solving the qth Newton step (10)
of a matrix polynomial.

Algorithm 3.9. Input n × n real matrices A0, A1, . . . , Am and a symmetric
matrix Xq ∈ R

n×n. Choose a symmetric starting matrix Hq0 ∈ R
n×n.

k = 0; R0 = −P (Xq)−
(

∑m−1
ν=0 AνX

(m−1)−ν
)

Hq0 − · · · −A0Hq0X
m−1
q

Y0 =
(

∑m−1
ν=0 AνX

(m−1)−ν
)T

R0 + · · ·+AT
0 R0(X

m−1
q )T

Q0 = 1
2 (Y0 + Y T

0 )
while Rk 6= 0 or Qk 6= 0

Hqk+1
= Hqk + ‖Rk‖

2

‖Qk‖2Qk

Rk+1 = −P (Xq)−
(

∑m−1
ν=0 AνX

(m−1)−ν
)

Hqk+1
− · · · −A0Hqk+1

Xm−1
q

Yk+1 =
(

∑m−1
ν=0 AνX

(m−1)−ν
)T

Rk+1 + · · ·+AT
0 Rk+1(X

m−1
q )T

Qk+1 = 1
2 (Yk+1 + Y T

k+1) +
‖Rk+1‖

2

‖Rk‖2 Qk

end

Regarding Algorithm 3.9, we have the following basic properties.

Lemma 3.10. Suppose Hq is a symmetric solution of the qth Newton step

(10), and the sequences {Rk}, {Yk} and {Hqk} are generated by Algorithm 3.9.

Then we have

tr
[

Y T
k (Hq −Hqk)

]

= ‖Rk‖2 for all k = 0, 1, . . . .

Lemma 3.11. Let Hq be a symmetric solution of equation (10). Then for any

starting symmetric matrix Hq0 , we have

tr
[

QT
k (Hq −Hqk)

]

= ‖Rk‖2 for k = 0, 1, . . . .

Remark 3.12. Lemma 3.11 implies that if there exists an integer k such that
Qk = 0 but Rk 6= 0, then the matrix equation (10) is inconsistent over sym-
metric matrices.

Lemma 3.13. Suppose that the sequences {Ri} and {Qi} are generated by

Algorithm 3.9. Then we have

tr
(

RT
i Rj

)

= 0 and tr
(

QT
i Qj

)

= 0 for i > j = 0, 1, . . . , k, k ≥ 1.

Similar to Theorem 3.7, we can prove the following theorem by using Lem-
mas 3.11, 3.13, and Remark 3.12.

Theorem 3.14. Suppose that the qth Newton step (10) is consistent. Then

for any symmetric starting matrix Hq0 , its symmetric solution can be obtained

by Algorithm 3.9.

From Newton’s method and the above theorem, we can easily prove the
following result.
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Theorem 3.15. Suppose that the matrix polynomial (2) has a symmetric sol-

vent and each Newton step is consistent for a symmetric starting matrix X0.

The sequence {Xk} is generated by Newton’s method with X0 such that

lim
k→∞

Xk = S,

and if the matrix S satisfies P (S) = 0, then S is a symmetric solvent.

4. The BS solvents of Q(X) and P (X)

In this section, we consider Newton’s method for finding the BS solvents of
the quadratic matrix equation (1) and matrix polynomial (2).

4.1. An iterative method for solving (9) over BS matrices

Before proposing the iterative method for finding the BS solution of (9), we
give the following well-known results.

Lemma 4.1 ([11]). Assume that X is BS. Then for any n× n real matrix Y ,

(13) tr

{

1

4

[(

Y + Y T
)

+ Sn

(

Y + Y T
)

Sn

]T
X

}

= tr
(

Y TX
)

.

Algorithm 4.2. The matrices A,B,C,Xq ∈ R
n×n are given, where Xq ∈

R
n×n is BS. Choose a BS starting matrix Eq0 ∈ R

n×n.
k = 0; R0 = −Q(Xq)− (AXq +B)Eq0 −AEq0Xq

Z0 = (AXq +B)TR0 +ATR0(Xq)
T

P0 = 1
4

[(

Z0 + ZT
0

)

+ Sn

(

Z0 + ZT
0

)

Sn

]

α0 = ‖R0‖
2

‖P0‖2

while Rk 6= 0 or Pk 6= 0

αk = ‖Rk‖
2

‖Pk‖2

Eqk+1
= Eqk + αkPk

Rk+1 = −Q(Xq)− (AXq +B)Eqk+1
−AEqk+1

Xq

Zk+1 = (AXq +B)TRk+1 +ATRk+1(Xq)
T

βk =
tr(ZT

k+1Pk)
‖Pk‖2

Pk+1 = 1
4

[(

Zk+1 + ZT
k+1

)

+ Sn

(

Zk+1 + ZT
k+1

)

Sn

]

− βkPk

end

Note that the matrices Pk and Eqk are BS matrices in Algorithm 4.2.

Lemma 4.3. If the matrix Eq is a BS solution of the qth Newton step (9) and
the sequences {Zk}, {Rk} and {Eqk} are generated by Algorithm 4.2, then

(14) tr
[

ZT
k (Eq − Eqk)

]

= ‖Rk‖2 for all k = 0, 1, . . . .

Similarly as in Lemma 3.3, from Algorithm 4.2, we can prove the conclusion
(14). By Lemma 4.3, we easily prove the following property.
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Lemma 4.4. Assume that Eq is a BS solution of (9). Then

(15) tr
[

PT
k (Eq − Eqk)

]

= ‖Rk‖2 for all k = 0, 1, . . . .

Proof. When k = 0, from Algorithm 4.2, Lemmas 4.1 and 4.3, we have

tr
[

PT
0 (Eq − Eq0)

]

= tr
[

ZT
0 (Eq − Eq0 )

]

= ‖R0‖2.

Assume that the conclusion (15) holds for k = l. Since tr
[

PT
l

(

Eq − Eql+1

)]

=

tr
[

PT
l (Eq − Eql − αlPl)

]

= ‖Rl‖2 − αl‖Pl‖2 = 0 and by Lemma 4.1 and 4.3,
we have

tr
[

PT
l+1

(

Eq − Eql+1

)]

= tr
[

ZT
l+1

(

Eq − Eql+1

)]

− βltr
[

PT
l

(

Eq − Eql+1

)]

= ‖Rl+1‖2.
Hence the conclusion (15) holds for k = 0, 1, . . . by the principle of induction.

�

Lemma 4.5. For the sequences {Ri} and {Pi} generated by Algorithm 3.1, we

have

(16) tr
(

RT
i Rj

)

= 0 and tr
(

PT
i Pj

)

= 0 for i > j = 0, 1, . . . , k, k ≥ 1.

Proof. We prove (16) by induction.
Step 1. When k = 1, we have

tr
(

RT
1 R0

)

= tr
{

[R0 − α0 (AXq +B)P0 − α0AP0Xq]
T
R0

}

= tr
(

RT
0 R0

)

− α0

{

PT
0

[

(AXq +B)TR0 +ATR0 (Xq)
T
]}

= ‖R0‖2 − α0tr
(

PT
0 Z0

)

= ‖R0‖2 − α0tr
(

PT
0 P0

)

= 0,

and

tr
(

PT
1 P0

)

= tr
(

ZT
1 P0

)

− β0tr
(

PT
0 P0

)

= 0.

Suppose that (16) holds for k = l. Then we have

tr
(

RT
l+1Rl

)

= tr
{

[Rl − αl (AXq +B)Pl − αlAP0Xq]
T
Rl

}

= tr
(

RT
l Rl

)

− αltr
{

PT
l

[

(AXq +B)
T
Rl +ATRl (Xq)

T
]}

= tr
(

RT
l Rl

)

− αltr
(

PT
l Zl

)

= tr
(

RT
l Rl

)

− αltr
[

PT
l (Pl + βlPl−1)

]

= ‖Rl‖2 − αltr
(

PT
l Pl

)

= 0,

and

tr
(

PT
l+1Pl

)

= tr
(

ZT
l+1Pl

)

− βltr
(

PT
l Pl

)

= 0.
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Step 2. Assume that tr
(

RT
l Rj

)

= 0 and tr
(

PT
l Pj

)

= 0 for all j = 0, 1, . . . , l−1.
Then from Algorithm 4.2 and the above assumptions, we have

tr
(

RT
l+1Rj

)

= tr
{

[Rl − αl (AXq +B)Pl − αlAPlXq]
T
Rj

}

= tr
(

RT
l Rj

)

− αltr
{

PT
l

[

(AXq +B)
T
Rj +ATRj (Xq)

T
]}

= −αltr
(

P rmT
l Zj

)

= αltr
[

PT
l (Pj + βjPj−1)

]

= 0,

and

tr
(

PT
l+1Pj

)

= tr
(

ZT
l+1Pj

)

− βjtr
(

PT
l Pj

)

= tr
{

RT
l+1 [(AXq +B)Pj +APjXq]

}

=
1

αj

tr
[

RT
l+1 (Rj −Rj+1)

]

= 0.

Thus we complete the proof by Steps 1 and 2. �

Theorem 4.6. Suppose that the qth Newton step (9) has a bisymmetric so-

lution. Then for any bisymmetric starting matrix Eq0 , its symmetric solution

can be obtained, at most, in n2 steps.

Proof. This proof is similar to that of Theorem 3.7. �

Theorem 4.7. Suppose that the quadratic matrix equation (1) has a bisym-

metric solvent and each Newton step is consistent for a bisymmetric starting

matrix X0. The sequence {Xk} is generated by Newton’s method with X0 such

that

lim
k→∞

Xk = S,

and if the matrix S satisfies Q(S) = 0, then S is a bisymmetric solvent.

Proof. Similar to Theorem 3.8, we can complete the proof by Newton’s method
and Theorem 4.7. �

4.2. An iterative method for finding the BS solution of equation (10)

Algorithm 4.8. Input n × n real matrices A0, A1, . . . , Am and BS matrix
Xq ∈ R

n×n. Choose a BS starting matrix Hq0 ∈ R
n×n.

k = 0; R0 = −P (Xq)−
(

∑m−1
ν=0 AνX

(m−1)−ν
)

Hq0 − · · · −A0Hq0X
m−1
q

Y0 =
(

∑m−1
ν=0 AνX

(m−1)−ν
)T

R0 + · · ·+AT
0 R0(X

m−1
q )T

Q0 = 1
4

[(

Y0 + Y T
0

)

+ Sn

(

Y0 + Y T
0

)

Sn

]

while Rk 6= 0 or Qk 6= 0
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Hqk+1
= Hqk + ‖Rk‖

2

‖Qk‖2Qk

Rk+1 = −P (Xq)−
(

∑m−1
ν=0 AνX

(m−1)−ν
)

Hqk+1
− · · · −A0Hqk+1

Xm−1
q

Yk+1 =
(

∑m−1
ν=0 AνX

(m−1)−ν
)T

Rk+1 + · · ·+AT
0 Rk+1(X

m−1
q )T

Qk+1 = 1
2

[(

Yk+1 + Y T
k+1

)

+ Sn

(

Yk+1 + Y T
k+1

)

Sn

]

− tr(Y T
k+1Qk)

‖Qk‖2 Qk

end

Regarding Algorithm 4.8, we have the following basic properties.

Lemma 4.9. Suppose Hq is a BS solution of the qth Newton step (10), and
the sequences {Rk}, {Yk} and {Hqk} are generated by Algorithm 4.8. Then we

have

tr
[

Y T
k (Hq −Hqk)

]

= ‖Rk‖2 for all k = 0, 1, . . . .

Lemma 4.10. Let Hq be a BS solution of equation (10). Then for any starting

BS matrix Hq0 , we have

tr
[

QT
k (Hq −Hqk)

]

= ‖Rk‖2 for k = 0, 1, . . . .

Lemma 4.11. Suppose that the sequences {Ri} and {Qi} are generated by

Algorithm 4.8. Then we have

tr
(

RT
i Rj

)

= 0 and tr
(

QT
i Qj

)

= 0 for i > j = 0, 1, . . . , k, k ≥ 1.

Similar to Theorem 4.6, we can prove the following theorem by using Lem-
mas 4.10 and 4.11.

Theorem 4.12. Suppose that the qth Newton step (10) is consistent. Then

for any BS starting matrix Hq0 , its BS solution can be obtained by Algorithm

4.8.

From Newton’s method and the above theorem, we easily prove the following
main theorem.

Theorem 4.13. Suppose that the matrix polynomial (2) has a BS solvent and

each Newton step is consistent for a BS starting matrix X0. The sequence

{Xk} is generated by Newton’s method with X0 such that

lim
k→∞

Xk = S,

and if the matrix S satisfies P (S) = 0, then S is a bisymmetric solvent.

5. Numerical examples

In this section, we give some numerical experiments to present the conver-
gence of our Newton’s method. Computations were done in MATLAB 7.1 and
we regard the relative residuals ρQ(Xk) and ρP (Xk) as zeros if

ρQ(Xk) = ‖fl(Q(Xk))‖
‖A‖‖Xk‖2+‖B‖‖Xk‖+‖C‖ ≤ nµ,

ρP (Xk) = ‖fl(P (Xk))‖
‖A0‖‖Xk‖m+‖A1‖‖Xk‖m−1+···+‖Am‖ ≤ nµ,
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where n is the maximum size of A and A0, and µ = 2−53 ≃ 1.1102e− 016 is
the unit round off. In Algorithms 3.1, 3.9, 4.2, and 4.8, the iteration will be
terminated whenever ‖Rk‖ < ǫ = 1.0e− 016.

Now, we give four numerical examples with Fréchet derivatives that are all
singular according to their respective starting matrices.

Example 5.1. Let the coefficients of the quadratic matrix equation Q1(X) be

(17) A =

[

1 0
1 0

]

, B =

[

−2 0
−2 0

]

and C =

[

1 0
1 0

]

.

Starting Newton’s method with Algorithm 3.1 with a symmetric matrix X0 =

1 2 3 4 5 6 7 8 9 10 11 12 13
10

−20

10
−15

10
−10

10
−5

10
0

Number of iterations.

R
el

at
iv

e 
R

es
id

ua
ls

.

Figure 1. Convergence of problem (17).

12, where 12 denote the 2×2 identity matrix, we obtain the symmetric solvent of
problem (17), that is, X13 = [ 1 0

0 16384 ]. In this case, ρQ1
(X13) = 5.55e− 017 <

2µ. The convergence results are presented in Figure 1, which confirms the
conclusion of Theorem 3.8.

Example 5.2. For convenience, we consider a simple matrix polynomial of
degree 3 given as

(18) P1(X) = Q1(X)X = 0.

Similarly as in the first example, the symmetric starting matrix is chosen to be
X0 = 12. Then, for this starting matrix X0, the Fréchet derivative of problem
(18)

P
′

1(X0) = 12 ⊗ (AX2 +BX + C) +XT ⊗ (AX +B) +
(

X2
)T ⊗A

= 04,

where 04 is the 4 × 4 zero matrix, is singular. So Kratz and Stickel’s method
cannot solve problem (18). But by using Newton’s method with Algorithm 3.9
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Figure 2. Convergence of problem (20).

and 13 iterative steps, we can obtain the symmetric solvent of equation (18) as
follows:

X13 =

[

1 0
0 4096

]

with

ρP1
(X13) = 1.16e− 017 < 2µ.

This is a very simple example that verifies Theorem 3.15.

Example 5.3. We consider the quadratic matrix equation

(19) Q2(X) =





0 0 1
0 0 1
0 0 1



X2 +





−4 0 −4
−4 0 −4
−4 0 −4



X +





12 0 3
12 0 3
12 0 3



 = 0.

Choose the BS starting matrix X0 =
[

2 0 4
0 6 0
4 0 2

]

. Applying Newton’s method with

Algorithm 4.2, we obtain the BS solvent X5 =
[

1 0 4
0 36 0
4 0 1

]

with the corresponding

relative residual ρQ2
(X5) = 4.01e−018 < 3µ. The obtained convergence results

from our Newton’s method are shown in the first figure of Figure 2. By using
Algorithm 4.2, we can get BS solutions of five Newton steps within 9 iterations.
This is illustrated in the second figure of Figure 2. In this figure, we can see
that using iterations 3, 5, 3, 5, and 4 yields the BS solutions of the 1st, 2nd,
3rd, 4th, and 5th Newton steps, respectively. This demonstrates the conclusion
of Theorem 4.6 for problem (19).

Example 5.4. We consider a matrix polynomial of degree 3 given as follows:

(20) P2(X) =

[

−2 1
−2 1

]

X3 +

[

0 1
0 1

]

X2 +

[

6 −1
6 −1

]

X +

[

14 14
14 14

]

= 0.

By applying Newton’s method with Algorithm 4.8 for the BS starting matrix
X0 = [ 1 1

1 1 ], the BS solvent X10 = [ 2 2
2 2 ] of P2(X) can be obtained. The results



NEWTON’S METHOD FOR SOLVING NONLINEAR MATRIX EQUATIONS 769

Table 1. Comparison of the relative residuals from the Kratz
and Stickel’s method with those from our Newton’s method
for problem (20).

ρP (Xk)
No.ite Kratz and Stickel’s method Our Newton’s method

1 2.00e+ 000
2 2.66e− 001
3 2.30e− 001
4 1.69e− 001
5 fail 8.71e− 002
6 2.13e− 002
7 1.20e− 003
8 3.70e− 016
9 3.53e− 011
10 6.18e− 017

are provided in Table 1. Here, Kratz and Stickel’s method also fails to find the
BS solvent since the Fréchet derivative for the starting matrix X0 is singular.

Example 5.5. Our final example is

Q3(X) = AX2 +BX + C,

where

A = I5, B =













20 −10 0 0 0
−10 30 −10 0 0
0 −10 30 −10 0
0 0 −10 30 −10
0 0 0 −10 20













,

C =













−15 −9 −12 −14 −15
−19 −47 −43 −47 −49
−22 −43 −72 −68 −71
−24 −47 −68 −96 −90
−25 −49 −71 −90 −115













.

The equation Q3(X) has a symmetric solvent S, where Sij = min{i, j}. Our
iteration converges to S with the starting symmetric matrices I5 as well as with
a matrix whose entries are all 1.

6. Conclusion

In this work, four iterative methods are introduced for solving Newton steps
(9) and (10) over symmetric and BS matrices, respectively. Then we incorpo-
rated the iterative methods into Newton’s method to find the symmetric and
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BS solvents of the quadratic matrix equation and the matrix polynomial. The
contributions of this paper are as follows:

1. Our Newton’s method can solveQ(X) and P (X) even when the Fréchet
derivative is singular;

2. Our Newton’s method can find the symmetric and BS solvents for any
given symmetric and BS starting matrices, respectively.
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