
J. Korean Math. Soc. 54 (2017), No. 6, pp. 1733–1757

https://doi.org/10.4134/JKMS.j160625

pISSN: 0304-9914 / eISSN: 2234-3008

GRADED INTEGRAL DOMAINS AND

PRÜFER-LIKE DOMAINS

Gyu Whan Chang

Abstract. Let R =
⊕
α∈Γ Rα be an integral domain graded by an ar-

bitrary torsionless grading monoid Γ, R̄ be the integral closure of R, H

be the set of nonzero homogeneous elements of R, C(f) be the fractional
ideal of R generated by the homogeneous components of f ∈ RH , and

N(H) = {f ∈ R | C(f)v = R}. Let RH be a UFD. We say that a nonzero

prime ideal Q of R is an upper to zero in R if Q = fRH ∩ R for some
f ∈ R and that R is a graded UMT-domain if each upper to zero in R is a

maximal t-ideal. In this paper, we study several ring-theoretic properties

of graded UMT-domains. Among other things, we prove that if R has
a unit of nonzero degree, then R is a graded UMT-domain if and only

if every prime ideal of RN(H) is extended from a homogeneous ideal of

R, if and only if R̄H\Q is a graded-Prüfer domain for all homogeneous

maximal t-ideals Q of R, if and only if R̄N(H) is a Prüfer domain, if and

only if R is a UMT-domain.

0. Introduction

Prüfer v-multiplication domains (PvMD) are one of the most important
research topics in “Multiplicative Ideal Theory” because many essential non-
Noetherian integral domains (e.g., Krull domains, Prüfer domains, GCD do-
mains) are PvMDs and an integral domain D is a PvMD if and only if D[X],
the polynomial ring over D, is a PvMD. It is known that D is a PvMD if and
only if D is an integrally closed UMT-domain; hence UMT-domains can be
considered as non-integrally closed PvMDs. UMT-domains were introduced by
Houston and Zafrullah [34] and studied in greater detail by Fontana, Gabelli,
and Houston [26] and Chang and Fontana [17]. In this paper, we study UMT-
domain properties of graded integral domains.

This section consists of three subsections. In Section 0.1, we review the
definitions related to the t-operation and in Section 0.2, we review those of

Received September 23, 2016; Accepted March 30, 2017.

2010 Mathematics Subject Classification. 13A02, 13A15, 13F05, 13G05.
Key words and phrases. graded integral domain, (graded) UMT-domain, (graded) Prüfer
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graded integral domains; so the reader who is familiar with these two notions
can skip to Section 0.3 where we give the motivation and results of this paper.

0.1. The t-operation

Let D be an integral domain with quotient field K. An overring of D means
a subring of K containing D. Let F(D) be the set of nonzero fractional ideals
of D. For I ∈ F(D), let I−1 = {x ∈ K | xI ⊆ D}, Iv = (I−1)−1, and
It =

⋃
{Jv | J ∈ F(D) is finitely generated and J ⊆ I}. An I ∈ F(D) is called

a t-ideal (resp., v-ideal) if It = I (resp., Iv = I). A t-ideal (resp., v-ideal) is a
maximal t-ideal (resp., maximal v-ideal) if it is maximal among proper integral
t-ideals (resp., v-ideals). Let t-Max(D) (resp., v-Max(D)) be the set of maximal
t-ideals (resp., v-ideals) of D. It may happen that v-Max(D) = ∅ even though
D is not a field as in the case of a rank-one nondiscrete valuation domain D.
However, it is well known that t-Max(D) 6= ∅ if D is not a field; each maximal
t-ideal is a prime ideal; each proper t-ideal is contained in a maximal t-ideal;
each prime ideal minimal over a t-ideal is a t-ideal; and D =

⋂
P∈t-Max(D)DP .

We mean by t-dim(D) = 1 that D is not a field and each prime t-ideal of D
is a maximal t-ideal of D. Clearly, if dim(D) = 1 (i.e., D is one-dimensional),
then t-dim(D) = 1.

An I ∈ F(D) is said to be t-invertible if (II−1)t = D, and D is a Prüfer
v-multiplication domain (PvMD) if each nonzero finitely generated ideal of D is
t-invertible. Let T (D) (resp., Prin(D)) be the group of t-invertible fractional t-
ideals (resp., nonzero principal fractional ideals) of D under the t-multiplication
I ∗J = (IJ)t. It is obvious that Prin(D) ⊆ T (D). The t-class group of D is the
abelian group Cl(D) = T (D)/Prin(D). It is clear that if D is a Krull domain
(resp., Prüfer domain), then Cl(D) is the divisor class (resp., ideal class) group
of D. Let {Dα} be a set of integral domains such that D =

⋂
αDα. We say

that the intersection D =
⋂
αDα is locally finite if each nonzero nonunit of D

is a unit of Dα for all but a finite number of Dα.
Let {Xα} be a nonempty set of indeterminates over D, D[{Xα}] be the

polynomial ring over D, and cD(f) (simply c(f)) be the fractional ideal of D
generated by the coefficients of a polynomial f ∈ K[{Xα}]. It is known that
if I is a nonzero fractional ideal of D, then (ID[{Xα}])−1 = I−1D[{Xα}],
(ID[{Xα}])v = IvD[{Xα}], and (ID[{Xα}])t = ItD[{Xα}] [32, Lemma 4.1
and Proposition 4.3]; so I is a (prime) t-ideal of D if and only if ID[{Xα}] is
a (prime) t-ideal of D[{Xα}].

0.2. Graded integral domains

Let Γ be a (nonzero) torsionless grading monoid, that is, Γ is a torsionless
commutative cancellative monoid (written additively), and 〈Γ〉 = {a−b | a, b ∈
Γ} be the quotient group of Γ; so 〈Γ〉 is a torsionfree abelian group. It is well
known that a cancellative monoid Γ is torsionless if and only if Γ can be given
a total order compatible with the monoid operation [39, page 123]. By a (Γ−)
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graded integral domain R =
⊕

α∈ΓRα, we mean an integral domain graded by
Γ. That is, each nonzero x ∈ Rα has degree α, i.e., deg(x) = α, and deg(0) = 0.
Thus, each nonzero f ∈ R can be written uniquely as f = xα1

+ · · ·+xαn with
deg(xαi) = αi and α1 < · · · < αn. Since R is an integral domain, we may
assume that Rα 6= {0} for all α ∈ Γ.

A nonzero x ∈ Rα for every α ∈ Γ is said to be homogeneous. Let H be
the saturated multiplicative set of nonzero homogeneous elements of R, i.e.,
H =

⋃
α∈Γ(Rα \ {0}). Then RH , called the homogeneous quotient field of R,

is a graded integral domain whose nonzero homogeneous elements are units.
Hence, RH is a completely integrally closed GCD-domain [1, Proposition 2.1]
and RH is a 〈Γ〉-graded integral domain. We say that an overring T of R is a
homogeneous overring of R if T =

⊕
α∈〈Γ〉(T ∩ (RH)α); so T is a 〈Γ〉-graded

integral domain such that R ⊆ T ⊆ RH . Clearly, if Λ = {α ∈ 〈Γ〉 | T∩(RH)α 6=
{0}}, then Λ is a torsionless grading monoid such that Γ ⊆ Λ ⊆ 〈Γ〉 and
T =

⊕
α∈Λ(T ∩(RH)α). The integral closure of R is a homogeneous overring of

R by Lemma 1.6. Also, RS is a homogeneous overring of R for a multiplicative
set S of nonzero homogeneous elements of R (with deg(ab ) = deg(a)− deg(b)
for a ∈ H and b ∈ S).

For a fractional ideal A of R with A ⊆ RH , let A∗ be the fractional ideal
of R generated by homogeneous elements in A. It is easy to see that A∗ ⊆ A;
and if A is a prime ideal, then A∗ is a prime ideal. The A is said to be
homogeneous if A∗ = A. A homogeneous ideal (resp., homogeneous t-ideal)
of R is called a homogeneous maximal ideal (resp., homogeneous maximal t-
ideal) if it is maximal among proper homogeneous ideals (resp., homogeneous
t-ideals) of R. It is known that a homogeneous maximal ideal need not be
a maximal ideal, while a homogeneous maximal t-ideal is a maximal t-ideal
[8, Lemma 2.1]. Also, it is easy to see that each proper homogeneous ideal
(resp., homogeneous t-ideal) of R is contained in a homogeneous maximal ideal
(resp., homogeneous maximal t-ideal) of R.

For f ∈ RH , let CR(f) denote the fractional ideal of R generated by the
homogeneous components of f . For a fractional ideal I of R with I ⊆ RH , let
CR(I) =

∑
f∈I CR(f). It is clear that both CR(f) and CR(I) are homogeneous

fractional ideals of R. If there is no confusion, we write C(f) and C(I) instead
of CR(f) and CR(I). Let N(H) = {f ∈ R | C(f)v = R} and S(H) = {f ∈
R | C(f) = R}. It is well known that if f, g ∈ RH , then C(f)n+1C(g) =
C(f)nC(fg) for some integer n ≥ 1 [39]; so N(H) and S(H) are saturated
multiplicative subsets of R and S(H) ⊆ N(H). Let Ω be the set of maximal
t-ideals Q of R with Q ∩H 6= ∅, i.e., Ω = {Q ∈ t-Max(R) | Q is homogeneous}
[8, Lemma 2.1]. As in [9], we say that R satisfies property (#) if C(I)t = R
implies I∩N(H) 6= ∅ for all nonzero ideals I of R; equivalently, Max(RN(H)) =
{QN(H) | Q ∈ Ω} [9, Proposition 1.4]. It is known that R satisfies property (#)
if R is one of the following integral domains: (i) R contains a unit of nonzero
degree, (ii) R = D[Γ] is the monoid domain of Γ over an integral domain D, (iii)
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R contains a homogeneous prime element of nonzero degree, (iv) R = D[{Xα}]
is the polynomial ring over D, or (v) the intersection

⋂
Q∈ΩRQ is locally finite

[9, Example 1.6 and Lemma 2.2].
We say that R is a graded-Prüfer domain if each nonzero finitely generated

homogeneous ideal of R is invertible. Clearly, invertible ideals are t-invertible,
and hence a graded-Prüfer domain is a PvMD [1, Theorem 6.4] but need not
be a Prüfer domain [9, Example 3.6]. The reader can refer to [10] or [42] for
more on graded-Prüfer domains.

0.3. Motivation and results

Let X be an indeterminate over D and D[X] be the polynomial ring over
D. A nonzero prime ideal Q of D[X] is called an upper to zero in D[X] if
Q ∩D = (0). We say that D is a UMT-domain if each upper to zero in D[X]
is a maximal t-ideal of D[X]. (UMT stands for Upper to zero is a Maximal T -
ideal.) A quasi-Prüfer domain is a UMT-domain in which every maximal ideal
is a t-ideal; equivalently, its integral closure is a Prüfer domain [25, Chapter
VI]. The most important properties of UMT-domains are that (i) D is a UMT-
domain if and only if every prime ideal of D[X]Nv , where Nv = {f ∈ D[X] |
c(f)v = D}, is extended from D and (ii) D is an integrally closed UMT-domain
if and only if D is a PvMD [34, Theorem 3.1 and Proposition 3.2]. A subring
D[X2, X3] = D+X2D[X] of D[X] over a PvMD D is an easy example of a non-
integrally closed UMT-domain. In many cases, UMT-domains are used like:
D[X] (or D[X]Nv ) has a ring-theoretic property (P ) if and only if D is a UMT-
domain with property (P ). For example, t-dim(D[X]) = 1 if and only if D is a
UMT-domain with t-dim(D) = 1; and D[X]Nv is a pseudo-valuation domain if
and only if D is a pseudo-valuation UMT-domain [13, Lemma 3.7]. (A quasi-
local domain D with maximal ideal M is a pseudo-valuation domain if and only
if D has a unique valuation overring with maximal ideal M [31, Theorem 2.7].)
For more results on UMT-domains, see, for example, [22,23,41,44] including a
survey article [33].

Clearly, Q is an upper to zero in D[X] if and only if Q = fK[X]∩D[X] for
some prime element 0 6= f ∈ K[X], if and only if either Q = XD[X] or Q =
fK[X,X−1]∩D[X] for some prime element 0 6= f ∈ K[X]. Note that D[X] =⊕

n≥0DX
n is an N0-graded integral domain, where N0 is the additive monoid

of nonnegative integers, and if H is the set of nonzero homogeneous elements
of D[X], then D[X]H = K[X,X−1] and K[X,X−1] is a unique factorization
domain (UFD). In [19, Section 2], the notion of “upper to zero” was generalized
to graded integral domains as follows: Let R =

⊕
α∈ΓRα be a (nontrivial)

graded integral domain graded by an arbitrary torsionless grading monoid Γ
and H be the set of nonzero homogeneous elements of R. Assume that RH is
a UFD. Then a nonzero prime ideal Q of R is called an upper to zero in R if
Q = fRH ∩ R for some f ∈ RH . Thus, Q is an upper to zero in D[X] as the
original definition if and only if either Q = XD[X] or Q is an upper to zero in
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D[X] as a prime ideal of the N0-graded integral domain D[X] =
⊕

n≥0DX
n.

As a graded integral domain analog, in [19, Theorem 2.5], it was shown that if
R =

⊕
α∈ΓRα is a graded integral domain with a unit of nonzero degree such

that RH is a UFD, then R is a PvMD if and only if R is integrally closed and
each upper to zero in R is a maximal t-ideal. In this paper, we further study
some ring-theoretic properties of graded integral domains R such that RH is a
UFD and each upper to zero in R is a maximal t-ideal.

Let R =
⊕

α∈ΓRα be a Γ-graded integral domain. In Section 1, we introduce
the notion of graded UMT-domains, and we then study general properties of
both UMT-domains and graded UMT-domains. For example, we prove that
UMT-domains are graded UMT-domains, and R is a graded UMT-domain
if and only if Q is homogeneous for all nonzero prime ideals Q of R with
C(Q)t ( R, if and only if C(Q)t = R for every upper to zero Q in R. In Section
2, we show that if R satisfies property (#), then R is a graded UMT-domain if
and only if every prime ideal of RN(H) is extended from a homogeneous ideal
of R, and R is a weakly Krull domain if and only if RN(H) is a weakly Krull
domain. We study in Section 3 graded UMT-domains with a unit of nonzero
degree. Among other things, we prove that if R has a unit of nonzero degree,
then R is a graded UMT-domain if and only if R is a UMT-domain, if and only
if the integral closure of RH\Q is a graded-Prüfer domain for all homogeneous
maximal t-ideals Q of R, if and only if the integral closure of RN(H) is a
Prüfer domain. Finally, in Section 4, we use the D + XK[X] construction to
give several counterexamples of the results in Sections 2 and 3. Assume that
D ( K, and let R = D + XK[X](:= {f ∈ K[X] | f(0) ∈ D}). Then R is
an N0-graded integral domain such that RH = K[X,X−1] is a UFD. We show
that R is a graded UMT-domain, and R is a UMT-domain if and only if D is
a UMT-domain. Thus, if D is not a UMT-domain, then R = D + XK[X] is
a graded UMT-domain but not a UMT-domain. We also give examples which
show that the results of Section 3 do not hold without assuming that R has a
unit of nonzero degree.

1. UMT-domains and graded UMT-domains

Let Γ be a nonzero torsionless grading monoid, 〈Γ〉 = {a − b | a, b ∈ Γ}
be the quotient group of Γ, R =

⊕
α∈ΓRα be a nontrivial Γ-graded integral

domain, and H be the set of nonzero homogeneous elements of R. Throughout
this paper, RH is always assumed to be a UFD.

We begin this section with examples of graded integral domains R such that
RH is a UFD.

Example 1.1. Let R =
⊕

α∈ΓRα be a graded integral domain. Then RH is
a UFD if one of the following conditions is satisfied.

(1) [7, Proposition 3.5] 〈Γ〉 satisfies the ascending chain condition on its
cyclic subgroups.

(2) R = D[{Xα}] is the polynomial ring over an integral domain D.
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(3) [38, Section A.I.4.] 〈Γ〉 = Z is the additive group of integers.
(4) R = D[Γ] is the monoid domain of Γ over D such that 〈Γ〉 satisfies the

ascending chain condition on its cyclic subgroups.

Let D̄ be the integral closure of an integral domain D. For easy reference,
we recall from [37, Theorem 44] that (i) (Lying Over) if P is a prime ideal of
D, then there is a prime ideal Q of D̄ with Q ∩ D = P ; (ii) (Going Up) if
P1 ⊆ P2 are prime ideals of D and Q1 is a prime ideal of D̄ with Q1 ∩D = P1,
then there exists a prime ideal Q2 of D̄ such that Q1 ⊆ Q2 and Q2 ∩D = P2;
and (iii) (Incomparable) if P ⊆ Q are prime ideals of D̄ with P ∩D = Q ∩D,
then P = Q.

The next result appears in [26, Theorem 1.5], but we include it because our
proof is easy and direct without using other results.

Theorem 1.2. An integral domain D is a UMT-domain if and only if the
integral closure of DP is a Prüfer domain for all P ∈ t-Max(D).

Proof. Let D̄ be the integral closure of D. Hence, D̄P is the integral closure of
DP for a prime ideal P of D.

(⇒) Assume that D̄P is not a Prüfer domain for some P ∈ t-Max(D), and
let T = D̄P . Then there are some 0 6= a, b ∈ T such that (a, b)T is not
invertible, and so if we let f = a + bX, then fK[X] ∩ T [X] = fcT (f)−1[X] ⊆
(cT (f)cT (f)−1)[X] ⊆M [X] for some maximal ideal M of T (the first equality
follows from [28, Corollary 34.9] because T is integrally closed). Thus, fK[X]∩
D[X] = (fK[X] ∩ T [X]) ∩D[X] ⊆ (M [X] ∩DP [X]) ∩D[X] = P [X]. Clearly,
fK[X]∩D[X] is an upper to zero in D[X], but fK[X]∩D[X] is not a maximal
t-ideal, a contradiction.

(⇐) Assume that D is not a UMT-domain. Then there are a maximal t-ideal
P ofD and an upper to zeroQ inD[X] such thatQ ⊆ P [X] (cf. [34, Proposition
1.1]). Since Q is an upper to zero in D[X], there is an f ∈ D[X] such that
Q = fK[X] ∩ D[X]. Note that Qf := fK[X] ∩ D̄P is an upper to zero in
D̄P [X], Qf ∩DP [X] = QD\P , and D̄P [X] is integral over DP [X]. Thus, there

is a prime ideal M of D̄P [X] such that Qf ⊆ M and M ∩DP [X] = PDP [X].
Clearly, M = (M ∩ D̄P )[X] because (M ∩ D̄P )[X] ∩ DP [X] = PDP [X] and
(M ∩ D̄P )[X] ⊆ M . However, since D̄P is a Prüfer domain, there is a g ∈ Qf
such that D̄P = c(g)D̄P ⊆M ∩ D̄P , a contradiction. �

Bezout domains are Prüfer domains. Hence, if D̄P is a Bezout domain for
all P ∈ t-Max(D), then D is a UMT-domain by Theorem 1.2. In [13, Lemma
2.2], it was shown that D is a UMT-domain if and only if the integral closure
of DP is a Bezout domain for all P ∈ t-Max(D). Theorem 1.2 also shows that
DS is a UMT-domain for every multiplicative set S of a UMT-domain D.

Corollary 1.3 ([34, Proposition 3.2]). D is a PvMD if and only if D is an
integrally closed UMT-domain.
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Proof. It is well known that D is a PvMD if and only if DP is a valuation
domain for all P ∈ t-Max(D) [30, Theorem 5] and D =

⋂
P∈t-Max(D)DP .

Hence, the result follows directly from Theorem 1.2. �

Recall that D is an S-domain if ht(PD[X]) = 1 for every prime ideal P of D
with htP = 1 [37, p. 26]. It is easy to see that a UMT-domain is an S-domain;
and if t-dim(D) = 1 (e.g., dim(D) = 1), then D is an S-domain if and only
if D is a UMT-domain (cf. [43, Theorem 8]). However, S-domains need not
be UMT-domains. For example, if D = R + (X,Y )C[[X,Y ]], where C[[X,Y ]] is
the power series ring over the field C of complex numbers and R is the field
of real numbers, then D is a 2-dimensional Noetherian domain [12, Theorem
4 and Corollary 9] whose maximal ideal is a t-ideal. Hence, D is an S-domain
[37, Theorem 148] but not a UMT-domain [34, Theorem 3.7].

We next introduce the notion of graded UMT-domains.

Definition 1.4. Let R =
⊕

α∈ΓRα, and assume that RH is a UFD.

(1) A nonzero prime ideal Q of R is an upper to zero in R if Q = fRH ∩R
for some f ∈ RH . (In this case, f is a nonzero prime element of RH
and Q is a height-one prime t-ideal of R.)

(2) R is a graded UMT-domain if every upper to zero in R is a maximal
t-ideal of R.

Recall that if Q is a maximal t-ideal of R =
⊕

α∈ΓRα with Q∩H 6= ∅, then
Q is homogeneous [8, Lemma 2.1]. We use this result without further citation.

Lemma 1.5. Let R =
⊕

α∈ΓRα be a graded UMT-domain and Q be a nonzero
prime ideal of R. Then Q is a maximal t-ideal of R if and only if either Q is
an upper to zero in R or Q is a homogeneous maximal t-ideal.

Proof. Let Q be a maximal t-ideal of R. If Q∩H 6= ∅, then Q is homogeneous.
Next, assume that Q ∩H = ∅. Then Q = QH ∩ R, and hence Q contains an
upper to zero in R. Thus, Q must be an upper to zero in R because R is a
graded UMT-domain. The converse is clear. �

We say that R =
⊕

α∈ΓRα is a gr-valuation ring if x ∈ R or 1
x ∈ R for

all nonzero homogeneous elements x ∈ RH . It is known that if R is a gr-
valuation ring, then there is a valuation overring V of R such that V ∩RH = R
[35, Theorem 2.3]. Hence, a gr-valuation ring is integrally closed.

Lemma 1.6. Let R̄ be the integral closure of R =
⊕

α∈ΓRα. Then R̄ is a
homogeneous overring of R.

Proof. Let {Vλ} be the set of all homogeneous gr-valuation overrings of R.
Then R̄ =

⋂
λ Vλ [35, Theorem 2.10], and since each Vλ is a homogeneous

overring of R, R̄ is also a homogeneous overring of R. �

We next show that a UMT-domain is a graded UMT-domain, while a graded
UMT-domain need not be a UMT-domain (see Example 4.3).
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Proposition 1.7. Let R =
⊕

α∈ΓRα be a UMT-domain. Then R is a graded
UMT-domain.

Proof. Let Q′ be a prime t-ideal of R such that Q′ ∩ H = ∅. Then Q′H is a
t-ideal of RH [26, Proposition 1.4], and hence htQ′ = ht(Q′H) = 1 because RH
is a UFD.

Let Uf = fRH ∩ R be an upper to zero in R. If Uf is not a maximal
t-ideal of R, there is a maximal t-ideal Q of R such that Uf ( Q, By the
above paragraph, Q ∩ H 6= ∅, and thus Q is homogeneous. Note that U =
fRH ∩ R̄ is a prime ideal of R̄ and U ∩ R = Uf ; so there is a prime ideal
M of R̄ such that U ( M and M ∩ R = Q. However, note that R̄ is a
graded integral domain by Lemma 1.6; so M∗ is a prime ideal of R̄ and M∗ ∩
R = Q. Hence, M∗ = M , and since U = fCR̄(f)−1 [9, Lemma 1.2(4)],
CR̄(f)CR̄(f)−1 ⊆M . By Theorem 1.2, R̄M = (R̄Q)MQ

is a valuation domain,

and hence R̄M = (CR̄(f)M )(CR̄(f)M )−1 = (CR̄(f)M )((CR̄(f)−1)M ) ⊆ MM , a
contradiction. Thus, Uf is a maximal t-ideal of R. �

Let D[X] be the polynomial ring over an integral domain D, and let Q be
an upper to zero in D[X]. It is known that Q is a maximal t-ideal if and only if
c(Q)t = D, if and only if Q is t-invertible [34, Theorem 1.4] (see [27, Theorem
3.3] for the case of arbitrary sets of indeterminates). This was extended to
graded integral domains R =

⊕
α∈ΓRα in [8, Corollary 2.2(2)] as follows: If

Q is an upper to zero in R, then C(Q)t = R if and only if Q is t-invertible, if
and only if Q is a maximal t-ideal. We next generalize [8, Corollary 2.2(2)] to
prime t-ideals Q of R with Q ∩H = ∅.

Proposition 1.8. Let Q be a prime t-ideal of R =
⊕

α∈ΓRα such that Q∩H =
∅. Then the following statements are equivalent.

(1) C(Q)t = R.
(2) Q is t-invertible.
(3) Q is a maximal t-ideal.

In this case, htQ = 1, and hence Q is an upper to zero in R.

Proof. (1) ⇒ (2) Since C(Q)t = R, there are some f1, . . . , fk ∈ Q such that
(C(f1) + · · · + C(fk))v = R. Assume that htQ ≥ 2. Since RH is a UFD,
there is a g ∈ Q such that gRH is a prime ideal and f1 6∈ gRH . Clearly,
((f1, . . . , fk, g)RH)v = RH , and hence if u ∈ (f1, . . . , fk, g)−1, then u ∈ RH .
Also, since (C(f1) + · · ·+ C(fk))v = R, u ∈ R. Thus, R = (f1, . . . , fk, g)−1 =
(f1, . . . , fk, g)v ⊆ Qt = Q ( R, a contradiction. Hence, htQ = 1, and so Q is
an upper to zero in R. Thus, Q is t-invertible [8, Corollary 2.2(2)].

(2) ⇒ (3) [34, Theorem 1.4].
(3) ⇒ (1) Note that Q ( C(Q)t ⊆ R and C(Q)t is a t-ideal. Hence, if Q is

a maximal t-ideal, then C(Q)t = R. �

Corollary 1.9. Each homogeneous prime t-ideal of R =
⊕

α∈ΓRα has height-
one if and only if t-dim(R) = 1. In this case, R is a graded UMT-domain.
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Proof. Assume that each homogeneous prime t-ideal of R has height-one, and
let Q be a maximal t-ideal of R. If Q ∩ H 6= ∅, then Q is homogeneous, and
thus htQ = 1. Next, if Q∩H = ∅, then C(Q)t = R because each homogeneous
maximal t-ideal has height-one. Thus, htQ = 1 by Proposition 1.8. The
converse is clear.

The “In this case” part follows because t-dim(R) = 1 implies that each prime
t-ideal of R is a maximal t-ideal. �

Let A ⊆ B be an extension of integral domains. As in [23], we say that
B is t-linked over A if I−1 = A for a nonzero finitely generated ideal I of A
implies (IB)−1 = B. It is easy to see that B is t-linked over A if and only
if B =

⋂
P∈t-Max(A)BP [14, Lemma 3.2], if and only if either Q ∩ A = (0) or

Q ∩A 6= (0) and (Q ∩A)t ( A for all Q ∈ t-Max(B) [4, Propositions 2.1].

Corollary 1.10. Let T be a homogeneous overing of R =
⊕

α∈ΓRα, and
assume that T is t-linked over R (e.g., T = RS for some multiplicative set
S ⊆ H). If R is a graded UMT-domain, then T is a graded UMT-domain.

Proof. Let U be an upper to zero in T . If U is not a maximal t-ideal, then
CT (U)t ( T by Proposition 1.8. Hence, there is a homogeneous maximal t-
ideal Q of T such that U ( Q. Note that U ∩R is an upper to zero in R, Q∩R
is homogeneous, (Q∩R)t ( R because T is t-linked over R, and U ∩R ⊆ Q∩R.
Thus, U ∩ R ( (Q ∩ R)t, a contradiction because U ∩ R is a maximal t-ideal
by assumption. Hence, U is a maximal t-ideal of T . �

Following [3], we say that a multiplicative subset S of D is a t-splitting set
if for each 0 6= d ∈ D, dD = (AB)t for some integral ideals A and B of D,
where At ∩ sD = sAt (equivalently, (A, s)t = D) for all s ∈ S and Bt ∩ S 6= ∅.
It is known that S is a t-splitting set of D if and only if dDS ∩D is t-invertible
for all 0 6= d ∈ D [3, Corollary 2.3]. Also, D is a UMT-domain if and only if
D − {0} is a t-splitting set in D[X] [16, Corollary 2.9].

Theorem 1.11. The following statements are equivalent for R =
⊕

α∈ΓRα.

(1) R is a graded UMT-domain.
(2) Let Q be a nonzero prime ideal of R such that C(Q)t ( R. Then Q is

homogeneous.
(3) Let Q be a nonzero prime ideal of R such that Q (M for some homo-

geneous maximal t-ideal M of R. Then Q is homogeneous.
(4) C(Q)t = R for every upper to zero Q in R.
(5) If I = fRH ∩R for 0 6= f ∈ R, then C(I)t = R.
(6) H is a t-splitting set of R.
(7) Every prime t-ideal of R disjoint from H is t-invertible.
(8) Every prime t-ideal of R disjoint from H is a maximal t-ideal.

Proof. (1) ⇒ (2) Suppose that Q is not homogeneous. Clearly, there is an f ∈
Q\H such that C(f) * Q. Let P be a prime ideal of R such that P is minimal
over fR and P ⊆ Q. If P ∩ H 6= ∅, then PRH\P must be a homogeneous
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maximal t-ideal of RH\P (cf. [8, Lemma 2.1]); so P is homogeneous. Hence,
C(f) ⊆ P ⊆ Q, a contradiction. Thus, P ∩H = ∅ and PRH is a prime t-ideal
because PRH is minimal over fRH , whence P is an upper to zero in R. Thus,
P = Q by (1), and so C(Q)t = R by Proposition 1.8, a contradiction. Thus, Q
is homogeneous.

(2) ⇔ (3) Clear.
(2) ⇒ (4) Let Q be an upper to zero in R. Then Q is not homogeneous

and Q ( C(Q). However, if C(Q)t ( R, then Q is homogeneous by (2), a
contradiction. Thus, C(Q)t = R.

(4) ⇒ (1) Proposition 1.8.
(1) ⇒ (5) Let f = fe11 · · · fenn be the prime factorization of f in RH , where

fi ∈ RH is a prime element. Then

I = (fe11 · · · fenn )RH ∩R
= (fe11 RH ∩ · · · ∩ fenn RH) ∩R
= (fe11 RH ∩R) ∩ · · · ∩ (fenn RH ∩R)

= ((f1RH ∩R)e1)t ∩ · · · ∩ ((fnRH ∩R)en)t.

(For the last equality, note that each fiRH ∩R is a maximal t-ideal by (1) and√
feii RH ∩R = fiRH ∩R =

√
((fiRH ∩R)ei)t; so ((fiRH ∩R)ei)t is primary.

Clearly, ((fiRH ∩R)ei)tRH = feii RH , and thus ((fiRH ∩R)ei)t = feii RH ∩R.)
If C(I)t ( R, then I ⊆ C(I)t ⊆ M for some homogeneous maximal t-ideal
M of R. Since M is a prime ideal, fiRH ∩ R ⊆ M for some i, and hence
R = C(fiRH ∩ R)t ⊆ C(M)t = M by the equivalence of (1) and (4) above, a
contradiction. Thus, C(I)t = R.

(5)⇒ (1) LetQ be an upper to zero inR. ThenQ = fRH∩R for some f ∈ R,
and hence C(Q)t = R by (5). Thus, Q is a maximal t-ideal by Proposition 1.8.

(1) ⇒ (6) Let Q be a prime t-ideal of R such that Q ∩H = ∅. Then QH is
a prime ideal of RH , and hence fRH ⊆ QH for some nonzero prime element f
of RH . Hence, fRH ∩R ⊆ Q, and since fRH ∩R is a maximal t-ideal of R by
(1), Q = fRH ∩ R and C(Q)t = R. Thus, H is a t-splitting set [8, Theorem
2.1].

(6) ⇒ (4) Let Q be an upper to zero in R. Then Q is a prime t-ideal of R
with Q ∩H = ∅, and thus C(Q)t = R [8, Theorem 2.1].

(6) ⇔ (7) [8, Corollary 2.2].
(7) ⇔ (8) Proposition 1.8. �

Let D[X] be the polynomial ring over an integral domain D and f ∈ D[X]
be such that c(f)v = D. If A is an ideal of D[X] with f ∈ A, then A is
t-invertible [34, Proposition 4.1] and fD[X] = (Qe11 · · ·Qenn )t for some uppers
to zero Qi in D[X] and integers ei ≥ 1 [29, p. 144]. We end this section with
an extension of these results to graded integral domains.

Proposition 1.12. Let A be a nonzero ideal of R =
⊕

α∈ΓRα such that
C(A)t = R. If A contains a nonzero f ∈ R with C(f)v = R (e.g., R satisfies
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property (#)), then At = (Qe11 · · ·Qenn )t for some t-invertible uppers to zero Qi
in R and integers ei ≥ 1. In particular, A is t-invertible.

Proof. If At = R, then A is t-invertible; so assume that At ( R. Let Q be
a maximal t-ideal of R with A ⊆ Q; then f ∈ Q. If Q ∩ H 6= ∅, then Q
is homogeneous, and hence R = C(A)t ⊆ Qt = Q, a contradiction. Hence,
Q ∩H = ∅, and so Q contains an upper to zero U in R containing f . Clearly,
C(U)t = R; so by Proposition 1.8, U is a maximal t-ideal, and thus Q = U ,
i.e., Q is an upper to zero in R that is t-invertible. Hence, each prime t-ideal
of R containing A is an upper to zero in R that is also t-invertible. Thus,
At = (Qe11 · · ·Qenn )t for some uppers to zero Qi in R and integers ei ≥ 1 (cf.
the proof of [29, Theorem 1.3]) and A is t-invertible. �

Corollary 1.13. Let f ∈ R =
⊕

α∈ΓRα be nonzero. If C(f)v = R, then
fR = (Qe11 · · ·Qenn )t for some uppers to zero Qi in R and integers ei ≥ 1.

Proof. Clearly, C(fR)t = R and f ∈ fR. Thus, the result is an immediate
consequence of Proposition 1.12. �

A careful reading of the proof of Proposition 1.12 also shows:

Corollary 1.14. Let A be a nonzero ideal of a graded UMT-domain R =⊕
α∈ΓRα such that C(A)t = R. Then At = (Qe11 · · ·Qenn )t for some uppers to

zero Qi in R and integers ei ≥ 1, and A is t-invertible.

Let D be an integral domain, S be a t-splitting set of D, S = {A1 · · ·An |
Ai = diDS ∩D for some 0 6= di ∈ D}, and DS = {x ∈ K | xA ⊆ D for some
A ∈ S}. Then DS =

⋂
{DP | P ∈ t-Max(D) and P ∩ S 6= ∅} [3, Lemma

4.2 and Theorem 4.3]. The S is said to be t-lcm if sD ∩ dD is t-invertible for
all s ∈ S and 0 6= d ∈ D; and S is called a t-complemented t-splitting set if
DS = DT for some multiplicative set T of D and the saturation of T is the
t-complement of S.

Corollary 1.15 (cf. [16, Proposition 3.7]). Let R =
⊕

α∈ΓRα and N(H) =
{f ∈ R | C(f)v = R}. Then N(H) is a t-lcm t-complemented t-splitting set of
R.

Proof. Let 0 6= f ∈ R and A = fRN(H) ∩R. For the t-splitting set property of
N(H), it suffices to show that A is t-invertible [3, Corollary 2.3]. Let Q be a
maximal t-ideal of R. If Q ∩N(H) = ∅, then AQ = fRQ. Next, assume that
Q ∩ N(H) 6= ∅. Then C(Q)t = R, and hence Q is an upper to zero in R and
RQ is a rank-one DVR by Proposition 1.8. Now, note that if Q′ is an upper
to zero in R containing A, then f ∈ Q′H and Q′H is a height-one prime ideal
of RH ; so there are only finitely many uppers to zero in R containing A, say
Q1, . . . , Qn. Hence, if S = R \

⋃n
i=1Qi, then RS is a principal ideal domain,

and thus ARS = gRS for some g ∈ A. Let I = (f, g)v. Then IRQ = fRQ
when Q ∩ N(H) = ∅, and IRQ = gRQ when Q ∩ N(H) 6= ∅. Thus, I = A
[36, Proposition 2.8(3)]; so A is t-invertible [36, Corollary 2.7].
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Next, note that every t-ideal of R intersecting N(H) is t-invertible by Propo-
sition 1.12. Thus, N(H) is a t-lcm t-splitting set [16, Theorem 3.4]. Also, if
S = {A1 · · ·An | Ai = diRN(H) ∩ R for some 0 6= di ∈ R}, then RH ⊆ RS

because aRN(H) ∩ R = aR for all a ∈ H. Hence, RS is t-linked over RH
[4, Proposition 2.3], and since RH is a UFD, RS = (RH)T for some satu-
rated multiplicative set T of RH [24, Theorem 1.3]. Thus, if N = T ∩R, then
RS = RN . �

An integral domain is called a Mori domain if it satisfies the ascending chain
condition on its (integral) v-ideals. Clearly, Krull domains are Mori domains.

Corollary 1.16. Let R =
⊕

α∈ΓRα and N(H) = {f ∈ R | C(f)v = R}.
Then R is a Mori domain (resp., UMT-domain) if and only if RN(H) is a Mori
domain (resp., UMT-domain).

Proof. By Corollary 1.15, N(H) is a t-lcm t-complemented t-splitting set of
R. Let N be the t-complement of N(H); then RH ⊆ RN , and hence RN is a
UFD and R = RN(H) ∩ RN . Thus, RN(H) is a Mori domain if and only if R
is a Mori domain [40, Theorem 1]. The UMT-domain property follows directly
from [16, Corollary 3.6] and Corollary 1.15. �

2. Graded integral domains with property (#)

Let Γ be a nonzero torsionless grading monoid, R =
⊕

α∈ΓRα be a nontrivial
Γ-graded integral domain, H be the set of nonzero homogeneous elements of
R, and N(H) = {f ∈ R | C(f)v = R}. Let Ω be the set of all homogeneous
maximal t-ideals of R, i.e., Ω = {Q ∈ t-Max(R) | Q ∩ H 6= ∅}, and recall
that R satisfies property (#) if and only if Max(RN(H)) = {QN(H) | Q ∈ Ω}
[9, Proposition 1.4].

Lemma 2.1. Let R =
⊕

α∈ΓRα be a graded integral domain with property
(#), and let Q be an upper to zero in R.

(1) Q is a maximal t-ideal if and only if C(g)v = R for some g ∈ Q.
(2) If Q is a maximal t-ideal of R, then Q = (f, g)v for some f, g ∈ R.

Proof. (1) Q is a maximal t-ideal if and only if C(Q)t = R by Proposition 1.8,
if and only if Q ∩N(H) 6= ∅ by property (#).

(2) Since Q is an upper to zero in R, there is an f ∈ R such that Q =
fRH ∩R. Also, there is a g ∈ Q with C(g)v = R by (1). Clearly, (f, g)v ⊆ Q.
For the reverse containment, let h ∈ Q. Then αh ∈ fR for some α ∈ H, and
thus h(α, g) ⊆ (f, g). Hence, h(α, g)v ⊆ (f, g)v ⊆ Q. If ξ ∈ (α, g)−1, then
α ∈ H implies ξ ∈ RH , and since C(g)v = R, ξg ∈ R implies ξ ∈ R. Hence,
(α, g)−1 = R, and thus h ∈ hR = h(α, g)v ⊆ (f, g)v. Thus, Q ⊆ (f, g)v. �

We next give a characterization of graded UMT-domains R =
⊕

α∈ΓRα
with property (#).
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Theorem 2.2. Let R =
⊕

α∈ΓRα be a graded integral domain with property
(#). Then the following statements are equivalent.

(1) R is a graded UMT-domain.
(2) If Q is an upper to zero in R, then there is an f ∈ Q such that C(f)v =

R.
(3) Every prime ideal of RN(H) is extended from a homogeneous ideal of

R.
(4) N(H) is a t-lcm t-complemented t-splitting set of R with t-complement

H.

Proof. (1) ⇔ (2) This follows directly from Lemma 2.1.
(1) ⇒ (3) Let Q′ be a nonzero prime ideal of RN(H). Then Q′ = QN(H) for

some prime ideal Q of R. Note that Q ⊆ M for some homogeneous maximal
t-ideal M of R because R satisfies property (#). Thus, Q is homogeneous by
Theorem 1.11.

(3) ⇒ (1) Let Q be an upper to zero in R, and assume that Q is not a
maximal t-ideal of R. Then Q ∩N(H) = ∅ by Lemma 2.1(1), and so QN(H) is
a proper ideal of RN(H). Hence, by (3), there is a homogeneous ideal P of R
such that QN(H) = PRN(H). Thus, P ⊆ PRN(H) ∩ R = QN(H) ∩ R = Q, and
so QH = RH , a contradiction. Thus, Q is a maximal t-ideal of R.

(1) ⇒ (4) By Corollary 1.15, N(H) is a t-lcm t-complemented t-splitting
set of R. Also, note that {Q ∈ t-Max(R) | Q ∩ N(H) 6= ∅} is the set of
uppers to zero in R by property (#) and assumption; so RH = RS, where
S = {A1 · · ·An | Ai = diRN(H) ∩ R for some 0 6= di ∈ R}. Thus, H is the
t-complement of N(H).

(4) ⇒ (1) Let Q be an upper to zero in R. Then Q ∩ H = ∅, and hence
Q∩N(H) 6= ∅ [3, Theorem 4.3] because H is the t-complement of N(H). Thus,
Q is a maximal t-ideal of R by Proposition 1.8. �

The next result is an immediate consequence of Corollary 1.9, but we use
Theorem 2.2 to give another proof.

Corollary 2.3. Let R =
⊕

α∈ΓRα be a graded integral domain with property
(#). Then t-dim(R) = 1 if and only if dim(RN(H)) = 1. In this case, R is a
graded UMT-domain.

Proof. Assume t-dim(R) = 1, and note that Max(RN(H)) = {QN(H) | Q ∈ Ω}.
Thus, dim(RN(H)) = 1. Conversely, suppose dim(RN(H)) = 1, and let Q be a
maximal t-ideal of R. If Q ∩H 6= ∅, then Q is homogeneous, and thus htQ =
ht(QN(H)) = 1. Next, if Q ∩ H = ∅, then QH ( RH , and hence Q contains
an upper to zero Q0 in R. However, note that since R satisfies property (#),
dim(RN(H)) = 1 implies (Q0)N(H) = RN(H). Thus, Q0 ∩N(H) 6= ∅, and so Q0

is a maximal t-ideal by Lemma 2.1. Hence, Q = Q0 and htQ = 1.
For “In this case”, note that dim(RN(H)) = 1 implies that every prime ideal

of RN(H) is extended from a homogeneous ideal of R. Thus, R is a graded
UMT-domain by Theorem 2.2. �
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An integral domain D is called an almost Dedekind domain (resp., t-almost
Dedekind domain) if DP is a rank-one DVR for all maximal ideals (resp.,
maximal t-ideals) P of D. Clearly, Dedekind domains are almost Dedekind
domains; Krull domains are t-almost Dedekind domains; and if D is an almost
(resp., a t-almost) Dedekind domain, then dim(D) = 1 (resp., t-dim(D) = 1).

Corollary 2.4 (cf. [20, Corollary 9]). Let R =
⊕

α∈ΓRα be a graded integral
domain with property (#). Then R is a t-almost Dedekind domain if and only
if RN(H) is an almost Dedekind domain.

Proof. (⇒) By Corollary 2.3, dim(RN(H)) = 1. Note that Max(RN(H)) =
{QN(H) | Q ∈ Ω} and RQ is a rank-one DVR for all Q ∈ Ω. Thus, RN(H) is an
almost Dedekind domain.

(⇐) If RN(H) is an almost Dedekind domain, then dim(RN(H)) = 1, and
thus t-dim(R) = 1 by Corollary 2.3. Let Q be a maximal t-ideal of R. If
Q∩H = ∅, then ht(QH) = htQ = 1, and since RH is a UFD, RQ is a rank-one
DVR. Next, if Q∩H 6= ∅, then Q is homogeneous, and hence QN(H) ( RN(H).
Thus, RQ is a rank-one DVR by assumption. �

An integral domain D is called a weakly Krull domain if (i) D =
⋂
P∈X1(D)DP ,

where X1(D) is the set of height-one prime ideals of D, and (ii) the intersection
D =

⋂
P∈X1(D)DP is locally finite. It is easy to see that if D is a weakly Krull

domain, then t-dim(D) = 1, i.e., X1(D) = t-Max(D), and DS is a weakly Krull
domain for a multiplicative set S of D. Also, D is a Krull domain if and only
if D is a weakly Krull domain and DP is a rank-one DVR for all P ∈ X1(D).

Corollary 2.5. The following statements are equivalent for R =
⊕

α∈ΓRα.

(1) R is a weakly Krull domain.
(2) R is a graded UMT-domain and RN(H) is a weakly Krull domain.
(3) RN(H) is a weakly Krull domain.
(4) RN(H) is an one-dimensional weakly Krull domain.

Proof. Note that RN(H) is a weakly Krull domain in this corollary. Also,
QN(H) is a prime t-ideal of RN(H) for all Q ∈ Ω [9, Proposition 1.3]. Hence,
the intersection

⋂
Q∈ΩRQ is locally finite, and thus R satisfies property (#)

[9, Lemma 2.2].
(1) ⇒ (2) If R is a weakly Krull domain, then t-dim(R) = 1, and hence R is

a graded UMT-domain by Corollary 2.3. Also, since N(H) is a multiplicative
subset of R, RN(H) is a weakly Krull domain.

(2) ⇒ (3) Clear.
(3) ⇒ (4) If RN(H) is a weakly Krull domain, then ht(QN(H)) = 1 for all

Q ∈ Ω. Thus, dim(RN(H)) = 1 because R satisfies property (#).
(4) ⇒ (1) By Corollary 2.3, t-dim(R) = 1, and thus R =

⋂
Q∈X1(R)RQ.

Next, let f ∈ R be a nonzero nonunit. Since RN(H) is a weakly Krull domain,
f is contained in only finitely many homogeneous maximal t-ideals of R. Also,
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since RH is a UFD, f is contained in only finitely many uppers to zero in R.
Therefore, R is a weakly Krull domain. �

It is clear that D is a Krull domain if and only if D is a t-almost Dedekind
weakly Krull domain and that a Krull domain D is a Dedekind domain if and
only if dim(D) = 1. Hence, by Corollaries 2.4 and 2.5, we have:

Corollary 2.6 ([9, Corollary 2.4]). Let R =
⊕

α∈ΓRα. Then R is a Krull
domain if and only if RN(H) is a Dedekind domain.

An integral domain D is a weakly factorial domain if each nonzero nonunit
of D can be written as a finite product of primary elements of D. (A nonzero
element x ∈ D is said to be primary if xD is a primary ideal.) Since a prime
ideal is a primary ideal, prime elements are primary, and thus UFDs are weakly
factorial domains. It is known that D is a weakly factorial domain if and only
if D is a weakly Krull domain and Cl(D) = {0} [6, Theorem]. Note that X
is a prime element of the polynomial ring D[X]; so D[X] is a weakly factorial
domain if and only if D[X,X−1] is a weakly factorial domain. Thus, the next
result is a generalization of [5, Theorem 17] that D is a weakly factorial GCD-
domain if and only if D[X] is a weakly factorial domain.

Corollary 2.7. Let R =
⊕

α∈ΓRα be a graded integral domain with a unit of
nonzero degree. Then the following statements are equivalent.

(1) R is a weakly factorial domain.
(2) R is a weakly factorial GCD-domain.
(3) R is a weakly factorial PvMD.

Proof. (1) ⇒ (2) If R is a weakly factorial domain, then R is a weakly Krull
domain and Cl(R) = {0}. Hence, each upper to zero Q in R is t-invertible by
Corollary 2.5 and Proposition 1.8, and so Q is principal. Thus, every upper to
zero in R contains a (nonzero) prime element, and hence R is a GCD-domain
[19, Theorem 2.2].

(2) ⇒ (3) ⇒ (1) Clear. �

3. Graded integral domains with a unit of nonzero degree

Let R =
⊕

α∈ΓRα be an integral domain graded by a nonzero torsionless
grading monoid Γ, H be the set of nonzero homogeneous elements ofR, N(H) =
{f ∈ R | C(f)v = R}, and R̄ be the integral closure of R. Note that R̄ is a
graded integral domain by Lemma 1.6 such that R ⊆ R̄ ⊆ RH = R̄H . In this
section, we study a graded UMT-domain property of R with a unit of nonzero
degree.

Lemma 3.1. Let R =
⊕

α∈ΓRα be a graded integral domain with a unit of
nonzero degree, and let Q be a nonzero homogeneous prime ideal of R. If Q is
not a t-ideal, then there is an upper to zero U in R such that U ⊆ Q.
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Proof. Since Q is not a t-ideal, there are some a0, a1, . . . , an ∈ Q∩H such that
(a0, a1, . . . , an)v * Q. Let

f = a0 + a1x
k1 + · · ·+ anx

kn ,

where x ∈ R is a unit of nonzero degree and ki ≥ 1 is an integer such that
C(f) = (a0, a1, . . . , an), and let U ⊆ Q be a prime ideal of R minimal over fR.
Then U is a t-ideal. We claim that U is an upper to zero in R.

Let S = H \ Q. Then QS is a unique homogeneous maximal ideal of RS ,
and so (C(f)RS)t = RS because (C(f)RS)t = (C(f)tRS)t * QS . Also, note
that US is a t-ideal of RS ; hence if a ∈ U ∩H(6= ∅), then RS = ((a, f)RS)v ⊆
(US)t = US , a contradiction. Thus, U ∩H = ∅, and so UH is a prime t-ideal
because UH is minimal over fRH . Since RH is a UFD, UH = gRH for some
g ∈ R. Thus, U = UH ∩R = gRH ∩R is an upper to zero in R. �

Proposition 3.2. Let R =
⊕

α∈ΓRα be a graded UMT-domain with a unit of
nonzero degree, T be a homogeneous overring of R, and Q be a homogeneous
prime t-ideal of R. If M is a homogeneous prime ideal of T such that M ∩R =
Q, then M is a t-ideal of T .

Proof. If M is not a t-ideal of T , then there is an upper to zero U in T such that
U ⊆ M by Lemma 3.1. Clearly, U ∩ R is an upper to zero in R and U ∩ R (
M ∩R = Q. Thus, U ∩R is not a maximal t-ideal of R, a contradiction. �

Corollary 3.3. Let R =
⊕

α∈ΓRα be a graded UMT-domain with a unit of
nonzero degree. If Q is a homogeneous prime t-ideal of R, then RH\Q is a
graded UMT-domain with a unique homogeneous maximal ideal that is a t-
ideal.

Proof. Clearly, RH\Q is a homogeneous t-linked overring of R, and hence RH\Q
is a graded UMT-domain by Corollary 1.10. Also, QH\Q is a unique homoge-
neous maximal ideal of RH\Q, and by Proposition 3.2, QH\Q is a t-ideal. �

Lemma 3.4. Let R =
⊕

α∈ΓRα be a graded integral domain. Then R is a
graded-Prüfer domain if and only if RQ is a valuation domain for all homoge-
neous maximal ideals Q of R.

Proof. This follows from the following two observations: (i) R is a (graded)
PvMD if and only if RQ is a valuation domain for all homogeneous maximal
t-ideals Q of R [18, Lemma 2.7] and (ii) R is a graded-Prüfer domain if and only
if R is a graded PvMD whose homogeneous maximal ideals are t-ideals. �

We next give the main result of this section which provides characterizations
of graded UMT-domains with a unit of nonzero degree.

Theorem 3.5. Let R =
⊕

α∈ΓRα be a graded integral domain with a unit of
nonzero degree. Then the following statements are equivalent.

(1) R is a graded UMT-domain.
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(2) If Q is an upper to zero in R, then there is an f ∈ Q such that C(f)v =
R.

(3) Every prime ideal of RN(H) is extended from a homogeneous ideal of
R.

(4) R̄H\Q is a graded-Prüfer domain for all homogeneous maximal t-ideals
Q of R.

(5) R is a UMT-domain.
(6) R̄N(H) is a Prüfer domain.
(7) RN(H) is a UMT-domain.
(8) RN(H) is a quasi-Prüfer domain.

Proof. (1) ⇔ (2) ⇔ (3) Since R has a unit of nonzero degree, R satisfies
property (#). Thus, the results follow directly from Theorem 2.2.

(1) ⇒ (4) Let Q be a homogeneous maximal t-ideal of R. Replacing R and
Q with RH\Q and QH\Q respectively, by Corollary 3.3, we may assume that R
has a unique homogeneous maximal ideal Q and Q is a t-ideal.

Assume to the contrary that R̄ is not a graded-Prüfer domain. Then there
are some a0, a1, . . . , ak ∈ H such that I = (a0, a1, . . . , ak)R̄ is not invertible.
Let f = a0 + a1x

m1 + · · · + akx
mk , where x ∈ R is a unit of nonzero degree

and mi ≥ 1 is an integer such that CR̄(f) = I. Then fRH ∩ R̄ = fCR̄(f)−1

[9, Lemma 1.2(4)], and since I is not invertible and CR̄(f)CR̄(f)−1 is homoge-
neous, we have U = fCR̄(f)−1 ⊆ CR̄(f)CR̄(f)−1 ⊆ M for some homogeneous
maximal ideal M of R̄. Note that RH is a UFD; so f = fe11 · · · fenn for some
prime elements fi ∈ RH and integers ei ≥ 1. Thus,

fRH ∩ R̄ = ((f1RH)e1 · · · (fnRH)en) ∩ R̄
= ((f1RH)e1 ∩ · · · ∩ (fnRH)en) ∩ R̄
= ((f1RH)e1 ∩ R̄) ∩ · · · ∩ ((fnRH)en ∩ R̄)

⊇ (f1RH ∩ R̄)e1 ∩ · · · ∩ (fnRH ∩ R̄)en .

Thus, M ) fiRH ∩ R̄ for some i, and so

Q = M ∩R ) (fiRH ∩ R̄) ∩R = fiRH ∩R,
which is contrary to the fact that Q is a t-ideal. Therefore, R̄ is a graded-Prüfer
domain.

(4) ⇒ (1) Assume that R is not a graded UMT-domain, and let Qf =
fRH ∩ R be an upper to zero in R such that Qf ⊆ Q for some homogeneous
maximal t-ideal Q of R (cf. Theorem 1.11). Let T = R̄H\Q. Then by (4), T

is a graded-Prüfer domain, and hence Uf = fRH ∩ T = fCT (f)−1 * M0 for
all homogeneous maximal ideals M0 of T . Note that Uf ∩ RH\Q = (Qf )H\Q,
(Qf )H\Q ( QH\Q, and T is integral over RH\Q. Thus, there is a prime ideal
M of T such that Uf ⊆M and M ∩RH\Q = QH\Q. Since Q is homogeneous,
M∗ ∩RH\Q = QH\Q. Thus, M = M∗ is homogeneous, a contradiction.

(1) ⇒ (5) Let Q be a maximal t-ideal of R. If Q ∩ H 6= ∅, then Q is
homogeneous, and thus R̄H\Q is a graded-Prüfer domain by the equivalence of
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(1) and (4). Note that if M is a prime ideal of R̄H\Q such that M ∩ RH\Q =

QH\Q, then M is homogeneous because Q is homogeneous; hence (R̄H\Q)M is

a valuation domain by Lemma 3.4. Clearly, R̄R\Q = (R̄H\Q)R\Q. Thus, R̄R\Q
is a Prüfer domain. Next, assume Q ∩ H = ∅. Then Q = QH ∩ R, and so if
htQ ≥ 2, then there is an 0 6= f ∈ R such that fRH ⊆ QH is a prime ideal
of RH . Hence, fRH ∩ R ( QH ∩ R = Q, a contradiction. Thus, htQ = 1
and so RQ = (RH)QH is a rank-one DVR. Therefore, by Theorem 1.2, R is a
UMT-domain.

(5) ⇒ (6) Let M be a prime ideal of R̄ such that MN(H) is a maximal ideal

of R̄N(H). Then (M ∩ R) ∩ N(H) = ∅, and hence M ∩ R is a homogeneous

maximal t-ideal of R. Since R is a UMT-domain, R̄M∩R is a Prüfer domain by
Theorem 1.2. Note that R̄M∩R ⊆ R̄M = (R̄N(H))MN(H)

; so (R̄N(H))MN(H)
is a

valuation domain. Thus, R̄N(H) is a Prüfer domain.

(6) ⇒ (4) Let M be a homogeneous prime ideal of R̄ such that MH\Q is a

homogeneous maximal ideal of R̄H\Q. Then M∩R ⊆ Q, and so M∩N(H) = ∅.
Thus, MN(H) is a proper prime ideal of R̄N(H), and so R̄M = (R̄N(H))MN(H)

is

a valuation domain. Thus, by Lemma 3.4, R̄H\Q is a graded-Prüfer domain.
(6) ⇔ (8) [25, Corollary 6.5.14].
(7) ⇔ (8) This follows because each maximal ideal of RN(H) is a t-ideal

[9, Propositions 1.3 and 1.4]. �

Corollary 3.6 ([19, Theorem 2.5]). Let R =
⊕

α∈ΓRα be a graded integral
domain with a unit of nonzero degree. Then R is an integrally closed graded
UMT-domain if and only if R is a PvMD.

Proof. R is an integrally closed graded UMT-domain if and only if R is an
integrally closed UMT-domain (by Theorem 3.5), if and only if R is a PvMD
(by Corollary 1.3). �

Corollary 3.7. Let R =
⊕

α∈ΓRα be a graded integral domain with a unit of

nonzero degree. Then R̄ is a graded-Prüfer domain if and only if R is a graded
UMT-domain whose homogeneous maximal ideals are t-ideals.

Proof. (⇒) Clearly, R̄H\Q is a graded-Prüfer domain for all homogeneous max-
imal t-ideals Q of R. Thus, by Theorem 3.5, R is a graded UMT-domain.
Next, let f ∈ R be nonzero such that fRH is a prime ideal. Note that
fRH ∩ R̄ = fCR̄(f)−1 [9, Lemma 1.2(4)]; so if h ∈ RH with CR̄(h) = CR̄(f)−1

(such h exists because R has a unit of nonzero degree), then fh ∈ fCR̄(f)−1

and CR̄(fh) = R̄. Thus, C(fCR̄(f)−1) = R̄. Note also that fRH ∩ R =
fCR̄(f)−1 ∩ R and R̄ is integral over R. Hence, C(fRH ∩ R) = R. Thus, by
Lemma 3.1, each homogeneous maximal ideal of R is a t-ideal.

(⇐) Let M be a homogeneous maximal ideal of R̄. Then M∩R is a homoge-
neous ideal of R; so (M∩R)∩N(H) = ∅ by assumption. Hence, M∩N(H) = ∅,
and thus R̄M = (R̄N(H))MN(H)

is a valuation domain by Theorem 3.5. Thus,

by Lemma 3.4, R̄ is a graded-Prüfer domain. �
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It is well known that each overring of a Prüfer domain is a Prüfer domain
[28, Theorem 26.1]. The next result is the graded-Prüfer domain analog.

Lemma 3.8 ([10, Theorem 2.5(2)]). Let T be a homogeneous overring of a
graded-Prüfer domain R =

⊕
α∈ΓRα. Then T is a graded-Prüfer domain.

Proof. Let A be a nonzero finitely generated homogeneous ideal of T . Since
R ⊆ T ⊆ RH , there are an α ∈ H and a finitely generated homogeneous ideal
I of R such that A = 1

αIT . Since R is a graded-Prüfer domain, I is invertible,

and thus A = 1
αIT is invertible. Hence, T is a graded-Prüfer domain. �

Let D be a UMT-domain, and recall that if P is a nonzero prime ideal of D
with Pt ( D, then P is a t-ideal [26, Corollary 1.6]. We next give the graded
UMT-domain analog.

Corollary 3.9. Let R =
⊕

α∈ΓRα be a graded UMT-domain with a unit of
nonzero degree, and let M be a homogeneous maximal t-ideal of R. If P ⊆ M
is a nonzero prime ideal of R, then P is a homogeneous prime t-ideal.

Proof. Since M is homogeneous, C(P )t ⊆ Mt = M ( R. Thus, P is homo-
geneous by Theorem 1.11. Next, note that R̄H\M is a graded-Prüfer domain

and R̄H\P is a homogeneous overring of R̄H\M ; so by Lemma 3.8, R̄H\P is a
graded-Prüfer domain. Thus, by Corollary 3.7, PRH\P is a prime t-ideal, and
hence P is a prime t-ideal of R. �

We next give another characterization of graded UMT-domains.

Corollary 3.10. Let R =
⊕

α∈ΓRα be a graded integral domain with a unit
of nonzero degree. Then the following statements are equivalent.

(1) R is a graded UMT-domain.
(2) Let Q be a nonzero prime ideal of R with C(Q)t ( R. Then Q is a

homogeneous prime t-ideal.
(3) Let Q be a nonzero prime ideal of R such that Q ⊆ M for some ho-

mogeneous maximal t-ideal M of R. Then Q is a homogeneous prime
t-ideal.

Proof. (1)⇒ (2) Let Q be a nonzero prime ideal of R with C(Q)t ( R. Clearly,
there is a homogeneous maximal t-ideal M of R such that Q ⊆ M . Hence, by
Corollary 3.9, Q is a homogeneous prime t-ideal.

(2) ⇔ (3) Clear.
(3) ⇒ (1) This follows from Theorem 1.11. �

An integral domain D is called a generalized Krull domain if (i) D =⋂
P∈X1(D)DP , (ii) the intersection D =

⋂
P∈X1(D)DP is locally finite, and

(iii) DP is a (rank-one) valuation domain for all P ∈ X1(D). Clearly, D is a
generalized Krull domain if and only if D is a weakly Krull domain and DP

is a valuation domain for all P ∈ X1(D), if and only if D is a weakly Krull
PvMD; and a generalized Krull domain D is a Krull domain, if and only if DP

is a DVR for all P ∈ X1(D).
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Corollary 3.11. Let R =
⊕

α∈ΓRα be a graded integral domain with a unit
of nonzero degree. Then the following statements are equivalent.

(1) R is an integrally closed weakly Krull domain.
(2) R is a generalized Krull domain.
(3) RN(H) is a generalized Krull domain.
(4) RN(H) is an one-dimensional generalized Krull domain

Proof. (1) ⇒ (2) It suffices to show that RQ is a valuation domain for all
Q ∈ X1(R). Let Q be a height-one prime ideal of R. If Q ∩H = ∅, then QH
is a height-one prime ideal of RH , and since RH is a UFD, RQ = (RH)QH is
a valuation domain. If Q ∩H 6= ∅, then Q is homogeneous, and hence QN(H)

is a proper prime ideal of RN(H). Note that R is a graded UMT-domain by
Corollary 2.5 and RN(H) is integrally closed; hence RN(H) is a Prüfer domain
by Theorem 3.5. Thus, RQ = (RN(H))QN(H)

is a valuation domain.

(2) ⇒ (3) [28, Corollary 43.6].
(3) ⇒ (4) ⇒ (1) This follows from Corollary 2.5 because R = RH ∩RN(H),

RH is integrally closed, and a generalized Krull domain is a weakly Krull do-
main. �

Let D̄ be the integral closure of an integral domain D, {Xα} be a nonempty
set of indeterminates over D, and Nv = {f ∈ D[{Xα}] | c(f)v = D}. It is
known that D is a UMT-domain if and only if D[{Xα}] is a UMT-domain,
if and only if D[{Xα}]Nv is a UMT-domain, if and only if D̄[{Xα}]Nv is a
Prüfer domain [26, Theorems 2.4 and 2.5], if and only if every prime ideal of
D[{Xα}]Nv is extended from D (cf. [34, Theorem 3.1]). We next recover this
result as a corollary of Theorem 3.5, and for this we first need a simple lemma.

Lemma 3.12. Let R =
⊕

α∈ΓRα be a graded integral domain with a set {pβ}
of nonzero homogeneous prime elements such that (i) ht(pβR) = 1 for each β
and (ii)

⋂∞
n=1 pβnR = (0) for any sequence {pβn} of nonassociate members of

{pβ}, and let S be the saturated multiplicative set of R generated by {pβ}.
(1) RS is a homogeneous overring of R.
(2) R is a graded UMT-domain if and only if RS is a graded UMT-domain.
(3) R is a UMT-domain if and only if RS is a UMT-domain.

Proof. (1) Clear.
(2) It is clear that each upper to zero in R is not comparable with pβR

under inclusion for all β. Also, Q is an upper to zero in R if and only if QS
is an upper to zero in RS . Note that t-Max(RS) = {QS | Q ∈ t-Max(R) and
Q 6= pβR for all β} [2, Proposition 2.6 and Corollary 3.5]. Thus, each upper
to zero in R is a maximal t-ideal if and only if each upper to zero in RS is a
maximal t-ideal.

(3) Clearly, RpβR is a rank-one DVR for all β. Also, if Q is a prime ideal of

R with Q∩ S = ∅, then (RS)QS = R̄Q. Thus, the result follows from Theorem
1.2 and [2, Proposition 2.6 and Corollary 3.5]. �
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Corollary 3.13. Let R =
⊕

α∈ΓRα be a graded integral domain with a nonzero
homogeneous prime element p such that ht(pR) = 1 and deg(p) 6= 0. Then R
is a graded UMT-domain if and only if R is a UMT-domain.

Proof. Clearly, {p} satisfies the conditions (i) and (ii) of Lemma 3.12. Also, if
S = {upn | u is a unit of R and n ≥ 0}, then RS has a unit of nonzero degree.
Thus, R is a graded UMT-domain if and only if RS is a graded UMT-domain, if
and only if RS is a UMT-domain, if and only if R is a UMT-domain by Lemma
3.12 and Theorem 3.5. �

For each α, let Zα = Z be the additive group of integers; so if G =
⊕

α Zα,
then G is a torsionfree abelian group and the group ring D[G] of G over D
is isomorphic to D[{Xα, X

−1
α }]. Thus, if R = D[{Xα, X

−1
α }], then R has a

unit of nonzero degree and RN(H) = D[{Xα}]Nv [9, Proposition 3.1] and every
homogeneous ideal of R has the form IR for an ideal I of D.

Corollary 3.14. Let D be an integral domain, {Xα} be a nonempty set of
indeterminates over D, and Nv = {f ∈ D[{Xα}] | c(f)v = D}. Then the
following statements are equivalent.

(1) D is a UMT-domain.
(2) D[{Xα}] is a UMT-domain.
(3) D[{Xα}] is a graded UMT-domain.
(4) D[{Xα, X

−1
α }] is a UMT-domain.

(5) D[{Xα, X
−1
α }] is a graded UMT-domain.

(6) D̄[{Xα}]Nv is a Prüfer domain.
(7) D[{Xα}]Nv is a UMT-domain.
(8) D[{Xα}]Nv is a quasi-Prüfer domain.
(9) Every prime ideal of D[{Xα}]Nv is extended from D.

Proof. (1) ⇔ (5) Let R = D[{Xα, X
−1
α }]. Then RN(H) = D[{Xα}]Nv and

{PR | P ∈ t-Max(D)} is the set of homogeneous maximal t-ideals of R. Note
that R̄H\PR = D̄P [{Xα, X

−1
α }]; and D̄P [{Xα, X

−1
α }] is a graded-Prüfer domain

if and only if D̄P is a Prüfer domain for all P ∈ t-Max(D) (cf. [9, Example
3.6]). Thus, the result follows from Theorems 1.2 and 3.5.

(2) ⇔ (3) This follows from Corollary 3.13 because each Xβ is a height-one
homogeneous prime element of nonzero degree.

(3) ⇔ (5) Clearly, {Xα} is a set of nonzero homogeneous prime elements of
D[{Xα}] satisfying the two conditions of Lemma 3.12. Also, if S is the multi-
plicative set of D[{Xα}] generated by {Xα}, then D[{Xα}]S = D[{Xα, X

−1
α }].

Thus, the result is an immediate consequence of Lemma 3.12(2).
(4) ⇔ (5) ⇔ (6) ⇔ (7) ⇔ (8) ⇔ (9) Theorem 3.5. �

4. Counterexamples via the D + XK[X] construction

In this section we use the D + XK[X] construction to show that a graded
UMT-domain need not be a UMT-domain in general. For this, let D be an
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integral domain with quotient field K and D ( K, X be an indeterminate over
D, K[X] be the polynomial ring over K, and R = D + XK[X] be a subring
of K[X], i.e., R = {f ∈ K[X] | f(0) ∈ D}; so D[X] ( R ( K[X] and R is
an N0-graded integral domain with deg(aXn) = n for 0 6= a ∈ K and integer
n ≥ 0 (a ∈ D when n = 0). Let H be the set of nonzero homogeneous elements
of R and N(H) = {f ∈ R | C(f)v = R}; then N(H) = {f ∈ R | f(0) is a unit
of R} [15, Lemma 6] and RH = K[X,X−1].

Lemma 4.1. If Q is an upper to zero in R = D + XK[X], then Q = fR for
some f ∈ R with f(0) = 1, and hence Q is a maximal t-ideal of R.

Proof. Note that RH = K[X,X−1]; so Q = fK[X,X−1] ∩ R for some f ∈
K[X,X−1]. Since X is a unit of K[X,X−1] and K is the quotient field of D,
we may assume that f ∈ R with f(0) = 1. Hence, if g ∈ K[X,X−1] is such
that fg ∈ R, then g ∈ K[X], and since f(0) = 1, we have g(0) ∈ D; so g ∈ R.
Thus, Q = fR. �

It is known that R = D + XK[X] is a PvMD if and only if D is a PvMD
[21, Theorem 4.43]. We next give a UMT-domain analog.

Proposition 4.2. Let R = D +XK[X].

(1) R is a graded UMT-domain.
(2) R is a UMT-domain if and only if D is a UMT-domain.

Proof. (1) Lemma 4.1.
(2) Note that K[X] is a UMT-domain and XK[X] is a maximal t-ideal of

K[X]. Thus, R is a UMT-domain if and only if D is a UMT-domain [26,
Proposition 3.5]. �

We end this paper with some counterexamples.

Example 4.3. Let R = D +XK[X]. Then R is a graded UMT-domain.
(1) Counterexample to Proposition 1.7, Theorem 3.5, Corollary 3.6, and

Corollary 3.7: Let R be the field of real numbers, Q̄ be the algebraic closure
of the field Q of rational numbers in R, R[[y]] be the power series ring over
R, and D = Q̄ + yR[[y]]. Then D is an integrally closed one-dimensional local
integral domain that is not a valuation domain [11, Theorem 2.1] (hence D is
not a UMT-domain). Hence, R satisfies property (#) [15, Corollary 9], R is
an integrally closed graded UMT-domain, but R is not a UMT-domain (so not
a PvMD). (i) Thus, the converse of Proposition 1.7 does not hold in general.
(ii) Moreover, this shows that Theorem 3.5 is not true if R =

⊕
α∈ΓRα does

not contain a unit of nonzero degree. (iii) This also shows that Corollary 3.6
is not true in general. (iv) Finally, R = D + XK[X] is an integrally closed
domain but not a graded-Prüfer domain, while R = D +XK[X] has a unique
homogeneous maximal t-ideal (which must be a unique homogeneous maximal
ideal). Thus, Corollary 3.7 does not hold in general.
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(2) Let D be an integral domain with a prime ideal P such that P ( Pt ( D.
(For example, let D = R+ (X,Y, Z)C[[X,Y, Z]], where C is the field of complex
numbers and C[[X,Y, Z]] is the power series ring, and let P = (X,Y )C[[X,Y, Z]].
Then P is a prime ideal of D such that P ( Pt = (X,Y, Z)C[[X,Y, Z]] ( D.)
Then PR = P +XK[X] ( Pt +XK[X] = (P +XK[X])t ( R = D+XK[X],
and hence PR is a prime ideal of R contained in a homogeneous maximal t-ideal
but PR is not a t-ideal. Thus, Corollary 3.9 does not hold if R =

⊕
α∈ΓRα

does not contain a unit of nonzero degree.
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[41] P. Sahandi, On quasi-Prüfer and UMt domains, Comm. Algebra 42 (2014), 299–305.
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