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A NOTE ON LIE IDEALS OF PRIME RINGS

Huang Shuliang

Abstract. Let R be a 2-torsion free prime ring, U a nonzero Lie ideal
of R such that u2 ∈ U for all u ∈ U . In the present paper, it is proved
that if d is a nonzero derivation and [[d(u), u], u] = 0 for all u ∈ U , then
U ⊆ Z(R). Moreover, suppose that d1, d2, d3 are nonzero derivations of
R such that d3(y)d1(x) = d2(x)d3(y) for all x, y ∈ U , then U ⊆ Z(R).
Finally, some examples are given to demonstrate that the restrictions
imposed on the hypothesis of the above results are not superfluous.

Introduction

Throughout this paper, R will always denote an associative ring with center
Z(R). For any x, y ∈ R, the symbol [x, y] stands for the commutator xy − yx.
Given two subsets A and B of R then [A,B] will denote the additive subgroup
of R generated by all elements of the form [a, b] where a ∈ A, b ∈ B. For a
nonempty subset S of R, we put CR(S) = {x ∈ R | [x, s] = 0 for all s ∈ S}.
Recall that R is prime if aRb = 0 implies a = 0 or b = 0. An additive
mapping d : R −→ R is called a derivation if d(xy) = d(x)y + xd(y) holds for
all x, y ∈ R. A mapping F from R to R is said to be commuting on a subset
S of R if [F (x), x] = 0 for all x ∈ S, and is said to be centralizing on S if
[F (x), x] ∈ Z(R) holds for all x ∈ S. An additive subgroup U of R is said to
be a Lie ideal of R if [u, r] ∈ U for all u ∈ U and r ∈ R. The relationship
between usual derivations and Lie ideals of prime rings has been extensively
studied over the past 30 years. In particular, when this relationship involves
the action of the derivations on Lie ideals. Many of these results extend other
ones proven previously for the action of the derivations on the whole ring (see
[1] for a partial references). There is a particular interest in Lie ideals U such
that u2 ∈ U for all u ∈ U . Such a distinction already appears in several
papers involving usual derivations and Lie ideals ([4], [2], [5], [3] where further
references can be found). The theory of commuting and centralizing mapping
on prime rings was initiated by E. C. Posner. The classical result of E. C.
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Posner ([8]) states that the existence of a nonzero centralizing derivation on
a prime ring forces the ring to be commutative. Afterward J. Vukman ([9])
extend E. C. Posner’s theorem by showing that if d is a nonzero derivation
of a prime ring R with char R 6= 2 such that [[d(x), x], x] = 0 for all x ∈ R,
then R is commutative. In [7], F. W. Niu proved that if d1, d2, d3 are nonzero
derivations of prime ring R with char R 6= 2, and if d3(y)d1(x) = d2(x)d3(y)
for all x, y ∈ R, then R is a commutative ring.

In this note we intend to show that the above conclusions hold for Lie ideals
of prime rings. In everything that follows R will be a prime ring of char R 6= 2
and U will always denote a Lie ideal of R.

1. Preliminary results

We begin with the following lemmas which will be used extensively to prove
our theorems.

Lemma 1.1 ([4, Lemma 2]). If U 6⊆ Z(R) is a Lie ideal of R, then CR(U) =
Z(R).

Lemma 1.2 ([4, Lemma 3]). If U is a Lie ideal of R, then CR([U,U ]) = CR(U).

Lemma 1.3. Set V = {u ∈ U | d(u) ∈ U}. If U 6⊆ Z(R), then V 6⊆ Z(R).

Proof. Assume that V ⊆ Z(R). Since [U,U ] ⊆ U and d([U,U ]) ⊆ U , we
have [U,U ] ⊆ V ⊆ Z(R). Hence CR([U,U ]) = R. From Lemma 1.1, we have
CR(U) = Z(R). Application of Lemma 1.2 yields that CR([U,U ]) = CR(U).
That is R = Z(R), which implies a contradiction. ¤
Lemma 1.4. If U is a Lie ideal of R such that u2 ∈ U for all u ∈ U , then
2uv ∈ U for all u, v ∈ U .

Proof. For all w, u, v ∈ U ,

uv + vu = (u + v)2 − u2 − v2 ∈ U.

On the other hand,
uv − vu ∈ U.

Adding two expressions, we have 2uv ∈ U for all u, v ∈ U . ¤
Lemma 1.5 ([4, Lemma 7]). Let R be a prime ring. If d 6= 0 is a derivation
of R, and U 6⊆ Z(R) is a Lie ideal, if td(U) = 0 or d(U)t = 0 we must have
t = 0.

Lemma 1.6 ([2, Lemma 7]). Let d 6= 0 be a derivation of R such that [u, d(u)] ∈
Z(R) for all u ∈ U . Then U ⊆ Z(R).

Lemma 1.7 ([4, Lemma 4]). If U 6⊆ Z(R) is a Lie ideal of R and aUb = 0,
then a = 0 or b = 0.

Lemma 1.8 ([6, Theorem 4]). Let d1 and d2 be nonzero derivations of R such
that d1d2(U) ⊆ Z(R). Then U ⊆ Z(R).
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Lemma 1.9 ([4, Theorem 2]). If U 6⊆ Z(R) is a Lie ideal of R and d 6= 0 is a
derivation, then CR(d(U)) = Z(R).

2. Main results

Theorem 2.1. Let R be a 2-torsion free prime ring and d a nonzero derivation
of R. Suppose that U is a Lie ideal of R such that u2 ∈ U for all u ∈ U . If
[[d(u), u], u] = 0 for all u ∈ U , then U ⊆ Z(R).

Proof. Suppose on the contrary that U 6⊆ Z(R). Thus V 6⊆ Z(R) by Lemma
1.3. By hypothesis we have [[d(u), u], u] = 0 for all u ∈ U . Define a mapping
B : R×R −→ R by the relation B(x, y) = [d(x), y] = [d(y), x] for all x, y ∈ R. It
is obvious that B(x, y) = B(y, x) and B is additive in two variables. Moreover,
a simple calculation shows that the relation B(xy, z) = B(x, z)y + xB(y, z) +
d(x)[y, z] + [x, z]d(y) holds for all x, y, z ∈ R. Now write f(x) for B(x, x)
briefly. Then we have f(x) = 2[d(x), x] for all x ∈ R. It is easy to show that
f(x + y) = f(x) + f(y) + 2B(x, y) for all x, y ∈ R. Therefore, the assumption
of the theorem can be written as follows:

(1) [f(u), u] = 0

for all u ∈ U .
The linearization of (1) gives

0 = [f(u + v), u + v]

= [f(u) + f(v) + 2B(u, v), u + v]

= [f(u), u] + [f(u), v] + [f(v), u] + [f(v), v] + 2[B(u, v), u] + 2[B(u, v), v]

which reduces to

(2) [f(u), v] + [f(v), u] + 2[B(u, v), u] + 2[B(u, v), v] = 0.

Replacing u by −u in (2), we have

(3) [f(u), v]− [f(v), u] + 2[B(u, v), u]− 2[B(u, v), v] = 0.

From (2) and (3), we obtain that

(4) [f(u), v] + 2[B(u, v), u] = 0

for all u, v ∈ U . The substituation 2vu for v in (4) gives us that
0 = [f(u), 2vu] + 2[B(u, 2vu), u]

= [f(u), vu] + 2[B(u, vu), u]

= [f(u), v]u + v[f(u), u] + 2[B(u, v)u + vf(u) + [v, u]d(u), u].

Using (1) and (4) in the above relation, we arrive at

(5) 3[v, u]f(u) + 2[[v, u], u]d(u) = 0.

Similarly, we also obtain that

(6) 3f(u)[v, u] + 2d(u)[[v, u], u] = 0.
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Replacing v by 2wv in (5) and using the fact char R 6= 2, we have

0 = 3[wv, u]f(u) + 2[[wv, u], u]d(u)

= 3w[v, u]f(u) + 3[w, u]vf(u) + 2[w[v, u] + [w, u]v, u]d(u)

= 3w[v, u]f(u) + 3[w, u]vf(u) + 4[w, u][v, u]d(u)

+ 2w[[v, u], u]d(u) + 2[[w, u], u]vd(u)

= 3[w, u]vf(u) + 4[w, u][v, u]d(u) + 2[[w, u], u]vd(u).

Choose v = d(u) for all u ∈ V ={u ∈ U | d(u) ∈ U}, we obtain 3[w, u]d(u)f(u)+
4[w, u][d(u), u]d(u)+2[[w, u], u]d(u)2 = 0. That is, 3[w, u]d(u)f(u)+2[w, u]f(u)
d(u) + 2[[w, u], u]d(u)2 = 0. It follows that 2[[w, u], u]d(u)2 = −3[w, u]f(u)d(u)
from (5). And hence we conclude that [w, u](3d(u)f(u)− f(u)d(u)) = 0 for all
u ∈ V and w ∈ U . In other words, we have Iu(w)(3d(u)f(u) − f(u)d(u)) = 0
for all w ∈ U . There is nothing to prove if u ∈ Z(R) since in this case f(u) = 0.
Otherwise, we have

(7) 3d(u)f(u)− f(u)d(u) = 0

by Lemma 1.5. Similarly, we can also prove the relation

(8) 3f(u)d(u)− d(u)f(u) = 0.

Combining (7) with (8), we can see easily that

(9) d(u)f(u) = f(u)d(u) = 0

for all u ∈ V . The linearization of d(u)f(u) = 0 gives

0 = (d(u) + d(v))(f(u) + f(v) + 2B(u, v))

= d(u)f(u) + d(u)f(v) + 2d(u)B(u, v) + d(v)f(u) + d(v)f(v) + 2d(v)B(u, v)

= d(u)f(v) + 2d(u)B(u, v) + d(v)f(u) + 2d(v)B(u, v).

Replacing u by −u in the above relation, we get −d(u)f(v) + 2d(u)B(u, v) +
d(v)f(u)− 2d(v)B(u, v) = 0. Adding the above two relations, we arrive at

(10) d(v)f(u) + 2d(u)B(u, v) = 0.

Substituting 2vu for v in (10) and using char R 6= 2, we get

0 = d(vu)f(u) + 2d(u)B(u, vu)

= d(v)uf(u) + vd(u)f(u) + 2d(u)B(v, u)u + 2d(u)vf(u) + 2d(u)[v, u]d(u)

= d(v)uf(u) + 2d(u)B(v, u)u + 2d(u)vf(u) + 2d(u)[v, u]d(u)

= d(v)uf(u)− d(v)f(u)u + 2d(u)vf(u) + 2d(u)[v, u]d(u)

= d(v)[u, f(u)] + 2d(u)vf(u) + 2d(u)[v, u]d(u)

= 2d(u)vf(u) + 2d(u)[v, u]d(u).

Now we have proved that

(11) d(u)vf(u) + d(u)[v, u]d(u) = 0
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for all u, v ∈ V . Replacing v by 2uv in (11) and using char R 6= 2, we get

(12) d(u)uvf(u) + d(u)u[v, u]d(u) = 0.

Left multiplication by u of (11) yields that

(13) ud(u)vf(u) + ud(u)[v, u]d(u) = 0.

Combining (12) with (13) we have [d(u), u]vf(u)+[d(u), u][v, u]d(u) = 0. More
precisely, we have obtained that

(14) f(u)vf(u) + f(u)[v, u]d(u) = 0

for all u, v ∈ V . Our next goal is to prove the following

(15) 3f(u)vf(u) + 4f(u)[v, u]d(u) = 0.

For this purpose, writing 2vw in (5) instead of v and using char R 6= 2, we have

0 = 3[vw, u]f(u) + 2[[vw, u], u]d(u)

= 3[v, u]wf(u) + 3v[w, u]f(u) + 2[v[w, u] + [v, u]w, u]d(u)

= 3[v, u]wf(u) + 3v[w, u]f(u) + 2v[[w, u], u]d(u) + 4[v, u][w, u]d(u)

+ 2[[v, u], u]wd(u)

= 3[v, u]wf(u) + 4[v, u][w, u]d(u) + 2[[v, u], u]wd(u)

for all u, v, w ∈ V . Write L = [V, V ] then it is easy to show that L is a Lie
ideal and d(L) ⊆ V . Moreover, since V 6⊆ Z(R) then L 6⊆ Z(R) by Lemma
1.3. Now choosing v = 2d(u) where u ∈ L in the above relation, we have
3f(u)wf(u) + 4f(u)[w, u]d(u) = 0 holds for all u, v, w ∈ L. Combining (14)
with (15), we conclude that f(u)vf(u) = 0 for all u, v ∈ L. Since L is a
noncentral Lie ideal, we have f(u) = 0 for all u ∈ L. Thus we have proved that
[d(u), u] = 0 holds for all u ∈ L. This leads to L ⊆ Z(R) by Lemma 1.6, which
implies a contradiction. The proof of the theorem is complete. ¤

Theorem 2.2. Let d1, d2, d3 be nonzero derivations, U a Lie ideal of R such
that u2 ∈ U for all u ∈ U . If d3(y)d1(x) = d2(x)d3(y) for all x, y ∈ U , then
U ⊆ Z(R).

Proof. Suppose on the contrary that U 6⊆ Z(R). Write V = {x ∈ U | di(u) ∈
U, i = 1, 2, 3}. It is easy to see that V is a Lie ideal of R. Therefore, V 6⊆ Z(R)
by Lemma 1.3. Now by hypothesis we have

(16) d3(y)d1(x) = d2(x)d3(y).

Replace x by 2xp in (16) according to Lemma 1.1 and use char R 6= 2 to get
d3(y)d1(xp) = d2(xp)d3(y), namely,

d3(y)d1(x)p + d3(y)xd1(p) = d2(x)pd3(y) + xd2(p)d3(y)

for all x, y, p ∈ U . According to (16), we find that

d2(x)d3(y)p + d3(y)xd1(p) = d2(x)pd3(y) + xd3(y)d1(p).
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This implies that

(17) d2(x)[d3(y), p] = [x, d3(y)]d1(p)

for all x, y, p ∈ U . In particular, for any y ∈ V replace x by d3(y) in (17), to
get

(18) d2d3(y)[d3(y), p] = 0.

For all m,n ∈ U , again replace p by 2mn in (18) and use (18) to get

0 = d2d3(y)[d3(y), 2mn]

= 2d2d3(y)m[d3(y), n] + 2d2d3(y)[d3(y),m]n

= 2d2d3(y)m[d3(y), n].

Now we have

(19) d2d3(y)m[d3(y), n] = 0

for all m,n ∈ V and y ∈ V . By Lemma 1.7, either d2d3(y) = 0 or [d3(y), n] = 0.
Now let V1 = {y ∈ V | d2d3(y) = 0} and V2 = {y ∈ V | [d3(y), n] = 0}. Then
V1, V2 are both additive subgroups of V and V1

⋃
V2 = V . By Buarer’s trick,

either V1 = V or V2 = V . If V1 = V (i.e., d2d3(V ) = 0), then V ⊆ Z(R)
by Lemma 1.8, a contradiction. If V2 = V , then for all n ∈ V , we have
n ∈ CR(d3(V )) = Z(R) by Lemma 1.9, again a contradiction. ¤

Remark 2.1. Though the assumption that u2 ∈ U for all u ∈ U , seems close
to assuming that U is an ideal of the ring, but there exist Lie ideals with
the property u2 ∈ U for all u ∈ U , which are not ideals. For example, let
R = {( a b

0 c ) | a, b ∈ Z}. It can be easily check that U = {( a b
0 a ) | b ∈ Z} is a

Lie ideal of R such that u2 ∈ U for all u ∈ U . However, U is not an ideal of R.
The following example shows the hypothesis of primeness is essential in

Theorem 2.1.

Example 2.1. Let S be any ring. Next, let R =
{(

0 a b
0 0 c
0 0 0

)
|a, b, c ∈ S

}
. It is

straightforward to see that U =
{(

0 a b
0 0 0
0 0 0

)
|a, b ∈ S

}
is a Lie ideal of R. Define

d : R −→ R as follows: d
(

0 a b
0 0 c
0 0 0

)
=

(
0 0 b
0 0 0
0 0 0

)
. Then d is a derivation of R such

that [[d(u), u], u] = 0 for all u ∈ U , however U 6⊆ Z(R).
The following example shows Theorem 2.1 fails without the condition u2 ∈ U

for all u ∈ U .

Example 2.2. Consider the prime ring R of all 2× 2 matrices over GF (2).
Let U = {( x y

z x ) | x, y, z ∈ R}. Then U is a Lie ideal of R without the
property u2 ∈ U . Define d ( x y

z w ) =
(

w−z x−w
x−w y−z

)
. Then, d is a nonzero derivation

of R such that [[d(u), u], u] = 0 for all u ∈ U , however U 6⊆ Z(R).
The following example shows the hypothesis of primeness is essential in

Theorem 2.2
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Example 2.3. Let S be any ring. Let R = {( a b
0 0 ) | a, b ∈ S} and U =

{( 0 b
0 0 ) | a, b ∈ S}.
Obviously, U is a Lie ideal of R with the condition u2 ∈ U for all u ∈ U .
Define d ( a b

0 0 ) = ( 0 b
0 0 ). Then d is a nonzero derivation of R. Take d1 =

d2 = d3 = d, we conclude that d(x)d(y) = d(y)d(x) for all x, y ∈ U . However,
U 6⊆ Z(R).
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