GENERALIZED HYERS-ULAM STABILITY OF FUNCTIONAL EQUATIONS

Young Hak Kwon*, Ho Min Lee*, Jeong Soo Sim*, Jeha
Yang* and Choonkil Park**

$$
\begin{aligned}
& \text { AbSTRACT. In this paper, we prove the generalized Hyers-Ulam } \\
& \text { stability of the following linear functional equations } \\
& f(x+i y)+f(x-i y)+f(y+i x)+f(y-i x)=2 f(x)+2 f(y) \\
& \text { and } f((1+i) x)=(1+i) f(x) \text {, and of the following quadratic func- } \\
& \text { tional equations } \\
& \qquad f(x+i y)+f(x-i y)+f(y+i x)+f(y-i x)=0 \\
& \text { and } f((1+i) x)=2 i f(x) \text { in complex Banach spaces. }
\end{aligned}
$$

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [31] concerning the stability of group homomorphisms: Let $\left(G_{1}, *\right)$ be a group and let $\left(G_{2}, \diamond, d\right)$ be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta(\epsilon)>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(h(x * y), h(x) \diamond h(y))<\delta
$$

for all $x, y \in G_{1}$, then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\epsilon
$$

for all $x \in G_{1}$? If the answer is affirmative, we would say that the equation of homomorphism $H(x * y)=H(x) \diamond H(y)$ is stable. The concept of stability for a functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. Thus the stability question of functional equations is that how

[^0]do the solutions of the inequality differ from those of the given functional equation?

Hyers [5] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Let X and Y be Banach spaces. Assume that $f: X \rightarrow Y$ satisfies

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon
$$

for all $x, y \in X$ and some $\varepsilon \geq 0$. Then there exists a unique additive mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \varepsilon
$$

for all $x \in X$.
Th.M. Rassias [21] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E$. Also, if for each $x \in E$ the function $f(t x)$ is continuous in $t \in \mathbb{R}$, then L is \mathbb{R}-linear.

The above inequality (1.1) that was introduced for the first time by Th.M. Rassias [21] for the proof of the stability of the linear mapping bewteen Banach spaces has provided a lot of influence in the development of what is now known as a generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability of functional equations. Beginning around the year 1980 the topic of approximate homomorphisms, or the stability of the equation of homomorphism, was studied by a number of mathematicians. Găvruta [4] extended the Hyers-Ulam stability by proving the following theorem in the spirit of Th.M. Rassias' approach.

A square norm on an inner product space satisfies the important parallelogram equality

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic function. A generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [30] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [3] proved the generalized Hyers-Ulam stability of the quadratic functional equation. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [1], [8]-[20], [23]-[29]).

In this paper, we prove the generalized Hyers-Ulam stability of the following linear functional equations

$$
\begin{equation*}
f(x+i y)+f(x-i y)+f(y+i x)+f(y-i x)=2 f(x)+2 f(y) \tag{1.2}
\end{equation*}
$$

and $f((1+i) x)=(1+i) f(x)$, whose solution is called an additive mapping, and the generalized Hyers-Ulam stability of the following quadratic functional equations

$$
\begin{equation*}
f(x+i y)+f(x-i y)+f(y+i x)+f(y-i x)=0 \tag{1.3}
\end{equation*}
$$

and $f((1+i) x)=2 i f(x)$, whose solution is called a quadratic mapping.
Throughout this paper, assume that X is a complex normed vector space with norm $\|\cdot\|$ and that Y is a complex Banach space with norm $\|\cdot\|$.

2. Generalized Hyers-Ulam stability of linear functional equations

For a given mapping $f: X \rightarrow Y$, we define
$C f(x, y):=f(x+i y)+f(x-i y)+f(y+i x)+f(y-i x)-2 f(x)-2 f(y)$
for all $x, y \in X$.
If a mapping $f: X \rightarrow Y$ satisfies the linear functional equation

$$
f(x+y)=f(x)+f(y)
$$

and $f(i x)=i f(x)$ for all $x, y \in X$, then

$$
f(x+i y)+f(x-i y)+f(y+i x)+f(y-i x)=2 f(x)+2 f(y)
$$

for all $x, y \in X$. In fact, $f: \mathbb{C} \rightarrow \mathbb{C}$ with $f(x)=x$ satisfies (1.2).
We prove the generalized Hyers-Ulam stability of the linear functional equation $C f(x, y)=0$.

Theorem 2.1. Let $p<1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying $f((1+i) x)=(1+i) f(x)$ and

$$
\begin{equation*}
\|C f(x, y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{\sqrt{2} \theta}{2-2^{p}}\|x\|^{p} \tag{2.2}
\end{equation*}
$$

for all $x \in X$.
Proof. Since $f((1+i) x)=(1+i) f(x)$ for all $x \in X, f(0)=0$ and $f(2 x)=(1+i) f((1-i) x)$ for all $x \in X$.

Letting $y=x$ in (2.1), we get

$$
\|2 f((1+i) x)+2 f((1-i) x)-4 f(x)\| \leq 2 \theta\|x\|^{p}
$$

for all $x \in X$. Hence

$$
\|(1-i) f(2 x)-(2-2 i) f(x)\| \leq 2 \theta\|x\|^{p}
$$

for all $x \in X$. So

$$
\begin{equation*}
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{\theta}{\sqrt{2}}\|x\|^{p} \tag{2.3}
\end{equation*}
$$

for all $x \in X$. Hence

$$
\begin{equation*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| \leq \sum_{j=l}^{m-1} \frac{2^{p j} \theta}{2^{j} \sqrt{2}}\|x\|^{p} \tag{2.4}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.4) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$.

By (2.1),
$\|C A(x, y)\|=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|C f\left(2^{n} x, 2^{n} y\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{2^{p n} \theta}{2^{n}}\left(\|x\|^{p}+\|y\|^{p}\right)=0$
for all $x, y \in X$. So $C A(x, y)=0$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.4), we get (2.2).

Now, let $L: X \rightarrow Y$ be another additive mapping satisfying (1.2) and (2.2). Then we have

$$
\begin{aligned}
\|A(x)-L(x)\| & =\frac{1}{2^{n}}\left\|A\left(2^{n} x\right)-L\left(2^{n} x\right)\right\| \\
& \leq \frac{1}{2^{n}}\left(\left\|A\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|L\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|\right) \\
& \leq \frac{2 \sqrt{2} \theta}{2-2^{p}} \cdot \frac{2^{p n}}{2^{n}}\|x\|^{p}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $A(x)=L(x)$ for all $x \in X$. This proves the uniqueness of A. So there exists a unique quadratic mapping $A: X \rightarrow Y$ satisfying (1.2) and (2.2).

Theorem 2.2. Let $p>1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (2.1) and $f((i+i) x)=(1+i) f(x)$ for all $x \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{\sqrt{2} \theta}{2^{p}-2}\|x\|^{p} \tag{2.5}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (2.3) that

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \frac{\sqrt{2} \theta}{2^{p}}\|x\|^{p}
$$

for all $x \in X$. Hence

$$
\begin{equation*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| \leq \sum_{j=l}^{m-1} \frac{2^{j+\frac{1}{2}} \theta}{2^{p j+p}}\|x\|^{p} \tag{2.6}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.6) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$.
By (2.1),
$\|C A(x, y)\|=\lim _{n \rightarrow \infty} 2^{n}\left\|C f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{2^{n} \theta}{2^{p n}}\left(\|x\|^{p}+\|y\|^{p}\right)=0$
for all $x, y \in X$. So $C A(x, y)=0$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.6), we get (2.5).

The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 2.3. Let $p<\frac{1}{2}$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying $f((1+i) x)=(1+i) f(x)$ and

$$
\begin{equation*}
\|C f(x, y)\| \leq \theta \cdot\|x\|^{p} \cdot\|y\|^{p} \tag{2.7}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{\theta}{\left(2-4^{p}\right) \sqrt{2}}\|x\|^{2 p} \tag{2.8}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=x$ in (2.7), we get

$$
\|2 f((1+i) x)+2 f((1-i) x)-4 f(x)\| \leq \theta\|x\|^{2 p}
$$

for all $x \in X$. Hence

$$
\|(1-i) f(2 x)-(2-2 i) f(x)\| \leq \theta\|x\|^{2 p}
$$

for all $x \in X$. So

$$
\begin{equation*}
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{\theta}{2 \sqrt{2}}\|x\|^{2 p} \tag{2.9}
\end{equation*}
$$

for all $x \in X$. Hence

$$
\begin{equation*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| \leq \sum_{j=l}^{m-1} \frac{4^{p j} \theta}{2^{j+1} \sqrt{2}}\|x\|^{2 p} \tag{2.10}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.10) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$.

By (2.7),
$\|C A(x, y)\|=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|C f\left(2^{n} x, 2^{n} y\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{4^{p n} \theta}{2^{n}} \cdot\|x\|^{p} \cdot\|y\|^{p}=0$
for all $x, y \in X$. So $C A(x, y)=0$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.10), we get (2.8).

The rest of the proof is similar to the proof of Theorem 2.1.
ThEOREM 2.4. Let $p>\frac{1}{2}$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (2.7) and $f((1+i) x)=(1+i) f(x)$ for all $x \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{\theta}{\left(4^{p}-2\right) \sqrt{2}}\|x\|^{2 p} \tag{2.11}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (2.9) that

$$
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \frac{\theta}{4^{p} \sqrt{2}}\|x\|^{2 p}
$$

for all $x \in X$. Hence

$$
\begin{equation*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| \leq \sum_{j=l}^{m-1} \frac{2^{j} \theta}{4^{p j+p} \sqrt{2}}\|x\|^{2 p} \tag{2.12}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.12) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$.
By (2.7),

$$
\|C A(x, y)\|=\lim _{n \rightarrow \infty} 2^{n}\left\|C f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{2^{n} \theta}{4^{p n}} \cdot\|x\|^{p} \cdot\|y\|^{p}=0
$$

for all $x, y \in X$. So $C A(x, y)=0$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.12), we get (2.11).

The rest of the proof is similar to the proof of Theorem 2.1.

3. Generalized Hyers-Ulam stability of quadratic functional equations

For a given mapping $f: X \rightarrow Y$, we define

$$
C f(x, y):=f(x+i y)+f(x-i y)+f(y+i x)+f(y-i x)
$$

for all $x, y \in X$.
If a mapping $f: X \rightarrow Y$ satisfies the quadratic functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

and $f(i x)=-f(x)$ for all $x, y \in X$, then

$$
f(x+i y)+f(x-i y)+f(x+y)+f(x-y)=0
$$

for all $x, y \in X$. In fact, $f: \mathbb{C} \rightarrow \mathbb{C}$ with $f(x)=x^{2}$ satisfies (1.3).
We prove the generalized Hyers-Ulam stability of the quadratic functional equation $C f(x, y)=0$.

Theorem 3.1. Let $p<2$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying $f((1+i) x)=2 i f(x)$ and

$$
\begin{equation*}
\|C f(x, y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow$ Y such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{2 \theta}{4-2^{p}}\|x\|^{p} \tag{3.2}
\end{equation*}
$$

for all $x \in X$.
Proof. Since $f((1+i) x)=2 i f(x)$ for all $x \in X, f(0)=0$ and $f(2 x)=$ $2 i f((1-i) x)$ for all $x \in X$.

Letting $y=x$ in (3.1), we get

$$
\|2 f((1+i) x)+2 f((1-i) x)\| \leq 2 \theta\|x\|^{p}
$$

for all $x \in X$. Hence

$$
\|-i f(2 x)+4 i f(x)\| \leq 2 \theta\|x\|^{p}
$$

for all $x \in X$. So

$$
\begin{equation*}
\left\|f(x)-\frac{1}{4} f(2 x)\right\| \leq \frac{\theta}{2}\|x\|^{p} \tag{3.3}
\end{equation*}
$$

for all $x \in X$. Hence

$$
\begin{equation*}
\left\|\frac{1}{4^{l}} f\left(2^{l} x\right)-\frac{1}{4^{m}} f\left(2^{m} x\right)\right\| \leq \sum_{j=l}^{m-1} \frac{2^{p j} \theta}{2 \cdot 4^{j}}\|x\|^{p} \tag{3.4}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.4) that the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$.
By (3.1),
$\|C Q(x, y)\|=\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left\|C f\left(2^{n} x, 2^{n} y\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{2^{p n} \theta}{4^{n}}\left(\|x\|^{p}+\|y\|^{p}\right)=0$
for all $x, y \in X$. So $C Q(x, y)=0$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.4), we get (3.2).

The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 3.2. Let $p>2$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (3.1) and $f((i+i) x)=2 i f(x)$ for all $x \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{2 \theta}{2^{p}-4}\|x\|^{p} \tag{3.5}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (3.3) that

$$
\left\|f(x)-4 f\left(\frac{x}{2}\right)\right\| \leq \frac{2 \theta}{2^{p}}\|x\|^{p}
$$

for all $x \in X$. Hence

$$
\begin{equation*}
\left\|4^{l} f\left(\frac{x}{2^{l}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right)\right\| \leq \sum_{j=l}^{m-1} \frac{2 \cdot 4^{j} \theta}{2^{p j+p}}\|x\|^{p} \tag{3.6}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.6) that the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{4^{n} f\left(\frac{x^{2}}{2^{n}}\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$.
By (3.1),

$$
\|C Q(x, y)\|=\lim _{n \rightarrow \infty} 4^{n}\left\|C f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{4^{n} \theta}{2^{p n}}\left(\|x\|^{p}+\|y\|^{p}\right)=0
$$

for all $x, y \in X$. So $C Q(x, y)=0$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.6), we get (3.5).

The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 3.3. Let $p<1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying $f((1+i) x)=2 i f(x)$ and

$$
\begin{equation*}
\|C f(x, y)\| \leq \theta \cdot\|x\|^{p} \cdot\|y\|^{p} \tag{3.7}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow$ Y such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\theta}{4-4^{p}}\|x\|^{2 p} \tag{3.8}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=x$ in (3.7), we get

$$
\|2 f((1+i) x)+2 f((1-i) x)\| \leq \theta\|x\|^{2 p}
$$

for all $x \in X$. Hence

$$
\|-i f(2 x)+4 i f(x)\| \leq \theta\|x\|^{2 p}
$$

for all $x \in X$. So

$$
\begin{equation*}
\left\|f(x)-\frac{1}{4} f(2 x)\right\| \leq \frac{\theta}{4}\|x\|^{2 p} \tag{3.9}
\end{equation*}
$$

for all $x \in X$. Hence

$$
\begin{equation*}
\left\|\frac{1}{4^{l}} f\left(2^{l} x\right)-\frac{1}{4^{m}} f\left(2^{m} x\right)\right\| \leq \sum_{j=l}^{m-1} \frac{4^{p j} \theta}{4^{j+1}}\|x\|^{2 p} \tag{3.10}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.10) that the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x\right)
$$

for all $x \in X$.
By (3.7),
$\|C Q(x, y)\|=\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left\|C f\left(2^{n} x, 2^{n} y\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{4^{p n} \theta}{4^{n}} \cdot\|x\|^{p} \cdot\|y\|^{p}=0$
for all $x, y \in X$. So $C Q(x, y)=0$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.10), we get (3.8).

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 3.4. Let $p>1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (3.7) and $f((1+i) x)=2 i f(x)$ for all $x \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\theta}{4^{p}-4}\|x\|^{2 p} \tag{3.11}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (3.9) that

$$
\left\|f(x)-4 f\left(\frac{x}{2}\right)\right\| \leq \frac{\theta}{4^{p}}\|x\|^{2 p}
$$

for all $x \in X$. Hence

$$
\begin{equation*}
\left\|4^{l} f\left(\frac{x}{2^{l}}\right)-4^{m} f\left(\frac{x}{2^{m}}\right)\right\| \leq \sum_{j=l}^{m-1} \frac{4^{j} \theta}{4^{p j+p}}\|x\|^{2 p} \tag{3.12}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.12) that the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$.
By (3.7),

$$
\|C Q(x, y)\|=\lim _{n \rightarrow \infty} 4^{n}\left\|C f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right\| \leq \lim _{n \rightarrow \infty} \frac{4^{n} \theta}{4^{p n}} \cdot\|x\|^{p} \cdot\|y\|^{p}=0
$$

for all $x, y \in X$. So $C Q(x, y)=0$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.12), we get (3.11).

The rest of the proof is similar to the proof of Theorem 2.1.

References

[1] I. Chang and Y. Jung, Stability of a functional equation deriving from cubic and quadratic functions, J. Math. Anal. Appl. 283 (2003), 491-500.
[2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[3] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[4] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[6] D. H. Hyers, G. Isac and Th.M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific Publishing Co., Singapore, New Jersey, London, 1997.
[7] D. H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[8] F. H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153.
[9] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Florida, 2001.
[10] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711-720.
[11] C. Park, On an approximate automorphism on a C^{*}-algebra, Proc. Amer. Math. Soc. 132 (2004), 1739-1745.
[12] C. Park, Lie *-homomorphisms between Lie C^{*}-algebras and Lie *-derivations on Lie C^{*}-algebras, J. Math. Anal. Appl. 293 (2004), 419-434.
[13] C. Park, Homomorphisms between Lie JC ${ }^{*}$-algebras and Cauchy-Rassias stability of Lie JC*-algebra derivations, J. Lie Theory 15 (2005), 393-414.
[14] C. Park, Homomorphisms between Poisson JC ${ }^{*}$-algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97.
[15] C. Park, Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between C^{*}-algebras, Bull. Belgian Math. Soc.Simon Stevin 13 (2006), 619-631.
[16] C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications 2007, Art. ID 50175 (2007).
[17] C. Park and J. Cui, Generalized stability of C^{*}-ternary quadratic mappings, Abstract Appl. Anal. 2007, Art. ID 23282 (2007).
[18] C. Park and J. Hou, Homomorphisms between C^{*}-algebras associated with the Trif functional equation and linear derivations on C^{*}-algebras, J. Korean Math. Soc. 41 (2004), 461-477.
[19] C. Park and A. Najati, Homomorphisms and derivations in C^{*}-algebras, Abstract Appl. Anal. 2007, Art. ID 80630 (2007).
[20] C. Park and Th.M. Rassias, On a generalized Trif's mapping in Banach modules over a C^{*}-algebra, J. Korean Math. Soc. 43 (2006), 323-356.
[21] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[22] Th. M. Rassias, On modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), 106-113.
[23] Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai XLIII (1998), 89-124.
[24] Th. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
[25] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[26] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130.
[27] Th. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
[28] Th. M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[29] Th. M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253.
[30] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[31] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.
*
Seoul Science High School
Seoul 110-530, Republic of Korea
E-mail: sshs1991@hanmail.net
**
Department of Mathematics
Hanyang University
Seoul 133-791, Republic of Korea
E-mail: baak@hanyang.ac.kr

[^0]: Received September 17, 2007.
 2000 Mathematics Subject Classification: Primary 39B72, 39B32.
 Key words and phrases: linear functional equation, quadratic functional equation, generalized Hyers-Ulam stability.

 This work was supported by the R \& E program of KOSEF in 2007.

