• 제목/요약/키워드: prime ideal

검색결과 285건 처리시간 0.022초

ON JORDAN IDEALS IN PRIME RINGS WITH GENERALIZED DERIVATIONS

  • Bennis, Driss;Fahid, Brahim;Mamouni, Abdellah
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.495-502
    • /
    • 2017
  • Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of R. Let F and G be two generalized derivations with associated derivations f and g, respectively. Our main result in this paper shows that if F(x)x - xG(x) = 0 for all $x{\in}J$, then R is commutative and F = G or G is a left multiplier and F = G + f. This result with its consequences generalize some recent results due to El-Soufi and Aboubakr in which they assumed that the Jordan ideal J is also a subring of R.

The Factor Domains that Result from Uppers to Prime Ideals in Polynomial Rings

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • 제50권1호
    • /
    • pp.1-5
    • /
    • 2010
  • Let P be a prime ideal of a commutative unital ring R; X an indeterminate; D := R/P; L the quotient field of D; F an algebraic closure of L; ${\alpha}$ ${\in}$ L[X] a monic irreducible polynomial; ${\xi}$ any root of in F; and Q = ${\alpha}$>, the upper to P with respect to ${\alpha}$. Then R[X]/Q is R-algebra isomorphic to $D[{\xi}]$; and is R-isomorphic to an overring of D if and only if deg(${\alpha}$) = 1.

SOME RESULTS ON ENDOMORPHISMS OF PRIME RING WHICH ARE $(\sigma,\tau)$-DERIVATION

  • Golbasi, Oznur;Aydin, Neset
    • East Asian mathematical journal
    • /
    • 제18권2호
    • /
    • pp.195-203
    • /
    • 2002
  • Let R be a prime ring with characteristic not two and U is a nonzero left ideal of R which contains no nonzero nilpotent right ideal as a ring. For a $(\sigma,\tau)$-derivation d : R$\rightarrow$R, we prove the following results: (1) If d is an endomorphism on R then d=0. (2) If d is an anti-endomorphism on R then d=0. (3) If d(xy)=d(yx), for all x, y$\in$R then R is commutative. (4) If d is an homomorphism or anti-homomorphism on U then d=0.

  • PDF

LIE IDEALS AND DERIVATIONS OF $\sigma$-PRIME RINGS

  • Shuliang, Huang
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제17권1호
    • /
    • pp.87-92
    • /
    • 2010
  • Let R be a 2-torsion free $\sigma$-prime ring with an involution $\sigma$, U a nonzero square closed $\sigma$-Lie ideal, Z(R) the center of Rand d a derivation of R. In this paper, it is proved that d = 0 or $U\;{\subseteq}\;Z(R)$ if one of the following conditions holds: (1) $d(xy)\;-\;xy\;{\in}\;Z(R)$ or $d(xy)\;-\;yx\;{\in}Z(R)$ for all x, $y\;{\in}\;U$. (2) $d(x)\;{\circ}\;d(y)\;=\;0$ or $d(x)\;{\circ}\;d(y)\;=\;x\;{\circ}\;y$ for all x, $y\;{\in}\;U$ and d commutes with $\sigma$.

A NOTE ON LIE IDEALS OF PRIME RINGS

  • Shuliang, Huang
    • 대한수학회논문집
    • /
    • 제25권3호
    • /
    • pp.327-333
    • /
    • 2010
  • Let R be a 2-torsion free prime ring, U a nonzero Lie ideal of R such that $u^2\;{\in}\;U$ for all $u\;{\in}\;U$. In the present paper, it is proved that if d is a nonzero derivation and [[d(u), u], u] = 0 for all $u\;{\in}\;U$, then $U\;{\subseteq}\;Z(R)$. Moreover, suppose that $d_1$, $d_2$, $d_3$ are nonzero derivations of R such that $d_3(y)d_1(x)\;=\;d_2(x)d_3(y)$ for all x, $y\;{\in}\;U$, then $U\;{\subseteq}\;Z(R)$. Finally, some examples are given to demonstrate that the restrictions imposed on the hypothesis of the above results are not superfluous.

PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME RADICAL AND M-BAER'S LOWER NILRADICAL OF MODULES

  • Beachy, John A.;Behboodi, Mahmood;Yazdi, Faezeh
    • 대한수학회지
    • /
    • 제50권6호
    • /
    • pp.1271-1290
    • /
    • 2013
  • Let M be a fixed left R-module. For a left R-module X, we introduce the notion of M-prime (resp. M-semiprime) submodule of X such that in the case M=R, it coincides with prime (resp. semiprime) submodule of X. Other concepts encountered in the general theory are M-$m$-system sets, M-$n$-system sets, M-prime radical and M-Baer's lower nilradical of modules. Relationships between these concepts and basic properties are established. In particular, we identify certain submodules of M, called "primeM-ideals", that play a role analogous to that of prime (two-sided) ideals in the ring R. Using this definition, we show that if M satisfies condition H (defined later) and $Hom_R(M,X){\neq}0$ for all modules X in the category ${\sigma}[M]$, then there is a one-to-one correspondence between isomorphism classes of indecomposable M-injective modules in ${\sigma}[M]$ and prime M-ideals of M. Also, we investigate the prime M-ideals, M-prime submodules and M-prime radical of Artinian modules.

GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • 대한수학회지
    • /
    • 제54권6호
    • /
    • pp.1733-1757
    • /
    • 2017
  • Let $R={\oplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$, ${\bar{R}}$ be the integral closure of R, H be the set of nonzero homogeneous elements of R, C(f) be the fractional ideal of R generated by the homogeneous components of $f{\in}R_H$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. Let $R_H$ be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q=fR_H{\cap}R$ for some $f{\in}R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if ${\bar{R}}_{H{\backslash}Q}$ is a graded-$Pr{\ddot{u}}fer$ domain for all homogeneous maximal t-ideals Q of R, if and only if ${\bar{R}}_{N(H)}$ is a $Pr{\ddot{u}}fer$ domain, if and only if R is a UMT-domain.

A NOTE ON OPERATORS ON FINSLER MODULES

  • TAGHAVI, A.;JAFARZADEH, JAFARZADEH
    • 호남수학학술지
    • /
    • 제28권4호
    • /
    • pp.533-541
    • /
    • 2006
  • let E be a Finsler modules over $C^*$-algebras. A with norm-map $\rho$ and L(E) set of all A-linear bonded operators on E. We show that the canonical homomorphism ${\phi}:L(E){\rightarrow}L(E_I)$ sending each operator T to its restriction $T|E_I$ is injective if and only if I is an essential ideal in the underlying $C^*$-algebra A. We also show that $T{\in}L(E)$ is a bounded below if and only if ${\mid}{\mid}x{\mid}{\mid}={\mid}{\mid}{\rho}{\prime}(x){\mid}{\mid}$ is complete, where ${\rho}{\prime}(x)={\rho}(Tx)$ for all $x{\in}E$. Also, we give a necessary and sufficient condition for the equivalence of the norms generated by the norm map.

  • PDF

UPPERS TO ZERO IN POLYNOMIAL RINGS WHICH ARE MAXIMAL IDEALS

  • Chang, Gyu Whan
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.525-530
    • /
    • 2015
  • Let D be an integrally closed domain with quotient field K, X be an indeterminate over D, $f=a_0+a_1X+{\cdots}+a_nX^n{\in}D[X]$ be irreducible in K[X], and $Q_f=fK[X]{\cap}D[X]$. In this paper, we show that $Q_f$ is a maximal ideal of D[X] if and only if $(\frac{a_1}{a_0},{\cdots},\frac{a_n}{a_0}){\subseteq}P$ for all nonzero prime ideals P of D; in this case, $Q_f=\frac{1}{a_0}fD[X]$. As a corollary, we have that if D is a Krull domain, then D has infinitely many height-one prime ideals if and only if each maximal ideal of D[X] has height ${\geq}2$.

GRADED w-NOETHERIAN MODULES OVER GRADED RINGS

  • Wu, Xiaoying
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1319-1334
    • /
    • 2020
  • In this paper, we study the basic theory of the category of graded w-Noetherian modules over a graded ring R. Some elementary concepts, such as w-envelope of graded modules, graded w-Noetherian rings and so on, are introduced. It is shown that: (1) A graded domain R is graded w-Noetherian if and only if Rg𝔪 is a graded Noetherian ring for any gr-maximal w-ideal m of R, and there are only finite numbers of gr-maximal w-ideals including a for any nonzero homogeneous element a. (2) Let R be a strongly graded ring. Then R is a graded w-Noetherian ring if and only if Re is a w-Noetherian ring. (3) Let R be a graded w-Noetherian domain and let a ∈ R be a homogeneous element. Suppose 𝖕 is a minimal graded prime ideal of (a). Then the graded height of the graded prime ideal 𝖕 is at most 1.