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NEWTON’S METHOD FOR SOLVING A QUADRATIC

MATRIX EQUATION WITH SPECIAL COEFFICIENT

MATRICES

Sang-Hyup Seo, Jong-Hyun Seo and Hyun-Min Kim†,∗

Abstract. We consider the iterative solution of a quadratic matrix
equation with special coefficient matrices which arises in the quasi-
birth and death problem. In this paper, we show that the elemen-
twise minimal positive solvent of the quadratic matrix equations
can be obtained using Newton’s method if there exists a positive
solvent and the convergence rate of the Newton iteration is qua-
dratic if the Fréchet derivative at the elementwise minimal positive
solvent is nonsingular. Although the Fréchet derivative is singular,
the convergence rate is at least linear. Numerical experiments of
the convergence rate are given.

1. Introduction

We consider a quadratic matrix equation defined by

(1.1) Q(X) = AX2 +BX + C = 0,

where the coefficient matrices A,B and C are real n×n matrices. Then,
the unknown matrix X must be an n × n matrix. In this paper, we
study the quadratic matrix equation (1.1) for A and C are nonnegative
matrices and −B is a nonsingular M -matrix.

Definition 1.1. [3], [17, p. 42] Let a matrix A ∈ Rn×n. A is an
Z-matrix if all its off-diagonal elements are nonpositive.
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It is clear that any Z-matrix A can be written as sI −B with B ≥ 0
and s ∈ R. Then M -matrix can be defined as follows.

Definition 1.2. [3, p. 580] A matrix A ∈ Rn×n is an M -matrix if
A = rI−B for some nonnegative matrix B with r ≥ ρ(B) where ρ is the
spectral radius; it is a singular M -matrix if r = ρ(B) and a nonsingular
M -matrix if r > ρ(B).

Definition 1.3. A positive solvent S1 of the matrix equationQ(X) =
0 is an elementwise minimal positive solvent and a positive solvent S2 of
Q(X) = 0 is an elementwise maximal positive solvent if, for any positive
solvent S of Q(X),

(1.2) S1 ≤ S ≤ S2.

Similarly, if nonnegative solvents S1 and S2 satisfy (1.2) for any non-
negative solvent S, S1 is called an elementwise minimal nonnegative
solvent and S2 is called an elementwise maximal nonnegative solvent.

Nonlinear matrix equations like (1.1) often occur in some stochastic
problems such as quasi-birth-and-death (QBD) processes. For example,
let a matrix P be defined by

(1.3) P =



B0 B1 0 0

A−1 A0 A1 0
. . .

0 A−1 A0 A1
. . .

0 0 A−1 A0
. . .

. . .
. . .

. . .
. . .


where A−1, A0, A1, B0 and B1 are n× n nonnegative matrices such that
A1+A0+A1 and B0+B1 are stochastic. Then, P is a transition matrix
of QBD processes. The purpose of QBD processes with a transition
matrix P is to find the stationary probability vector π of P . If we have
the minimal nonnegative solvent Rmin of

(1.4) X = X2A−1 +XA0 +A1

and the minimal nonnegative solvent Gmin of

(1.5) X = A−1 +A0X +A1X
2,

then we can obtain the vector π. For details, see [1, 7, 13].
The equations (1.4) and (1.5) are applications of (1.1). (1.5) is equiv-

alent to

A1X
2 + (A0 − In)X +A−1 = 0
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and (1.4) is equivalent to

AT
−1Y

2 + (AT
0 − In)Y +AT

1 = 0.

In this case, A−1, A1 are nonnegative matrices and In −A0 is a nonsin-
gular M -matrix. So, the purpose of this paper is to find the minimal
solvent of (1.1) with Newton’s method and convergence rate of Newton
iteration.

2. Positivity of matrices

Definition 2.1. [8, Definition 6.2.21, 6.2.22] Let A ∈ Rn×n. If there
exists a permutation matrix P ∈ Rn×n such that

(2.1) P TAP =

[
A11 A12

0 A22

]
where A11 and A22 are square matrix,

A is called reducible. If A is not reducible, it is called irreducible.

Nonnegative irreducible matrices have similar properties of positive
matrices. For example, Perron’s Theorem [8, Theorem 8.2.11] and Perron-
Frobenius Theorem [8, Theorem 8.4.4] show similar results of positive
matrices and nonnegative irreducible matrices.

Let A be a nonnegative irreducible matrix. Then, A1n is a positive
matrix where 1n is the n-column vector with all elements equal to 1. It
yields that A1n×n and 1n×nA are positive matrices where 1n×n is the
n× n matrix with all entries equal to 1. Furthermore, AB and BA are
positive matrices for a positive matrix B ∈ Rn×n.

Lemma 2.2. [2, Corollary 52] Let positive integers m, n, p, and q
be given and let A ∈ Rm×n and B ∈ Rp×q. Then, B ⊗ A is always
permutation equivalent to A ⊗ B. When m = n and p = q, B ⊗ A is
always permutation similar to A⊗B.

From Definition 2.1 and Lemma 2.2, A ⊗ B and B ⊗ A are both
irreducible or not for square matrices A and B.

Theorem 2.3. Let B ∈ Rm×m be a positive matrix. Then, A =
[aij ] ∈ Rn×n is irreducible if and only if A⊗B and B⊗A are irreducible.

Proof. It is sufficient to show that A ∈ Rn×n is reducible if and
only if A ⊗ B is reducible. By Definition 2.1, we use only permutation
matrices to know whether a matrix is reducible or not. So, without
loss of generality, the positive matrix B can be replaced by the positive
matrix 1m×m.
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Suppose that A ∈ Rn×n is reducible. Then, there exists a permuta-
tion matrix P ∈ Rn×n such that

P TAP =

[
B11 B12

0 B22

]
where B11 and B22 are p × p and q × q square matrices, respectively.
A⊗ 1m×m is expressed by

A⊗1m×m =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
An1 An2 · · · Ann

where Aij =

aij · · · aij
...

. . .
...

aij · · · aij

 ∈ Rn×n.

Consider P = P ⊗ Im. Then,

PT (A⊗ 1m×m)P =

[
A11 A12

O A22

]
where O is a mq ×mp zero matrix and A11 and A22 are mp ×mp and
mq ×mq square matrices, respectively. So, A⊗ 1m×m is reducible.

Therefore, A⊗B is reducible and B ⊗A is reducible by Lemma 2.2.
Conversely, suppose that A ⊗ 1m×m is reducible. Then, there exists

a permutation matrix P ∈ Rmn×mn such that

PT (A⊗ 1m×m)P =

[
A11 A12

O A22

]
where O is a q′ × p′ zero matrix and A11 and A12 are p′ × p′ and q′ × q′

square matrices, respectively.
Put p = p′/m and q = q′/m. Then, q+p = n because m(p+ q) = mp+

mq = p′ + q′ = mn. Since O ∈ Rmq×mp, there exist I = {i1, i2, · · · , ik}
and J = {j1, j2, · · · , jl} such that

aij = 0 if i ∈ I and j ∈ J

where q ≤ k ≤ mq and p ≤ l ≤ mp. If I∩J = ϕ, then A has a q×p zero
submatrix which does not contain diagonal entries of A where q+p = n.

Suppose that I ∩ J ̸= ϕ and i′ ∈ I ∩ J. If k = q, then A has at
most q zeros in a column and A ⊗ 1m×m has at most mq zeros in a
column. Thus, O has m ai′,i′ . It means that O contains a diagonal
entry of A⊗1m×m. It’s a contradiction. Therefore, k ≥ q+1. Similarly,
l ≥ p + 1. So, A has a q × p zero submatrix which does not contain
diagonal entries of A where q + p = n. Therefore, A is reducible.

Now, we see the properties of M -matrices.
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Theorem 2.4. [3, Theorem 2.1], [14, Theorem 2.1] For a Z-matrix
A, the following are equivalent:

1) A is a nonsingular M -matrix.
2) A−1 is nonnegative.
3) Av > 0 for some vector v > 0.
4) All eigenvalues of A have positive real parts.

Theorem 2.5. [3, Lemma 2.2], [5, Theorem 7.4] Let A ∈ Rm×m be
a nonsingular M -matrix.

1) Av ≥ 0 implies v ≥ 0.
2) If B is a Z-matrix and B ≥ A, then B is also a M -matrix.

Using 1) in Theorem 2.5, we can yield the following theorem.

Theorem 2.6. Let A ∈ Rn×n be a nonsingular M -matrix and v ∈
Rn. Then, Av > 0 implies v > 0.

Proof. Let A = [aij ], v = [v1, v2, · · · , vn]T and Av > 0, then 2.5 1),
v ≥ 0. Now, suppose that v ≥ 0 and there exists i such that vi = 0.
Then

(Av)i =
n∑

j=1

aijvj =
i−1∑
j=1

aijvj +
n∑

j=i+1

aijvj

Since for all i ∈ {1, 2, · · · , n}, vi is nonnegative and off-diagonal entries
of A are nonpositive, (Av)i ≤ 0. It contradicts to the fact that Av > 0.
Therefore, v > 0.

Theorem 2.7. [8, Corollary 5.6.10] Let A ∈ Rn×n and ϵ > 0 be
given. There is a matrix norm ∥ · ∥ such that ρ(A) ≤ ∥A∥ ≤ ρ(A) + ϵ.

Theorem 2.8. [8, Corollary 5.6.16] A matrix A ∈ Rn×n is nonsin-
gular if there is a matrix norm ∥ · ∥ such that ∥In − A∥ < 1. If this
condition is satisfied,

A−1 =

∞∑
k=0

(In −A)k

Theorem 2.9. [8, Theorem 6.2.23] A matrix A ∈ Rn×n is irreducible
if and only if

(In + |A|)n−1 > 0,

where |A| = [|aij |].

From the three previous theorems, we obtain the next result.

Theorem 2.10. Let A = rIn − B ∈ Rn×n be a nonsingular irre-
ducible M -matrix. Then, A−1 is positive.
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Proof. Since A is a nonsingular irreducible M -matrix, B is a nonneg-

ative irreducible matrix and r > ρ(B). Put C =
1

r
B. Then, C is also

nonnegative irreducible matrix and ρ(C) < 1. Putting ϵ =
1− ρ(C)

2
,

there is a matrix norm ∥·∥ on Rn×n such that ρ(C) ≤ ∥C∥ ≤ ρ(C)+ϵ < 1
by Theorem 2.7. Since there is a matrix norm ∥ · ∥ such that ∥C∥ < 1,

(In − C)−1 =
∞∑
k=0

Ck

by Theorem 2.8.

A−1 = (rIn −B)−1

=
1

r
(In − C)−1

=
1

r

∞∑
k=0

Ck

where C0 = In. By Theorem 2.9,

(In + C)n−1 =

n−1∑
i=0

(
n− 1

i

)
Ci > 0.

So,
n−1∑
k=0

Ck > 0, also. Therefore,

A−1 =
1

r

∞∑
k=0

Ck ≥ 1

r

n−1∑
k=0

Ck > 0.

3. Convergence of Newton’s Method

The Fréchet derivative of the quadratic matrix equation (1.1) at X
in the direction H is given by

(3.1) Q′
X(H) = AHX + (AX +B)H.

The second Fréchet derivative of the quadratic matrix equation (1.1) at
X is given by

(3.2) Q
(2)
X (K,H) = A(KH +HK).
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For the equation (1.1), each step of Newton iteration can be simplified

(3.3)

{
AHiXi + (AXi +B)Hi = −Q(Xi),

Xi+1 = Xi +Hi,
i = 1, 2, · · · .

Also supposing that Q′
Xi

is nonsingular, the Newton iteration (3.3)
can be rewritten as

Xi+1 = Xi − (Q′
Xi
)−1(Q(Xi))

which is equivalent to

(3.4) AXi+1Xi + (AXi +B)Xi+1 = AX2
i − C

The general approach for solving (3.4) is to solve the n2 × n2 linear
system derived by vec function and Kronecker product [11, 15] such as

DXivec(H) = vec(−Q(Xi))

where

(3.5) DX =
[(
XT ⊗A+ I ⊗AX

)
+ I ⊗B)

]
.

Clearly from Definition 1.2, if −B is an M -matrix, then so is −I⊗B.
For convinence we write

(3.6) −DX = −I ⊗B −
(
XT ⊗A+ I ⊗AX

)
= rIn2 −N(X)

where N(X) = I ⊗ T0 +XT ⊗A+ I ⊗AX.
In this paper, we use the Frobenius norm || · ||F for matrices. For

convenience, the notation || · || is used instead of || · ||F and we define
N0 = N ∪ {0}.

Theorem 3.1. Let A in the quadratic matrix equation (1.1) be a
nonnegative irreducible matrix, and C in (1.1) be a nonnegative matrix,
and let −B in (1.1) be a nonsingular M -matrix. If there is a positive
matrix Y such that Q(Y ) ≤ 0, then for the Newton iteration (3.3) with
X0 = 0, the sequence {Xi} is well defined, X0 ≤ X1 ≤ X2 ≤ · · · , and
converges to the elementwise nonnegative solvent S. Furthermore

−DXi = −
[(
XT

i ⊗A+ In ⊗AXi

)
+ In ⊗B)

]
is a nonsingular M -matrix at each iterate Xi and −DS is an M -matrix.

Proof. The proof is by mathematical induction. Let Y be any positive
matrix such that

(3.7) Q(Y ) = AY 2 +BY + C ≤ 0.

By Theorem 2.4, (−B)−1 ≥ 0. X1 = −B−1C ≥ 0. So, the statements

(3.8) Xk ≤ Xk+1, Xk < Y,
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and

(3.9) −DXk
is a nonsingular M -matrix

are true for k = 0.
We now suppose that (3.8) and (3.9) are true for k = i ∈ N0.
From (3.4) and (3.7), we obtain that

(3.10)
A(Y −Xi+1)Xi + (AXi +B)(Y −Xi+1)

≤ AYXi +AXiY −AX2
i −AY 2

= −A(Y −Xi)
2 < 0.

By Theorem 2.6, we obtain that vec(Y −Xi+1) > 0, i.e., Xi+1 < Y .
From that Xi+1 < Y and Xi ≤ Xi+1, we get the inequation

(3.11)

A(Y −Xi+1)Xi+1 + (AXi+1 +B)(Y −Xi+1)
≤ −AY 2 +AYXi+1 +AXi+1Y −AX2

i+1
−AX2

i+1 +AXi+1Xi +AXiXi+1 −AX2
i

= −A(Y −Xi+1)
2 −A(Xi+1 −Xi)

2 < 0.

Applying the Vec operator to (3.11), we get

vec (−[A(Y −Xi+1)Xi+1 + (AXi+1 +B)(Y −Xi+1)])
= −[XT

i+1 ⊗A+ In ⊗ (AXi+1 +B)]vec(Y −Xi+1)
= −DXi+1vec(Y −Xi+1) > 0.

Since −DXi+1 is a Z-matrix, (3.9) is true for k = i+ 1 by Theorem 2.4.
By (3.4), we have

(3.12)
A(Xi+2 −Xi+1)Xi+1 + (AXi+1 +B)(Xi+2 −Xi+1)

= AXi+2Xi+1 −AX2
i+1 +AXi+1Xi+2 +BXi+2 −AX2

i+1 −BXi+1

= −A(Xi+1 −Xi)
2 ≤ 0

It shows that −DXi+1vec(Xi+2−Xi+1) ≥ 0. By Theorem 2.5, we obtain
Xi+2 ≥ Xi+1.

Since the Newton sequence {Xi} is monotone increasing and bounded
above, it has a limit, lim

i→∞
Xi = S [12]. Therefore, {Xi} converges to a

nonnegative solvent S.

Lemma 3.2. Let A, B and C in the quadratic matrix equation (1.1)
have same conditions in Theorem 3.1. If there is a nonnegative matrix
Y such that Q(Y ) ≤ 0, the sequence {Xi} is well defined for the Newton
iteration (3.3) and satisfiesX0 ≤ X1 ≤ X2 ≤ · · · withX0 = 0, and−DXi

is a nonsingular M -matrix for i ∈ N0, then the sequence converges to
the elementwise minimal nonnegative solvent S.
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Proof. At first, we will prove that

(3.13) Xk ≤ Y

is true for k ∈ N0 by mathematical induction. Let Y be any nonnegative
matrix such that

(3.14) Q(Y ) = AY 2 +BY + C ≤ 0.

Obviously, the statement (3.13) is true for k = 0.
We now suppose that (3.13) is true for k = i ∈ N0. Like (3.10), we

get that

A(Y −Xi+1)Xi + (AXi +B)(Y −Xi+1)
≤ −A(Y −Xi)

2 ≤ 0.

By Theorem 2.5, vec(Y −Xi+1) ≥ 0, i.e., Xi+1 ≤ Y .
Since the Newton sequence {Xi} is monotone increasing and bounded

above, it has a limit, lim
i→∞

Xi = S. From the fact that X1 ≥ 0 and

Xk ≤ Y for all k ∈ N0, we get 0 ≤ S ≤ Y . Since we can take for Y
any nonnegative solvent, it follows that S is the elementwise minimal
nonnegative solvent.

By Theorem 3.1 and Lemma 3.2, we get the next result.

Corollary 3.3. For the quadratic matrix equation (1.1) that has
same conditions in Theorem 3.1, the Newton sequence {Xi} with X0 = 0
converges to the elementwise minimal nonnegative solvent S.

Now, we will give an assumption to (1.1).

Assumption 3.4. For the quadratic matrix (1.1)
I) The coefficient matrices A and C are nonnegative and irreducible.
II) −B = rI−T0 is a nonsingular irreducible M -matrix where T0 ≥ 0.

Applying Assumption 3.4 to Theorem 3.1, we obtain the next results.

Corollary 3.5. Suppose the quadratic matrix equation satisfies As-
sumption 3.4. If there is a positive matrix Y such that Q(Y ) ≤ 0, then
for the Newton iteration (3.3) with X0 = 0, the sequence {Xi} is well de-
fined, X0 < X1 < X2 < · · · , and converges to the elementwise minimal
positive solvent S. Furthermore

−DXi = −
[(
XT

i ⊗A+ In ⊗AXi

)
+ In ⊗B)

]
is a nonsingular irreducible M -matrix at each iterate Xi except X0, and
−DS is an irreducible M -matrix.
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Proof. Since C is a nonnegative matrix and −B is a nonsingular M -
matrix, −DXi is a nonsingular M -matrix for all i ∈ N0 and −DS is an
M -matrix by Theorem 3.1.

We need to show that Xi < Xi+1 for all i ∈ N0 and −DXi and −DS

are irreducible for all i ∈ N. We use the mathematical induction.

Since X1 = −B−1C > 0 = X0, the statement

(3.15) Xk+1 > Xk

is true for k = 0.

Now, suppose that (3.15) is true for k = i. From (3.12) and A(Xi+1−
Xi)

2 > 0, we obtain

−DXi+1vec(Xi+2 −Xi+1) > 0.

Since −DXi+1 is a nonsingular M -matrix, (3.15) is true for k = i+ 1 by
Theorem 2.6.

Since Xk is positive for all k ∈ N and S is positive, XT
k ⊗ A and

ST ⊗ A are irreducible by Theorem 2.3. Therefore, −DXk
and −DS

are irreducible because the off-diagonal entries of In ⊗ (AXk + B) and
In ⊗ (AS +B) are nonnegative.

Finally, from the fact that X1 > 0 and Xk < Y for all k ∈ N0, we get
0 < S ≤ Y . Since we can take for Y any positive solvent, it follows that
S is the elementwise minimal positive solvent.

Theorem 3.6. If the matrix −DS in Theorem 3.1 is a nonsingular
M -matrix, then for X0 = 0, the Newton sequence {Xi} converges to S
quadratically.

Proof. By the hypothesis, the Fréchet derivative Q′
S is an invertible

map. Since the sequence {Xi} is converges to S, there exists K ∈ N such
that k ≥ K implies that ∥Xk − S∥ < ϵ for any sufficiently small ϵ > 0.
Therefore, by [10, Theorem 4.1.9], the sequence {Xi}∞i=K converges to
S quadratically.

4. Convergence Rate for a Singular M-matrix −DS

In the case of −DS is a singular M -matrix, we will see the Newton se-
quence also converges to the solvent but linearly. If Q′

S is non-invertible,
then Q′

S has a null space N = Ker(Q′
S) and closed range M = Im(Q′

S).
Suppose that the direct sum N ⊕M = Rn×n. Then we can define PN
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to be the projection onto N parallel to M and PM = I − PN . For a
nonzero matrix N0 ∈ N , define the map BN0 : N → N given by

(4.1) BN0(N) = PNQ
(2)
S (N0, N).

Our main result is an application of the following theorem which estab-
lish local convergence in contrast with Theorem 3.1.

Theorem 4.1. [9, Thm.1.1] Let BN0 in (4.1) be invertible for some
nonzero N0 ∈ N and let N = span{N0} ⊕ N1 for some subspace N1.

Write X̃ = X − S and let

(4.2) W (ρ, θ, η) =

{
X

0 < ∥X̃∥ < ρ, ∥PM(X̃)∥ ≤ θ∥PN (X̃)∥,
∥(PN −P0)(X̃)∥ ≤ η∥PN (X̃)∥

}
,

where P0 is the projection onto span{N0} parallel to N1⊕M. If X0 ∈
W (ρ0, θ0, η0) for ρ0, θ0, η0 sufficiently small, then the Newton sequence

{Xi} is well defined and ∥Q′
Xi

−1∥ ≤ c∥X̃i∥−1 for all i ≥ 1 and some
constant c > 0. Moreover,

lim
i→∞

∥X̃i+1∥
∥X̃i∥

=
1

2
, lim

i→∞

∥PM(X̃i)∥
∥PN (X̃i)∥2

= 0.

To prove convergence rate of Newton’s method of the case that −DS

is singular, we will show that (1.1) satisfies the conditions of Theorem
4.1. Before proving the following lemma, we use unvec operator from

Rn2
onto Rn×n which is the inverse of the vec operator.

Lemma 4.2. Suppose the quadratic matrix equation (1.1) satisfies
Assumption 3.4. If the matrix −DS in Theorem 3.1 is a singular M -
matrix, then 0 is a simple eigenvalue of −DS , N ⊕ M = Rn×n, N is
one-dimensional and the map BN0 is invertible for some nonzeroN0 ∈ N .

Proof. From (3.6), −DS = rIn2 − N(S) where N(S) = In ⊗ T0 +
ST ⊗ A + In ⊗ AS. Since S is positive and A is irreducible, ST ⊗ A is
irreducible by Theorem 2.3. Hence, N(S) is also irreducible. Then, by
Perron-Frobenius Theorem, [8, Theorem 8.4.4] ρ(N(S)) = r is a simple
eigenvalue of N(S) with a positive eigenvector. Thus, we can find n2

linearly independent vectors x1, x2, · · ·xn2 such that x1 > 0 and

(4.3) X−1DSX =

[
0 0
0 D22

]
, where X =

 x1 x2 · · · xn2


and D22 is an (n2−1)×(n2−1) nonsingular matrix. By the same way, we
also have a positive vector y such that yTDS = 0 (i.e., y ∈ Ker

(
DS

T
)
).
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Now, Q′
S(N) = ANS + (AS + B)N = 0 if and only if DSvec(N) = 0.

From (4.3), DSvec(N) = 0 if and only if vec(N) = X(a, 0, · · · , 0)T = ax1
for some a ∈ R, in which case we write N = aunvec(x1). Thus N =
{aunvec(x1)|a ∈ R}. Simiarly, M = {b2unvec(x2)+ · · ·+ bn2unvec(xn2)|
b2, · · · , bn2 ∈ R}. Therefore, N is one-dimensional and Rn×n = N ⊕M.
From (3.2) and (4.1), to prove the map B is invertible, we only need to
show

PN
(
A(unvec(x1))

2
)
̸= 0.

Since x1 > 0, we have vec(A(unvec(x1))
2) > 0 and it represented by

vec
(
A(unvec(x1))

2
)
= k1x1 + k2x2 + · · ·+ kn2xn2

for some real numbers k1, k2, · · · , kn2 . By Fundamental theorem of linear
algebra in [16] and Lemma 6.3.10 in [8], we have

yTvec
(
A(unvec(x1))

2
)
= k1y

Tx1.

Furthermore, Since vec(A(unvec(x1))
2), y, and x1 are positive vectors,

yTvec(A(unvec(x1))
2) > 0 and yTx1 > 0. Therefore, k1 > 0 and

PN
(
A(unvec(x1))

2
)
= k1unvec(x1) > 0.

Lemma 4.3. Let S be a solvent for the quadratic matrix equation
Q(X) = 0 in (1.1), let {Xi} be a Newton sequence in (3.4) where i =

0, 1, 2, · · · and let X̃i = Xi − S. Then

∥Q(Xi)∥ ≤ a∥X̃i∥2 + b∥X̃i∥∥X̃i−1∥+ c∥X̃i−1∥2

for some positive real number a, b, c.

Proof. From Taylor’s Theorem with the second derivative (3.2), we
have

(4.4) Q(Xi) = Q(S) +Q′
S(X̃i) +

1

2
Q

(2)
S (X̃i, X̃i) = Q′

S(X̃i) +AX̃2
i .

From (3.3) we have

AXiXi−1 + (AXi−1 +B)Xi = AX2
i−1 − C,

and clearly

BS = −AS2 − C.

By subtraction, we obtain

AXiXi−1 +AXi−1Xi +B(Xi − S) = AX2
i−1 +AS2

AXiXi−1 −ASXi−1 +AXi−1Xi −AXi−1S +BX̃i = A(Xi−1 − S)2

AX̃iXi−1 +AXi−1Xi +BX̃i = AX̃2
i−1
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Writing S = Xi−1 − X̃i−1 in (4.4)

Q(Xi) = AX̃i(Xi−1 − X̃i−1) +
(
A(Xi−1 − X̃i−1) +B

)
X̃i +AX̃2

i

= AX̃2
i−1 −AX̃iX̃i−1 −AX̃i−1X̃i +AX̃2

i .

Since ∥ · ∥ is a multiplicative matrix norm on Rn×n, we have required
result.

Lemma 4.4. For any fixed θ > 0, let

Q = {i|∥PM(Xi − S)∥ > θ∥PN (Xi − S)∥}

where {Xi} is a Newton sequence in Corollary 3.5. Then there exist an
integer i0 and a constant c > 0 such that ∥Xi − S∥ ≤ c∥Xi−1 − S∥2 for
all i in Q for i ≥ i0.

Proof. Let X̃i = Xi − S. Using Taylor’s Theorem with the second

derivative (3.2) and the fact that Q′
S

(
PN (X̃i)

)
= 0,

(4.5) Q(Xi) = Q(S)+Q′
S(X̃i)+

1

2
Q

(2)
S (X̃i, X̃i) = Q′

S

(
PM(X̃i)

)
+AX̃2

i .

Since Q′
S |M : M → M is invertible,

∥∥∥Q′
S

(
PM(X̃i)

)∥∥∥ ≥ c1∥PM(X̃i)∥
for some constant c1 > 0. For i ∈ Q, we have

(4.6) ∥X̃i∥ ≤
∥∥∥PM(X̃i)

∥∥∥+
∥∥∥PN (X̃i)

∥∥∥ ≤ (θ−1 + 1)
∥∥∥PM(X̃i)

∥∥∥ .
Thus by (4.5),

∥Q(Xi)∥ ≥ c1∥PM(X̃i)∥ − c2∥X̃i∥2 ≥
(
c1(θ

−1 + 1)−1 − c2∥X̃i∥
)
∥X̃i∥.

On the other hand, from Lemma 4.3, we have

∥Q(Xi)∥ ≤ c3∥X̃i∥2 + c4∥X̃i−1∥∥X̃i∥+ c5∥X̃i∥2.

From (4.6) and the fact that Xi ̸= S for any i, we have

c1(θ
−1 + 1)−1 − c2∥X̃i∥ ≤ c3∥X̃i∥+ c4∥X̃i−1∥+ c5

∥X̃i−1∥2

∥X̃i∥
.

Since X̃i converges to 0 by Theorem 3.1, we can find an i0 such that
∥X̃i∥ ≤ c∥X̃i−1∥2 for all i ≥ i0.

Corollary 4.5. Assume that, for given θ > 0, ∥PM(Xi − S)∥ >
θ∥PN (Xi − S)∥ for all i large enough. Then Xi → S quadratically.
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In the case of Q′
S is singular practically the Newton sequence con-

verges linearly, according to the corollary we conclude that the error will
generally be dominated by its N component [4]. From Lemma 4.2 and
4.4 we have following main theorem.

Theorem 4.6. If DS is a singular M -matrix and the convergence
of the Newton sequence {Xi} in Corollary 3.5 is not quadratic, then

∥Q′
Xi

−1∥ ≤ c∥Xi−S∥−1 for all i ≥ 1 and some constant c > 0. Moreover,

lim
i→∞

∥X̃i+1∥
∥X̃i∥

=
1

2
, lim

i→∞

∥PM(X̃i)∥
∥PN (X̃i)∥2

= 0.

5. Numerical Experiments

In this paper, the tolerance of the Newton algorithm is n×10−16 and
we will stop the iteration if ∥Q(Xi+1)∥/(∥A∥∥Xi+1∥2+∥B∥∥Xi+1∥+∥C∥)
is less than tolerance.

Example 5.1. Consider the matrix equation (1.1) for a QBD process.
We construct n× n matrices

(5.1) A = W, B = W − In, and C = W +
√
δIn

where

W =
1−

√
δ

3(n− 1)
(1n×n − In)

for 0 < δ < 1. Then, (3W + δIn)1n = 1n. Note that as δ approaches
zero, the problem becomes more unstable [6][12]. The matrices A, B
and C satisfy the Assumption 3.4. So, the problem has the elementwise
minimal positive solvent S if it exists. The result is obtained with ma-
trices A, B and C in (5.1) of size n = 8 and n = 16 with from δ = 10−1

to δ = 10−16.
The results of Figures 5.1, 5.2 and Table 5.1 show that the Newton

sequence of the problem converges to a solvent linearly as δ approaches
to zero whatever n is. In fact, in the case of δ = 10−1, the minimal
eigenvalues of −DS are about 0.31623 in both cases n = 8 and n =
16. But, in the case of δ = 10−16, the minimal eigenvalues of −DS

are about 4.0916 × 10−8 and 8.0053 × 10−8 when n = 8 and n = 16,
respectively. Then, we can see that the convergence rate of Newton
sequence approaches linear if δ approaches to zero because −DS becomes
nearly singular.
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δ n = 8 n = 16 δ n = 8 n = 16
10−1 3.1623e−001 3.1623e−001 10−9 3.1623e−005 3.1623e−005
10−2 1.0000e−001 1.0000e−001 10−10 1.0000e−005 1.0000e−005
10−3 3.1623e−002 3.1623e−002 10−11 3.1626e−006 3.1626e−006
10−4 1.0000e−002 1.0000e−002 10−12 9.9996e−007 1.0037e−006
10−5 3.1623e−003 3.1623e−003 10−13 3.1628e−007 3.2818e−007
10−6 1.0000e−003 1.0000e−003 10−14 1.0125e−007 1.1738e−007
10−7 3.1623e−004 3.1623e−004 10−15 4.8129e−008 8.3301e−008
10−8 1.0000e−004 1.0000e−004 10−16 4.0916e−008 8.0053e−008

Table 5.1. The smallest eigenvalues of −DS
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Figure 5.1. The convergence rate in Example 5.1 where
n = 8
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Figure 5.2. The convergence rate in Example 5.1 where
n = 16
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