이양희*(공주교육대), 전길웅(충남대)

FE-2 On The Hyers-Ulam-Rassias Stability Of The Generalized Quadratic Equations

Let G be a groupoid and let E a topological vector space. $\varphi: G \rightarrow E$ satisfy(1). A set G is called a power-associative group if G is a nonempty set with a binary relation $x*y \in G$ such that the left powrs satisfy $x^{n+m} = x^m*n^n$ for all $m \in N$ and all $x \in G$. Left powers are defined by $x^1 = x$, x^{m+1} , $m \in N$.

THEOREM. IF $f: G \rightarrow E$ satisfies

$$f(x*y*z) + f(x) + f(y) + f(z) - f(x*y) - f(y*z) - f(y*z)$$

= $\varphi(x, y, z)$ ($\forall x, y \in G$),

and

(1)
$$f((x*y)^{2^n}) = f(x^{2^n}*y^{2^n}) \ (\forall x, y \in G \text{ and } n \in N)$$

then

(T.1.2)
$$\lim_{n\to\infty} \frac{\phi(x^{2^n}, y^{2^n})}{4^n} = \theta \ (\forall x, y \in G)$$

(T.1.3)
$$\phi(x,x) := \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{4^{k+1}} \varphi(x^{2^k}, x^{2^k}) \ (\forall x \in G)$$

if and only if the limit $Q(x) = \lim_{n \to \infty} \frac{f(x^{2^n})}{4^{n+1}}$ exists for any $x \in G$, and Q is quadratic.

박원길*(충남대) 배재형(충남대)

FE-3 Partitioned functional equations and approximate algebra homommorphisms

We prove the generalized Hyers-Ulam-Rassias stability of a partitioned functional equation. It is applied to show the stability of algebra homomorphisms between Banach algebras associated with partitioned functional equations in Banach algebras.