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GENERALIZED HYERS-ULAM STABILITY OF
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Abstract. In this paper, we prove the generalized Hyers-Ulam
stability of the following linear functional equations

f(x + iy) + f(x− iy) + f(y + ix) + f(y − ix) = 2f(x) + 2f(y)

and f((1 + i)x) = (1 + i)f(x), and of the following quadratic func-
tional equations

f(x + iy) + f(x− iy) + f(y + ix) + f(y − ix) = 0

and f((1 + i)x) = 2if(x) in complex Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a ques-
tion of Ulam [31] concerning the stability of group homomorphisms: Let
(G1, ∗) be a group and let (G2, ¦, d) be a metric group with the metric
d(·, ·). Given ε > 0, does there exist a δ(ε) > 0 such that if a mapping
h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) ¦ h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x),H(x)) < ε

for all x ∈ G1? If the answer is affirmative, we would say that the
equation of homomorphism H(x ∗ y) = H(x) ¦ H(y) is stable. The
concept of stability for a functional equation arises when we replace the
functional equation by an inequality which acts as a perturbation of the
equation. Thus the stability question of functional equations is that how
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do the solutions of the inequality differ from those of the given functional
equation?

Hyers [5] gave a first affirmative partial answer to the question of
Ulam for Banach spaces. Let X and Y be Banach spaces. Assume that
f : X → Y satisfies

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ X and some ε ≥ 0. Then there exists a unique additive
mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ ε

for all x ∈ X.
Th.M. Rassias [21] provided a generalization of Hyers’ Theorem which

allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let f : E → E′ be a mapping
from a normed vector space E into a Banach space E′ subject to the
inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)(1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then
the limit

L(x) = lim
n→∞

f(2nx)
2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping
which satisfies

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in
t ∈ R, then L is R-linear.

The above inequality (1.1) that was introduced for the first time by
Th.M. Rassias [21] for the proof of the stability of the linear mapping
bewteen Banach spaces has provided a lot of influence in the develop-
ment of what is now known as a generalized Hyers-Ulam stability or as
Hyers-Ulam-Rassias stability of functional equations. Beginning around
the year 1980 the topic of approximate homomorphisms, or the stability
of the equation of homomorphism, was studied by a number of math-
ematicians. Găvruta [4] extended the Hyers-Ulam stability by proving
the following theorem in the spirit of Th.M. Rassias’ approach.
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A square norm on an inner product space satisfies the important
parallelogram equality

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of
the quadratic functional equation is said to be a quadratic function. A
generalized Hyers–Ulam stability problem for the quadratic functional
equation was proved by Skof [30] for mappings f : X → Y , where X is
a normed space and Y is a Banach space. Cholewa [2] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an
Abelian group. Czerwik [3] proved the generalized Hyers-Ulam stability
of the quadratic functional equation. The stability problems of several
functional equations have been extensively investigated by a number of
authors and there are many interesting results concerning this problem
(see [1], [8]–[20], [23]–[29]).

In this paper, we prove the generalized Hyers-Ulam stability of the
following linear functional equations

f(x + iy) + f(x− iy) + f(y + ix) + f(y − ix) = 2f(x) + 2f(y)(1.2)

and f((1 + i)x) = (1 + i)f(x), whose solution is called an additive map-
ping, and the generalized Hyers-Ulam stability of the following quadratic
functional equations

f(x + iy) + f(x− iy) + f(y + ix) + f(y − ix) = 0(1.3)

and f((1 + i)x) = 2if(x), whose solution is called a quadratic mapping.
Throughout this paper, assume that X is a complex normed vector

space with norm || · || and that Y is a complex Banach space with norm
‖ · ‖.

2. Generalized Hyers-Ulam stability of linear functional equa-
tions

For a given mapping f : X → Y , we define

Cf(x, y) := f(x + iy) + f(x− iy) + f(y + ix) + f(y − ix)− 2f(x)− 2f(y)

for all x, y ∈ X.
If a mapping f : X → Y satisfies the linear functional equation

f(x + y) = f(x) + f(y)
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and f(ix) = if(x) for all x, y ∈ X, then

f(x + iy) + f(x− iy) + f(y + ix) + f(y − ix) = 2f(x) + 2f(y)

for all x, y ∈ X. In fact, f : C→ C with f(x) = x satisfies (1.2).
We prove the generalized Hyers-Ulam stability of the linear functional

equation Cf(x, y) = 0.

Theorem 2.1. Let p < 1 and θ be positive real numbers, and let
f : X → Y be a mapping satisfying f((1 + i)x) = (1 + i)f(x) and

‖Cf(x, y)‖ ≤ θ(||x||p + ||y||p)(2.1)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y
such that

‖f(x)−A(x)‖ ≤
√

2θ

2− 2p
||x||p(2.2)

for all x ∈ X.

Proof. Since f((1 + i)x) = (1 + i)f(x) for all x ∈ X, f(0) = 0 and
f(2x) = (1 + i)f((1− i)x) for all x ∈ X.

Letting y = x in (2.1), we get

‖2f((1 + i)x) + 2f((1− i)x)− 4f(x)‖ ≤ 2θ||x||p

for all x ∈ X. Hence

‖(1− i)f(2x)− (2− 2i)f(x)‖ ≤ 2θ||x||p

for all x ∈ X. So

‖f(x)− 1
2
f(2x)‖ ≤ θ√

2
||x||p(2.3)

for all x ∈ X. Hence

‖ 1
2l

f(2lx)− 1
2m

f(2mx)‖ ≤
m−1∑

j=l

2pjθ

2j
√

2
||x||p(2.4)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (2.4) that the sequence { 1

2n f(2nx)} is Cauchy for all x ∈ X. Since
Y is complete, the sequence { 1

2n f(2nx)} converges. So one can define
the mapping A : X → Y by

A(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ X.
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By (2.1),

‖CA(x, y)‖ = lim
n→∞

1
2n
‖Cf(2nx, 2ny)‖ ≤ lim

n→∞
2pnθ

2n
(||x||p + ||y||p) = 0

for all x, y ∈ X. So CA(x, y) = 0. Moreover, letting l = 0 and passing
the limit m →∞ in (2.4), we get (2.2).

Now, let L : X → Y be another additive mapping satisfying (1.2)
and (2.2). Then we have

‖A(x)− L(x)‖ =
1
2n
‖A(2nx)− L(2nx)‖

≤ 1
2n

(‖A(2nx)− f(2nx)‖+ ‖L(2nx)− f(2nx)‖)

≤ 2
√

2θ

2− 2p
· 2pn

2n
||x||p,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude
that A(x) = L(x) for all x ∈ X. This proves the uniqueness of A. So
there exists a unique quadratic mapping A : X → Y satisfying (1.2) and
(2.2).

Theorem 2.2. Let p > 1 and θ be positive real numbers, and let
f : X → Y be a mapping satisfying (2.1) and f((i + i)x) = (1 + i)f(x)
for all x ∈ X. Then there exists a unique additive mapping A : X → Y
such that

‖f(x)−A(x)‖ ≤
√

2θ

2p − 2
||x||p(2.5)

for all x ∈ X.

Proof. It follows from (2.3) that

‖f(x)− 2f(
x

2
)‖ ≤

√
2θ

2p
||x||p

for all x ∈ X. Hence

‖2lf(
x

2l
)− 2mf(

x

2m
)‖ ≤

m−1∑

j=l

2j+ 1
2 θ

2pj+p
||x||p(2.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (2.6) that the sequence {2nf( x

2n )} is Cauchy for all x ∈ X. Since
Y is complete, the sequence {2nf( x

2n )} converges. So one can define the
mapping A : X → Y by

A(x) := lim
n→∞ 2nf(

x

2n
)
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for all x ∈ X.
By (2.1),

‖CA(x, y)‖ = lim
n→∞ 2n‖Cf(

x

2n
,

y

2n
)‖ ≤ lim

n→∞
2nθ

2pn
(||x||p + ||y||p) = 0

for all x, y ∈ X. So CA(x, y) = 0. Moreover, letting l = 0 and passing
the limit m →∞ in (2.6), we get (2.5).

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 2.3. Let p < 1
2 and θ be positive real numbers, and let

f : X → Y be a mapping satisfying f((1 + i)x) = (1 + i)f(x) and

‖Cf(x, y)‖ ≤ θ · ||x||p · ||y||p(2.7)

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y
such that

‖f(x)−A(x)‖ ≤ θ

(2− 4p)
√

2
||x||2p(2.8)

for all x ∈ X.

Proof. Letting y = x in (2.7), we get

‖2f((1 + i)x) + 2f((1− i)x)− 4f(x)‖ ≤ θ||x||2p

for all x ∈ X. Hence

‖(1− i)f(2x)− (2− 2i)f(x)‖ ≤ θ||x||2p

for all x ∈ X. So

‖f(x)− 1
2
f(2x)‖ ≤ θ

2
√

2
||x||2p(2.9)

for all x ∈ X. Hence

‖ 1
2l

f(2lx)− 1
2m

f(2mx)‖ ≤
m−1∑

j=l

4pjθ

2j+1
√

2
||x||2p(2.10)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (2.10) that the sequence { 1

2n f(2nx)} is Cauchy for all x ∈ X. Since
Y is complete, the sequence { 1

2n f(2nx)} converges. So one can define
the mapping A : X → Y by

A(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ X.
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By (2.7),

‖CA(x, y)‖ = lim
n→∞

1
2n
‖Cf(2nx, 2ny)‖ ≤ lim

n→∞
4pnθ

2n
· ||x||p · ||y||p = 0

for all x, y ∈ X. So CA(x, y) = 0. Moreover, letting l = 0 and passing
the limit m →∞ in (2.10), we get (2.8).

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 2.4. Let p > 1
2 and θ be positive real numbers, and let

f : X → Y be a mapping satisfying (2.7) and f((1 + i)x) = (1 + i)f(x)
for all x ∈ X. Then there exists a unique additive mapping A : X → Y
such that

‖f(x)−A(x)‖ ≤ θ

(4p − 2)
√

2
||x||2p(2.11)

for all x ∈ X.

Proof. It follows from (2.9) that

‖f(x)− 2f(
x

2
)‖ ≤ θ

4p
√

2
||x||2p

for all x ∈ X. Hence

‖2lf(
x

2l
)− 2mf(

x

2m
)‖ ≤

m−1∑

j=l

2jθ

4pj+p
√

2
||x||2p(2.12)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (2.12) that the sequence {2nf( x

2n )} is Cauchy for all x ∈ X. Since
Y is complete, the sequence {2nf( x

2n )} converges. So one can define the
mapping A : X → Y by

A(x) := lim
n→∞ 2nf(

x

2n
)

for all x ∈ X.
By (2.7),

‖CA(x, y)‖ = lim
n→∞ 2n‖Cf(

x

2n
,

y

2n
)‖ ≤ lim

n→∞
2nθ

4pn
· ||x||p · ||y||p = 0

for all x, y ∈ X. So CA(x, y) = 0. Moreover, letting l = 0 and passing
the limit m →∞ in (2.12), we get (2.11).

The rest of the proof is similar to the proof of Theorem 2.1.
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3. Generalized Hyers-Ulam stability of quadratic functional
equations

For a given mapping f : X → Y , we define

Cf(x, y) := f(x + iy) + f(x− iy) + f(y + ix) + f(y − ix)

for all x, y ∈ X.
If a mapping f : X → Y satisfies the quadratic functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)

and f(ix) = −f(x) for all x, y ∈ X, then

f(x + iy) + f(x− iy) + f(x + y) + f(x− y) = 0

for all x, y ∈ X. In fact, f : C→ C with f(x) = x2 satisfies (1.3).
We prove the generalized Hyers-Ulam stability of the quadratic func-

tional equation Cf(x, y) = 0.

Theorem 3.1. Let p < 2 and θ be positive real numbers, and let
f : X → Y be a mapping satisfying f((1 + i)x) = 2if(x) and

‖Cf(x, y)‖ ≤ θ(||x||p + ||y||p)(3.1)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X →
Y such that

‖f(x)−Q(x)‖ ≤ 2θ

4− 2p
||x||p(3.2)

for all x ∈ X.

Proof. Since f((1+i)x) = 2if(x) for all x ∈ X, f(0) = 0 and f(2x) =
2if((1− i)x) for all x ∈ X.

Letting y = x in (3.1), we get

‖2f((1 + i)x) + 2f((1− i)x)‖ ≤ 2θ||x||p
for all x ∈ X. Hence

‖ − if(2x) + 4if(x)‖ ≤ 2θ||x||p
for all x ∈ X. So

‖f(x)− 1
4
f(2x)‖ ≤ θ

2
||x||p(3.3)

for all x ∈ X. Hence

‖ 1
4l

f(2lx)− 1
4m

f(2mx)‖ ≤
m−1∑

j=l

2pjθ

2 · 4j
||x||p(3.4)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (3.4) that the sequence { 1

4n f(2nx)} is Cauchy for all x ∈ X. Since
Y is complete, the sequence { 1

4n f(2nx)} converges. So one can define
the mapping Q : X → Y by

Q(x) := lim
n→∞

1
4n

f(2nx)

for all x ∈ X.
By (3.1),

‖CQ(x, y)‖ = lim
n→∞

1
4n
‖Cf(2nx, 2ny)‖ ≤ lim

n→∞
2pnθ

4n
(||x||p + ||y||p) = 0

for all x, y ∈ X. So CQ(x, y) = 0. Moreover, letting l = 0 and passing
the limit m →∞ in (3.4), we get (3.2).

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 3.2. Let p > 2 and θ be positive real numbers, and let
f : X → Y be a mapping satisfying (3.1) and f((i + i)x) = 2if(x) for
all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y
such that

‖f(x)−Q(x)‖ ≤ 2θ

2p − 4
||x||p(3.5)

for all x ∈ X.

Proof. It follows from (3.3) that

‖f(x)− 4f(
x

2
)‖ ≤ 2θ

2p
||x||p

for all x ∈ X. Hence

‖4lf(
x

2l
)− 4mf(

x

2m
)‖ ≤

m−1∑

j=l

2 · 4jθ

2pj+p
||x||p(3.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (3.6) that the sequence {4nf( x

2n )} is Cauchy for all x ∈ X. Since
Y is complete, the sequence {4nf( x

2n )} converges. So one can define the
mapping Q : X → Y by

Q(x) := lim
n→∞ 4nf(

x

2n
)

for all x ∈ X.
By (3.1),

‖CQ(x, y)‖ = lim
n→∞ 4n‖Cf(

x

2n
,

y

2n
)‖ ≤ lim

n→∞
4nθ

2pn
(||x||p + ||y||p) = 0
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for all x, y ∈ X. So CQ(x, y) = 0. Moreover, letting l = 0 and passing
the limit m →∞ in (3.6), we get (3.5).

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 3.3. Let p < 1 and θ be positive real numbers, and let
f : X → Y be a mapping satisfying f((1 + i)x) = 2if(x) and

‖Cf(x, y)‖ ≤ θ · ||x||p · ||y||p(3.7)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X →
Y such that

‖f(x)−Q(x)‖ ≤ θ

4− 4p
||x||2p(3.8)

for all x ∈ X.

Proof. Letting y = x in (3.7), we get

‖2f((1 + i)x) + 2f((1− i)x)‖ ≤ θ||x||2p

for all x ∈ X. Hence

‖ − if(2x) + 4if(x)‖ ≤ θ||x||2p

for all x ∈ X. So

‖f(x)− 1
4
f(2x)‖ ≤ θ

4
||x||2p(3.9)

for all x ∈ X. Hence

‖ 1
4l

f(2lx)− 1
4m

f(2mx)‖ ≤
m−1∑

j=l

4pjθ

4j+1
||x||2p(3.10)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (3.10) that the sequence { 1

4n f(2nx)} is Cauchy for all x ∈ X. Since
Y is complete, the sequence { 1

4n f(2nx)} converges. So one can define
the mapping Q : X → Y by

Q(x) := lim
n→∞

1
4n

f(2nx)

for all x ∈ X.
By (3.7),

‖CQ(x, y)‖ = lim
n→∞

1
4n
‖Cf(2nx, 2ny)‖ ≤ lim

n→∞
4pnθ

4n
· ||x||p · ||y||p = 0

for all x, y ∈ X. So CQ(x, y) = 0. Moreover, letting l = 0 and passing
the limit m →∞ in (3.10), we get (3.8).

The rest of the proof is similar to the proof of Theorem 2.1.
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Theorem 3.4. Let p > 1 and θ be positive real numbers, and let
f : X → Y be a mapping satisfying (3.7) and f((1 + i)x) = 2if(x) for
all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y
such that

‖f(x)−Q(x)‖ ≤ θ

4p − 4
||x||2p(3.11)

for all x ∈ X.

Proof. It follows from (3.9) that

‖f(x)− 4f(
x

2
)‖ ≤ θ

4p
||x||2p

for all x ∈ X. Hence

‖4lf(
x

2l
)− 4mf(

x

2m
)‖ ≤

m−1∑

j=l

4jθ

4pj+p
||x||2p(3.12)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (3.12) that the sequence {4nf( x

2n )} is Cauchy for all x ∈ X. Since
Y is complete, the sequence {4nf( x

2n )} converges. So one can define the
mapping Q : X → Y by

Q(x) := lim
n→∞ 4nf(

x

2n
)

for all x ∈ X.
By (3.7),

‖CQ(x, y)‖ = lim
n→∞ 4n‖Cf(

x

2n
,

y

2n
)‖ ≤ lim

n→∞
4nθ

4pn
· ||x||p · ||y||p = 0

for all x, y ∈ X. So CQ(x, y) = 0. Moreover, letting l = 0 and passing
the limit m →∞ in (3.12), we get (3.11).

The rest of the proof is similar to the proof of Theorem 2.1.
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[27] Th. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy
Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989–993.



Stability of functional equations 399
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