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GRADED INTEGRAL DOMAINS AND
PRUFER-LIKE DOMAINS

GYU WHAN CHANG

ABSTRACT. Let R = @, Ra be an integral domain graded by an ar-
bitrary torsionless grading monoid I", R be the integral closure of R, H
be the set of nonzero homogeneous elements of R, C(f) be the fractional
ideal of R generated by the homogeneous components of f € Ry, and
N(H)={f € R|C(f)v = R}. Let Ry be a UFD. We say that a nonzero
prime ideal @ of R is an upper to zero in R if Q = fRy N R for some
f € R and that R is a graded UM T-domain if each upper to zero in R is a
maximal t-ideal. In this paper, we study several ring-theoretic properties
of graded UMT-domains. Among other things, we prove that if R has
a unit of nonzero degree, then R is a graded UMT-domain if and only
if every prime ideal of Ry () is extended from a homogeneous ideal of
R, if and only if RH\Q is a graded-Priifer domain for all homogeneous

maximal t-ideals @ of R, if and only if RN(H) is a Priifer domain, if and
only if R is a UMT-domain.

0. Introduction

Priifer v-multiplication domains (PvMD) are one of the most important
research topics in “Multiplicative Ideal Theory” because many essential non-
Noetherian integral domains (e.g., Krull domains, Priifer domains, GCD do-
mains) are PoMDs and an integral domain D is a PuMD if and only if D[X],
the polynomial ring over D, is a PuMD. It is known that D is a PoMD if and
only if D is an integrally closed UMT-domain; hence UMT-domains can be
considered as non-integrally closed PuMDs. UMT-domains were introduced by
Houston and Zafrullah [34] and studied in greater detail by Fontana, Gabelli,
and Houston [26] and Chang and Fontana [17]. In this paper, we study UMT-
domain properties of graded integral domains.

This section consists of three subsections. In Section 0.1, we review the
definitions related to the t-operation and in Section 0.2, we review those of
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graded integral domains; so the reader who is familiar with these two notions
can skip to Section 0.3 where we give the motivation and results of this paper.

0.1. The t-operation

Let D be an integral domain with quotient field K. An overring of D means
a subring of K containing D. Let F(D) be the set of nonzero fractional ideals
of D. For I € F(D), let I™' = {x € K | 2I C D}, I, = (I7')7!, and
I, = U{Jv | J € F(D) is finitely generated and J C I'}. An I € F(D) is called
a t-ideal (resp., v-ideal) if I; = I (resp., I, = I). A t-ideal (resp., v-ideal) is a
mazimal t-ideal (resp., mazimal v-ideal) if it is maximal among proper integral
t-ideals (resp., v-ideals). Let t-Max(D) (resp., v-Max(D)) be the set of maximal
t-ideals (resp., v-ideals) of D. It may happen that v-Max(D) = @ even though
D is not a field as in the case of a rank-one nondiscrete valuation domain D.
However, it is well known that ¢-Max(D) # 0 if D is not a field; each maximal
t-ideal is a prime ideal; each proper t-ideal is contained in a maximal ¢-ideal;
each prime ideal minimal over a t-ideal is a t-ideal; and D = ﬂpet_Max(D) Dp.
We mean by t-dim(D) = 1 that D is not a field and each prime ¢-ideal of D
is a maximal t-ideal of D. Clearly, if dim(D) =1 (i.e., D is one-dimensional),
then t-dim(D) = 1.

An I € F(D) is said to be t-invertible if (II71); = D, and D is a Priifer
v-multiplication domain (PvMD) if each nonzero finitely generated ideal of D is
t-invertible. Let T'(D) (resp., Prin(D)) be the group of t-invertible fractional ¢-
ideals (resp., nonzero principal fractional ideals) of D under the t-multiplication
IxJ = (IJ):. It is obvious that Prin(D) C T(D). The t-class group of D is the
abelian group CI(D) = T(D)/Prin(D). Tt is clear that if D is a Krull domain
(resp., Priifer domain), then CI(D) is the divisor class (resp., ideal class) group
of D. Let {D,} be a set of integral domains such that D = (), D,. We say
that the intersection D = ("), Dy is locally finite if each nonzero nonunit of D
is a unit of D, for all but a finite number of D,,.

Let {X,} be a nonempty set of indeterminates over D, D[{X,}] be the
polynomial ring over D, and ¢p(f) (simply ¢(f)) be the fractional ideal of D
generated by the coefficients of a polynomial f € K[{X,}]. It is known that
if I is a nonzero fractional ideal of D, then (ID[{X,}])™! = I"'D[{X,}],
(ID[{Xa})v = I,D[{Xa}], and (ID[{Xs}])t = L:D[{Xa}] [32, Lemma 4.1
and Proposition 4.3]; so I is a (prime) t-ideal of D if and only if ID[{X,}] is
a (prime) t-ideal of D[{X,}].

0.2. Graded integral domains

Let T be a (nonzero) torsionless grading monoid, that is, I' is a torsionless
commutative cancellative monoid (written additively), and (I') = {a—b | a,b €
T'} be the quotient group of T'; so (I') is a torsionfree abelian group. It is well
known that a cancellative monoid I' is torsionless if and only if I can be given
a total order compatible with the monoid operation [39, page 123]. By a (I'-)
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graded integral domain R = @, Ra, we mean an integral domain graded by
I'. That is, each nonzero x € R,, has degree a, i.e., deg(x) = o, and deg(0) = 0.
Thus, each nonzero f € R can be written uniquely as f = x4, + -+ 24, With
deg(zq,) = a; and ag < -+ < . Since R is an integral domain, we may
assume that R, # {0} for all « € T".

A nonzero x € R, for every a € I is said to be homogeneous. Let H be
the saturated multiplicative set of nonzero homogeneous elements of R, i.e.,
H = Uaer(Ra \ {0}). Then Ry, called the homogeneous quotient field of R,
is a graded integral domain whose nonzero homogeneous elements are units.
Hence, Ry is a completely integrally closed GCD-domain [1, Proposition 2.1]
and Ry is a (I')-graded integral domain. We say that an overring T of R is a
homogeneous overring of R if T' = @, ¢y (T N (Ru)a); so T is a (I')-graded
integral domain such that R C T C Ry. Clearly, if A = {a € (T') | TN(Ru)a #
{0}}, then A is a torsionless grading monoid such that ' € A C (I') and
T =@,ca(TN(Ru)a). The integral closure of R is a homogeneous overring of
R by Lemma 1.6. Also, Rg is a homogeneous overring of R for a multiplicative
set S of nonzero homogeneous elements of R (with deg(y) = deg(a)— deg(b)
fora € H and b € 5).

For a fractional ideal A of R with A C Ry, let A* be the fractional ideal
of R generated by homogeneous elements in A. It is easy to see that A* C A;
and if A is a prime ideal, then A* is a prime ideal. The A is said to be
homogeneous if A* = A. A homogeneous ideal (resp., homogeneous t-ideal)
of R is called a homogeneous mazimal ideal (resp., homogeneous mazimal t-
ideal) if it is maximal among proper homogeneous ideals (resp., homogeneous
t-ideals) of R. It is known that a homogeneous maximal ideal need not be
a maximal ideal, while a homogeneous maximal ¢-ideal is a maximal t-ideal
[8, Lemma 2.1]. Also, it is easy to see that each proper homogeneous ideal
(resp., homogeneous t-ideal) of R is contained in a homogeneous maximal ideal
(resp., homogeneous maximal t-ideal) of R.

For f € Ry, let Cr(f) denote the fractional ideal of R generated by the
homogeneous components of f. For a fractional ideal I of R with I C Ry, let
Cr(I) = >_¢cr Cr(f). It is clear that both Cr(f) and Cr(I) are homogeneous
fractional ideals of R. If there is no confusion, we write C'(f) and C(I) instead
of Cr(f) and Cr(I). Let N(H) = {f € R| C(f), = R} and S(H) = {f €
R | C(f) = R}. Tt is well known that if f,g € Ry, then C(f)""1C(g) =
C(f)"C(fg) for some integer n > 1 [39]; so N(H) and S(H) are saturated
multiplicative subsets of R and S(H) C N(H). Let Q be the set of maximal
t-ideals Q of R with QN H # 0, i.e., Q = {Q € t-Max(R) | Q is homogeneous}
[8, Lemma 2.1]. As in [9], we say that R satisfies property (#) if C(I); = R
implies INN (H) # () for all nonzero ideals I of R; equivalently, Max(Ryz)) =
{@nm) | Q € 2} [9, Proposition 1.4]. It is known that R satisfies property (#)
if R is one of the following integral domains: (i) R contains a unit of nonzero
degree, (ii) R = DII'] is the monoid domain of I" over an integral domain D, (iii)
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R contains a homogeneous prime element of nonzero degree, (iv) R = D[{X,}]
is the polynomial ring over D, or (v) the intersection (. Rq is locally finite
[9, Example 1.6 and Lemma 2.2].

We say that R is a graded-Prifer domain if each nonzero finitely generated
homogeneous ideal of R is invertible. Clearly, invertible ideals are ¢t-invertible,
and hence a graded-Priifer domain is a PvMD [1, Theorem 6.4] but need not
be a Priifer domain [9, Example 3.6]. The reader can refer to [10] or [42] for
more on graded-Priifer domains.

0.3. Motivation and results

Let X be an indeterminate over D and D[X] be the polynomial ring over
D. A nonzero prime ideal @ of D[X] is called an upper to zero in D[X] if
QN D = (0). We say that D is a UMT-domain if each upper to zero in D[X]
is a maximal t-ideal of D[X]. (UMT stands for Upper to zero is a Maximal T-
ideal.) A quasi-Prifer domain is a UMT-domain in which every maximal ideal
is a t-ideal; equivalently, its integral closure is a Priifer domain [25, Chapter
VI]. The most important properties of UMT-domains are that (i) D is a UMT-
domain if and only if every prime ideal of D[X]y,, where N, = {f € D[X] |
¢(f)y = D}, is extended from D and (ii) D is an integrally closed UMT-domain
if and only if D is a PoMD [34, Theorem 3.1 and Proposition 3.2]. A subring
D[X?, X3 = D+X?2D|X] of D[X] over a PuMD D is an easy example of a non-
integrally closed UMT-domain. In many cases, UMT-domains are used like:
D[X] (or D[X]n,) has a ring-theoretic property (P) if and only if D is a UMT-
domain with property (P). For example, t-dim(D[X]) = 1 if and only if D is a
UMT-domain with ¢-dim(D) = 1; and D[X]y, is a pseudo-valuation domain if
and only if D is a pseudo-valuation UMT-domain [13, Lemma 3.7]. (A quasi-
local domain D with maximal ideal M is a pseudo-valuation domain if and only
if D has a unique valuation overring with maximal ideal M [31, Theorem 2.7].)
For more results on UMT-domains, see, for example, [22,23,41,44] including a
survey article [33].

Clearly, @ is an upper to zero in D[X] if and only if @ = fK[X] N D[X] for
some prime element 0 # f € K[X], if and only if either Q = XD[X] or Q =
FK[X, X 1N D[X] for some prime element 0 # f € K[X]. Note that D[X] =
P,,~o DX" is an Ny-graded integral domain, where Ny is the additive monoid
of nonnegative integers, and if H is the set of nonzero homogeneous elements
of D[X], then D[X]y = K[X,X '] and K[X,X '] is a unique factorization
domain (UFD). In [19, Section 2], the notion of “upper to zero” was generalized
to graded integral domains as follows: Let R = @ cp Ra be a (nontrivial)
graded integral domain graded by an arbitrary torsionless grading monoid T’
and H be the set of nonzero homogeneous elements of R. Assume that Ry is
a UFD. Then a nonzero prime ideal Q of R is called an upper to zero in R if
Q = fRy N R for some f € Ry. Thus, @ is an upper to zero in D[X] as the
original definition if and only if either @ = X D[X] or @ is an upper to zero in
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D[X] as a prime ideal of the Ny-graded integral domain D[X] =, -, DX".
As a graded integral domain analog, in [19, Theorem 2.5], it was shown that if
R =@, cr Ra is a graded integral domain with a unit of nonzero degree such
that Ry is a UFD, then R is a PoMD if and only if R is integrally closed and
each upper to zero in R is a maximal ¢t-ideal. In this paper, we further study
some ring-theoretic properties of graded integral domains R such that Ry is a
UFD and each upper to zero in R is a maximal t-ideal.

Let R = @aGF R, be aT'-graded integral domain. In Section 1, we introduce
the notion of graded UMT-domains, and we then study general properties of
both UMT-domains and graded UMT-domains. For example, we prove that
UMT-domains are graded UMT-domains, and R is a graded UMT-domain
if and only if @ is homogeneous for all nonzero prime ideals @) of R with
C(Q): € R, if and only if C(Q); = R for every upper to zero @ in R. In Section
2, we show that if R satisfies property (#), then R is a graded UMT-domain if
and only if every prime ideal of Ry (p) is extended from a homogeneous ideal
of R, and R is a weakly Krull domain if and only if Ry () is a weakly Krull
domain. We study in Section 3 graded UMT-domains with a unit of nonzero
degree. Among other things, we prove that if R has a unit of nonzero degree,
then R is a graded UMT-domain if and only if R is a UMT-domain, if and only
if the integral closure of Ry is a graded-Priifer domain for all homogeneous
maximal t-ideals @ of R, if and only if the integral closure of Ry(y) is a
Priifer domain. Finally, in Section 4, we use the D + X K[X] construction to
give several counterexamples of the results in Sections 2 and 3. Assume that
D C K,andlet R=D+ XK[X](:={f € K[X] | f(0) € D}). Then R is
an Ny-graded integral domain such that Ry = K[X, X 1] is a UFD. We show
that R is a graded UMT-domain, and R is a UMT-domain if and only if D is
a UMT-domain. Thus, if D is not a UMT-domain, then R = D + X K[X] is
a graded UMT-domain but not a UMT-domain. We also give examples which
show that the results of Section 3 do not hold without assuming that R has a
unit of nonzero degree.

1. UMT-domains and graded UMT-domains

Let T' be a nonzero torsionless grading monoid, (I'Y = {a — b | a,b € T}
be the quotient group of I', R = @, Ra be a nontrivial I'-graded integral
domain, and H be the set of nonzero homogeneous elements of R. Throughout
this paper, Ry is always assumed to be a UFD.

We begin this section with examples of graded integral domains R such that
Ry is a UFD.

Example 1.1. Let R = @, Ra be a graded integral domain. Then Ry is
a UFD if one of the following conditions is satisfied.
(1) [7, Proposition 3.5] (I') satisfies the ascending chain condition on its
cyclic subgroups.
(2) R = D[{X,}] is the polynomial ring over an integral domain D.
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(3) [38, Section A.I.4.] (T') = Z is the additive group of integers.
(4) R = DII'] is the monoid domain of I" over D such that (I') satisfies the
ascending chain condition on its cyclic subgroups.

Let D be the integral closure of an integral domain D. For easy reference,
we recall from [37, Theorem 44] that (i) (Lying Over) if P is a prime ideal of
D, then there is a prime ideal Q of D with Q N D = P; (ii) (Going Up) if
P C P, are prime ideals of D and Q; is a prime ideal of D with Q; N D = P,
then there exists a prime ideal Qs of D such that @ € Q2 and QN D = Py;
and (iii) (Incomparable) if P C @ are prime ideals of D with PN D = QN D,
then P = Q.

The next result appears in [26, Theorem 1.5], but we include it because our
proof is easy and direct without using other results.

Theorem 1.2. An integral domain D is a UMT-domain if and only if the
integral closure of Dp is a Prifer domain for all P € t-Max(D).

Proof. Let D be the integral closure of D. Hence, Dp is the integral closure of
Dp for a prime ideal P of D.

(=) Assume that Dp is not a Priifer domain for some P € t-Max(D), and
let T = Dp. Then there are some 0 # a,b € T such that (a,b)T is not
invertible, and so if we let f = a + bX, then fK[X]|NT[X] = fer(f)~'[X] C
(er(fer(f)~H[X] € M[X] for some maximal ideal M of T (the first equality
follows from [28, Corollary 34.9] because T is integrally closed). Thus, fK[X]N
DX] = (fKIX|NT[X])NnD[X] C (M[X]NDp[X])ND[X] = P[X]. Clearly,
FfK[X]ND[X] is an upper to zero in D[X], but fK[X]ND[X] is not a maximal
t-ideal, a contradiction.

(<) Assume that D is not a UMT-domain. Then there are a maximal ¢-ideal
P of D and an upper to zero @ in D[X] such that Q C P[X] (cf. [34, Proposition
1.1]). Since @ is an upper to zero in D[X], there is an f € D[X] such that
Q = fK[X] N D[X]. Note that Q; := fK[X]N Dp is an upper to zero in
Dp[X], Qs N Dp[X] = Qp\p, and Dp[X] is integral over Dp[X]. Thus, there
is a prime ideal M of Dp[X] such that Q; C M and M N Dp[X]| = PDp[X].
Clearly, M = (M N Dp)[X] because (M N Dp)[X] N Dp[X] = PDp[X] and
(M N Dp)[X] € M. However, since Dp is a Priifer domain, there is a g € Qy
such that Dp = c(g)Dp C M N Dp, a contradiction. O

Bezout domains are Priifer domains. Hence, if Dp is a Bezout domain for
all P € t-Max(D), then D is a UMT-domain by Theorem 1.2. In [13, Lemma
2.2], it was shown that D is a UMT-domain if and only if the integral closure
of Dp is a Bezout domain for all P € t-Max(D). Theorem 1.2 also shows that
Dg is a UMT-domain for every multiplicative set S of a UMT-domain D.

Corollary 1.3 ([34, Proposition 3.2]). D is a PvMD if and only if D is an
integrally closed UMT-domain.
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Proof. 1t is well known that D is a PuMD if and only if Dp is a valuation
domain for all P € ¢-Max(D) [30, Theorem 5] and D = (\pg; nax(p) DP-
Hence, the result follows directly from Theorem 1.2. O

Recall that D is an S-domain if ht(PD[X]) = 1 for every prime ideal P of D
with htP = 1 [37, p. 26]. It is easy to see that a UMT-domain is an S-domain;
and if t-dim(D) = 1 (e.g., dim(D) = 1), then D is an S-domain if and only
if D is a UMT-domain (cf. [43, Theorem 8]). However, S-domains need not
be UMT-domains. For example, if D =R + (X,Y)C[X, Y], where C[X,Y] is
the power series ring over the field C of complex numbers and R is the field
of real numbers, then D is a 2-dimensional Noetherian domain [12, Theorem
4 and Corollary 9] whose maximal ideal is a t-ideal. Hence, D is an S-domain
[37, Theorem 148] but not a UMT-domain [34, Theorem 3.7].

We next introduce the notion of graded UMT-domains.

Definition 1.4. Let R = @aer R, and assume that Ry is a UFD.

(1) A nonzero prime ideal @ of R is an upper to zero in Rif @ = fRy N R
for some f € Ry. (In this case, f is a nonzero prime element of Ry
and @ is a height-one prime ¢-ideal of R.)

(2) R is a graded UMT-domain if every upper to zero in R is a maximal
t-ideal of R.

Recall that if @ is a maximal t-ideal of R = @ o Ra with QN H # (), then
Q is homogeneous [8, Lemma 2.1]. We use this result without further citation.

Lemma 1.5. Let R = @, . Ra be a graded UMT-domain and Q be a nonzero
prime ideal of R. Then Q is a mazimal t-ideal of R if and only if either Q is
an upper to zero in R or Q is a homogeneous mazximal t-ideal.

Proof. Let @Q be a maximal t-ideal of R. If QN H # (), then @ is homogeneous.
Next, assume that Q N H = (0. Then Q = Qy N R, and hence @ contains an
upper to zero in R. Thus, @) must be an upper to zero in R because R is a
graded UMT-domain. The converse is clear. O

We say that R = @, Ra is a gr-valuation ring if x € R or % € R for
all nonzero homogeneous elements © € Ry. It is known that if R is a gr-
valuation ring, then there is a valuation overring V' of R such that VN Ry = R
[35, Theorem 2.3]. Hence, a gr-valuation ring is integrally closed.

Lemma 1.6. Let R be the integral closure of R = Dacr Ba- Then R is a
homogeneous overring of R.

Proof. Let {ViA} be the set of all homogeneous gr-valuation overrings of R.

Then R = (), V) [35, Theorem 2.10], and since each V) is a homogeneous
overring of R, R is also a homogeneous overring of R. (I

We next show that a UMT-domain is a graded UMT-domain, while a graded
UMT-domain need not be a UMT-domain (see Example 4.3).
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Proposition 1.7. Let R =
UMT-domain.

Proof. Let Q" be a prime t-ideal of R such that Q@' N H = (). Then Q; is a
t-ideal of Ry [26, Proposition 1.4], and hence ht@Q)’ = ht(Q%;) = 1 because Ry
is a UFD.

Let Uf = fRg N R be an upper to zero in R. If Uy is not a maximal
t-ideal of R, there is a maximal t-ideal @ of R such that Uy C @, By the
above paragraph, Q N H # (), and thus @ is homogeneous. Note that U =
fRg N R is a prime ideal of R and U N R = Uy; so there is a prime ideal
M of R such that U € M and M N R = (. However, note that R is a
graded integral domain by Lemma 1.6; so M* is a prime ideal of R and M* N
R = Q. Hence, M* = M, and since U = fCg(f)™* [9, Lemma 1.2(4)],
Cr(f)Cg(f)~* € M. By Theorem 1.2, Rys = (Rq)m,, is a valuation domain,
and hence Ry = (Cr(f)m)(Cr(f)a) ™" = (Ca(f)a)((Cr(f) " )m) € Mar, a
contradiction. Thus, Uy is a maximal ¢-ideal of R. (I

aer Ba be a UMT-domain. Then R is a graded

Let D[X] be the polynomial ring over an integral domain D, and let Q be
an upper to zero in D[X]. It is known that @ is a maximal ¢-ideal if and only if
c(@)r = D, if and only if @ is t-invertible [34, Theorem 1.4] (see [27, Theorem
3.3] for the case of arbitrary sets of indeterminates). This was extended to
graded integral domains R = @, Ra in [8, Corollary 2.2(2)] as follows: If
@ is an upper to zero in R, then C(Q); = R if and only if @Q is t-invertible, if
and only if @ is a maximal ¢-ideal. We next generalize [8, Corollary 2.2(2)] to
prime t-ideals Q of R with Q N H = (.

Proposition 1.8. Let Q be a prime t-ideal of R = @
(). Then the following statements are equivalent.

(1) C(Q) = R.

(2) Q is t-invertible.

(3) @ is a mazimal t-ideal.

aer Ba such that QNH =

In this case, ht@QQ = 1, and hence QQ is an upper to zero in R.

Proof. (1) = (2) Since C(Q); = R, there are some fi,..., fi € Q such that
(C(f1) + -+ C(fx))» = R. Assume that htQ) > 2. Since Ry is a UFD,
there is a ¢ € @ such that gRy is a prime ideal and f; ¢ gRpy. Clearly,
((fi,--+, fes9)Ru)y = Ry, and hence if u € (f1,..., fr,9)" !, then u € Ry.
Also, since (C(f1)+ -+ +C(fr))o = R, u € R. Thus, R= (f1,..., fr,g9) ' =
(fi, -, fr:9)o € Qr = Q € R, a contradiction. Hence, ht@Q) = 1, and so @ is
an upper to zero in R. Thus, @ is t-invertible [8, Corollary 2.2(2)].

(2) = (3) [34, Theorem 1.4].

(3) = (1) Note that Q@ € C(Q): C R and C(Q); is a t-ideal. Hence, if @ is
a maximal t-ideal, then C'(Q); = R. O

Corollary 1.9. Each homogeneous prime t-ideal of R = @, Ra has height-
one if and only if t-dim(R) = 1. In this case, R is a graded UMT-domain.
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Proof. Assume that each homogeneous prime ¢-ideal of R has height-one, and
let Q be a maximal t-ideal of R. If Q N H # (), then Q is homogeneous, and
thus ht@Q = 1. Next, if QN H = (), then C(Q); = R because each homogeneous
maximal t-ideal has height-one. Thus, htQ) = 1 by Proposition 1.8. The
converse is clear.

The “In this case” part follows because t-dim(R) = 1 implies that each prime
t-ideal of R is a maximal t-ideal. O

Let A C B be an extension of integral domains. As in [23], we say that
B is t-linked over A if I~' = A for a nonzero finitely generated ideal I of A
implies (IB)~! = B. It is easy to see that B is t-linked over A if and only
if B= nPGt—Max(A) Bp [14, Lemma 3.2], if and only if either @ N A = (0) or
QNA=#(0)and (QNA); C A for all Q € t-Max(B) [4, Propositions 2.1].

Corollary 1.10. Let T' be a homogeneous overing of R = @, cp Ra, and
assume that T is t-linked over R (e.g., T = Rg for some multiplicative set

S CH). If Ris a graded UMT-domain, then T is a graded UMT-domain.

Proof. Let U be an upper to zero in T. If U is not a maximal t-ideal, then
Cr(U); € T by Proposition 1.8. Hence, there is a homogeneous maximal ¢-
ideal @ of T" such that U C @. Note that U N R is an upper to zero in R, QN R
is homogeneous, (QNR); C R because T is t-linked over R, and UNR C QNR.
Thus, U N R € (Q N R)¢, a contradiction because U N R is a maximal ¢-ideal
by assumption. Hence, U is a maximal ¢t-ideal of T. [l

Following [3], we say that a multiplicative subset S of D is a t-splitting set
if for each 0 # d € D, dD = (AB); for some integral ideals A and B of D,
where A; N sD = sA; (equivalently, (4,s); = D) for all s € S and B, NS # ().
It is known that S is a t-splitting set of D if and only if dDg N D is t-invertible
for all 0 # d € D [3, Corollary 2.3]. Also, D is a UMT-domain if and only if
D — {0} is a t-splitting set in D[X] [16, Corollary 2.9].

Theorem 1.11. The following statements are equivalent for R = @, Ra-

(1) R is a graded UMT-domain.
(2) Let Q be a nonzero prime ideal of R such that C(Q)s € R. Then Q is
homogeneous.

(3) Let Q be a nonzero prime ideal of R such that @ C M for some homo-
geneous mazimal t-ideal M of R. Then @ is homogeneous.

) C(Q): = R for every upper to zero Q in R.

) IfT=fRyNR for0# f €R, then C(I); = R.

) H is a t-splitting set of R.

) Every prime t-ideal of R disjoint from H is t-invertible.

) Every prime t-ideal of R disjoint from H is a mazimal t-ideal.

Proof. (1) = (2) Suppose that @ is not homogeneous. Clearly, there is an f €
Q\ H such that C(f) € Q. Let P be a prime ideal of R such that P is minimal
over fRand P C Q. If PN H # (), then PR\ p must be a homogeneous
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maximal ¢-ideal of R\ p (cf. [8, Lemma 2.1]); so P is homogeneous. Hence,
C(f) € P C Q, a contradiction. Thus, PN H = () and PRy is a prime t-ideal
because PRy is minimal over f Ry, whence P is an upper to zero in R. Thus,
P =@ by (1), and so C(Q); = R by Proposition 1.8, a contradiction. Thus, @
is homogeneous.

(2) & (3) Clear.

(2) = (4) Let Q be an upper to zero in R. Then @ is not homogeneous
and Q C C(Q). However, if C(Q): € R, then @ is homogeneous by (2), a
contradiction. Thus, C(Q): = R.

(4) = (1) Proposition 1.8.

(1) = (5) Let f = f{*--- fc» be the prime factorization of f in Ry, where
fi € Ry is a prime element. Then

I=(fi"fi)RuNR
=(ff*Run---Nf"Ry)NR
=(M'RunR)N---N(fr"RuNR)
=((iRuNR) )¢ N---N((fuRu NR)™)s.
(For the last equality, note that each f; Ry N R is a maximal t-ideal by (1) and

VIFRENR = fiRuNR=/((fiRa NR)%):; so ((fiRa N R)*"); is primary.
Clearly, ((fiRu N R)*)¢Ry = f{' Ry, and thus ((f;Ruw NR)*): = f{*Ru N R.)
If C(I)+ € R, then I C C(I); € M for some homogeneous maximal ¢-ideal
M of R. Since M is a prime ideal, f;Ry N R C M for some ¢, and hence
R =C(fiRu N R); C C(M); = M by the equivalence of (1) and (4) above, a
contradiction. Thus, C(I); = R.

(5) = (1) Let Q be an upper to zero in R. Then Q = fRyNR for some f € R,
and hence C(Q): = R by (5). Thus, @ is a maximal ¢t-ideal by Proposition 1.8.

(1) = (6) Let Q be a prime t-ideal of R such that @ N H = (). Then Qg is
a prime ideal of Ry, and hence fRy C Qg for some nonzero prime element f
of Ry. Hence, fRy N R C @, and since fRy N R is a maximal ¢-ideal of R by
(1), @ = fRy N R and C(Q); = R. Thus, H is a t-splitting set [8, Theorem
2.1].

(6) = (4) Let @ be an upper to zero in R. Then @ is a prime t-ideal of R
with @ N H = (), and thus C(Q): = R [8, Theorem 2.1].

(6) < (7) [8, Corollary 2.2].

(7) & (8) Proposition 1.8. O

Let D[X] be the polynomial ring over an integral domain D and f € D[X]
be such that ¢(f), = D. If A is an ideal of D[X] with f € A, then A is
t-invertible [34, Proposition 4.1] and fD[X] = (Qf* --- Q%) for some uppers
to zero @; in D[X] and integers e; > 1 [29, p. 144]. We end this section with
an extension of these results to graded integral domains.

Proposition 1.12. Let A be a nonzero ideal of R = @ cp Ra such that
C(A); = R. If A contains a nonzero f € R with C(f), = R (e.g., R satisfies
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property (#)), then Ay = (Q5' --- Q%) for some t-invertible uppers to zero Q;
in R and integers e; > 1. In particular, A is t-invertible.

Proof. If A; = R, then A is t-invertible; so assume that A; C R. Let Q be
a maximal t-ideal of R with A C Q; then f € Q. If QN H # (), then Q
is homogeneous, and hence R = C(A); C Q¢ = Q, a contradiction. Hence,
QN H =0, and so () contains an upper to zero U in R containing f. Clearly,
C(U): = R; so by Proposition 1.8, U is a maximal ¢-ideal, and thus Q = U,
i.e., () is an upper to zero in R that is t-invertible. Hence, each prime t-ideal
of R containing A is an upper to zero in R that is also t¢-invertible. Thus,
Ay = (QF' - Q%) for some uppers to zero @; in R and integers e; > 1 (cf.
the proof of [29, Theorem 1.3]) and A is t-invertible. O

Corollary 1.13. Let f € R = @, Ra be nonzero. If C(f), = R, then
fR=(Q7 ---Q); for some uppers to zero Q; in R and integers e; > 1.

Proof. Clearly, C(fR); = R and f € fR. Thus, the result is an immediate
consequence of Proposition 1.12. O

A careful reading of the proof of Proposition 1.12 also shows:

Corollary 1.14. Let A be a nonzero ideal of a graded UMT-domain R =
P.cr Ra such that C(A); = R. Then Ay = (Q7" --- Q5): for some uppers to
zero Q; in R and integers e; > 1, and A is t-invertible.

Let D be an integral domain, S be a t-splitting set of D, & = {4y -+ 4,, |
A; = d;Dg N D for some 0 # d; € D}, and Dg = {x € K | xA C D for some
A € 6}. Then Dg = ({Dp | P € t-Max(D) and PN S # 0} [3, Lemma
4.2 and Theorem 4.3]. The S is said to be t-lem if sD N dD is t-invertible for
all s € Sand 0 # d € D; and S is called a t-complemented t-splitting set if
Dg = D for some multiplicative set T" of D and the saturation of T is the
t-complement of S.

Corollary 1.15 (cf. [16, Proposition 3.7]). Let R = @, Ra and N(H) =
{feR|C(f)y =R}. Then N(H) is a t-lem t-complemented t-splitting set of
R.

Proof. Let 0 # f € Rand A = fRy) N R. For the t-splitting set property of
N(H), it suffices to show that A is t-invertible [3, Corollary 2.3]. Let @ be a
maximal t-ideal of R. If Q " N(H) = (), then Ag = fRq. Next, assume that
QN N(H) # 0. Then C(Q): = R, and hence @ is an upper to zero in R and
Rg is a rank-one DVR by Proposition 1.8. Now, note that if @’ is an upper
to zero in R containing A, then f € Q% and Q' is a height-one prime ideal
of Rp; so there are only finitely many uppers to zero in R containing A, say
Q1,...,Qy. Hence, if S = R\ |J;_, Q;, then Rg is a principal ideal domain,
and thus ARs = gRg for some g € A. Let I = (f,g),. Then IRy = fRg
when Q N N(H) = 0, and IRy = gRg when QN N(H) # (. Thus, I = A
[36, Proposition 2.8(3)]; so A is t-invertible [36, Corollary 2.7].
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Next, note that every t-ideal of R intersecting N (H) is t-invertible by Propo-
sition 1.12. Thus, N(H) is a t-lem t-splitting set [16, Theorem 3.4]. Also, if
6 ={A1---An | A; = diRn() N R for some 0 # d; € R}, then Ry C Re
because aRyny N R = aR for all a € H. Hence, Rg is t-linked over Ry
[4, Proposition 2.3], and since Ry is a UFD, Rg = (Rpg)r for some satu-
rated multiplicative set T of Ry [24, Theorem 1.3]. Thus, if N =T N R, then
Rs = Ry. O

An integral domain is called a Mori domain if it satisfies the ascending chain
condition on its (integral) v-ideals. Clearly, Krull domains are Mori domains.

Corollary 1.16. Let R = @, Ro and N(H) = {f € R | C(f), = R}.
Then R is a Mori domain (resp., UMT-domain) if and only if Ry sy is a Mori
domain (resp., UMT-domain).

Proof. By Corollary 1.15, N(H) is a t-lcm t-complemented ¢-splitting set of
R. Let N be the t-complement of N(H); then Ry C Ry, and hence Ry is a
UFD and R = Ry(g) N Ry. Thus, Ry is a Mori domain if and only if R
is a Mori domain [40, Theorem 1]. The UMT-domain property follows directly
from [16, Corollary 3.6] and Corollary 1.15. O

2. Graded integral domains with property (#)

Let I' be a nonzero torsionless grading monoid, R = @, . Ra be a nontrivial
I'-graded integral domain, H be the set of nonzero homogeneous elements of
R, and N(H) = {f € R| C(f), = R}. Let Q be the set of all homogeneous
maximal ¢-ideals of R, i.e.,, Q = {Q € t-Max(R) | Q N H # 0}, and recall
that R satisfies property (#) if and only if Max(Ry ) = {Qnm) | @ € Q}
[9, Proposition 1.4].

Lemma 2.1. Let R = @ Ra be a graded integral domain with property
(#), and let Q be an upper to zero in R.

(1) @ is a mazimal t-ideal if and only if C(g), = R for some g € Q.

(2) If Q is a maximal t-ideal of R, then Q = (f, g), for some f,g € R.

Proof. (1) @ is a maximal t-ideal if and only if C(Q); = R by Proposition 1.8,
if and only if Q N N(H) # () by property (#).

(2) Since @ is an upper to zero in R, there is an f € R such that Q =
fRmr N R. Also, there is a g € Q with C(g), = R by (1). Clearly, (f,9)» C Q.
For the reverse containment, let h € Q). Then ah € fR for some o € H, and
thus h(a,g) C (f,g). Hence, h(a,g9)y C (f,9)0 € Q. If € € (a,g)7%, then
« € H implies { € Ry, and since C(g), = R, {g € R implies £ € R. Hence,
(a,g)~t = R, and thus h € hR = h(, 9)y C (f,9)v. Thus, Q@ C (f,9)s- O

We next give a characterization of graded UMT-domains R =
with property (#).

Rq

ael



PRUFER-LIKE DOMAINS 1745

Theorem 2.2. Let R = @, Ra be a graded integral domain with property
(#). Then the following statements are equivalent.
(1) R is a graded UMT-domain.
(2) If Q is an upper to zero in R, then there is an f € Q such that C(f), =
R.
(3) Ewery prime ideal of Ry gy is extended from a homogeneous ideal of
R.
(4) N(H) is a t-lem t-complemented t-splitting set of R with t-complement
H.

Proof. (1) < (2) This follows directly from Lemma 2.1.

(1) = (3) Let Q" be a nonzero prime ideal of Ry (gy. Then Q' = Qg for
some prime ideal @ of R. Note that @ C M for some homogeneous maximal
t-ideal M of R because R satisfies property (#). Thus, @ is homogeneous by
Theorem 1.11.

(3) = (1) Let @ be an upper to zero in R, and assume that @ is not a
maximal t-ideal of R. Then @ N N(H) = () by Lemma 2.1(1), and so Qs is
a proper ideal of Ry g). Hence, by (3), there is a homogeneous ideal P of R
such that QN(H) = PRN(H) Thus, P - PRN(H) NR= QN(H) NR= Q, and
so Qg = Ry, a contradiction. Thus, @) is a maximal t-ideal of R.

(1) = (4) By Corollary 1.15, N(H) is a t-lem ¢t-complemented t-splitting
set of R. Also, note that {Q € +Max(R) | @ N N(H) # 0} is the set of
uppers to zero in R by property (#) and assumption; so Ry = Reg, where
6 ={A1---An | Ai = diRy() N R for some 0 # d; € R}. Thus, H is the
t-complement of N(H).

(4) = (1) Let @ be an upper to zero in R. Then Q@ N H = {), and hence
QNN(H) # 0 [3, Theorem 4.3] because H is the t-complement of N(H). Thus,
@ is a maximal t-ideal of R by Proposition 1.8. O

The next result is an immediate consequence of Corollary 1.9, but we use
Theorem 2.2 to give another proof.

Corollary 2.3. Let R = @, Ra be a graded integral domain with property
(#). Then t-dim(R) = 1 if and only if dim(Ry)) = 1. In this case, R is a
graded UMT-domain.

Proof. Assume t-dim(R) = 1, and note that Max(Ry ) = {Qnm) | Q € 2}
Thus, dim(Ryz)) = 1. Conversely, suppose dim(Ryzy) = 1, and let Q be a
maximal t-ideal of R. If Q N H # (), then @ is homogeneous, and thus htQ =
ht(Qn(my) = 1. Next, if QN H = (), then Qg C Ry, and hence Q contains
an upper to zero (g in R. However, note that since R satisfies property (#),
dim(Ryg)) = 1 implies (Qo) n(my = Rn(m)- Thus, Qo N (H) # 0, and so Qo
is a maximal t-ideal by Lemma 2.1. Hence, Q = Qg and ht@Q = 1.

For “In this case”, note that dim(Ryz)) = 1 implies that every prime ideal
of Ry(m) is extended from a homogeneous ideal of R. Thus, R is a graded
UMT-domain by Theorem 2.2. (I
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An integral domain D is called an almost Dedekind domain (resp., t-almost
Dedekind domain) if Dp is a rank-one DVR for all maximal ideals (resp.,
maximal ¢-ideals) P of D. Clearly, Dedekind domains are almost Dedekind
domains; Krull domains are t-almost Dedekind domains; and if D is an almost
(resp., a t-almost) Dedekind domain, then dim(D) = 1 (resp., t-dim(D) = 1).

Corollary 2.4 (cf. [20, Corollary 9]). Let R = @, Ra be a graded integral
domain with property (#). Then R is a t-almost Dedekind domain if and only
if Ry(my is an almost Dedekind domain.

Proof. (=) By Corollary 2.3, dim(Rym)) = 1. Note that Max(Rym)) =
{Q@n) | Q € Q) and Rq is a rank-one DVR for all @ € 2. Thus, Ry is an
almost Dedekind domain.

(<) If Ry(m) is an almost Dedekind domain, then dim(Ryq)) = 1, and
thus t-dim(R) = 1 by Corollary 2.3. Let @ be a maximal ¢-ideal of R. If
QNH =0, then ht(Qp) = htQ = 1, and since Ry is a UFD, Rg is a rank-one
DVR. Next, if QN H # (), then Q is homogeneous, and hence QN G Byy-
Thus, Rg is a rank-one DVR by assumption. O

An integral domain D is called a weakly Krull domain if (i) D = (\pex1(p) Dp,
where X1(D) is the set of height-one prime ideals of D, and (ii) the intersection
D= mPeXl(D) Dp is locally finite. It is easy to see that if D is a weakly Krull
domain, then t-dim(D) = 1, i.e., X! (D) = t-Max(D), and Dy is a weakly Krull
domain for a multiplicative set S of D. Also, D is a Krull domain if and only
if D is a weakly Krull domain and Dp is a rank-one DVR for all P € X1(D).

Corollary 2.5. The following statements are equivalent for R = @ cp Ra-
(1) R is a weakly Krull domain.

(2) R is a graded UMT-domain and Ry gy is a weakly Krull domain.
(3) Ry(m) is a weakly Krull domain.
(4) Ry(m) is an one-dimensional weakly Krull domain.

Proof. Note that Ry gy is a weakly Krull domain in this corollary. Also,
QnN(my is a prime t-ideal of Ry gy for all Q € Q [9, Proposition 1.3]. Hence,
the intersection erQ Rg is locally finite, and thus R satisfies property (#)
[9, Lemma 2.2].

(1) = (2) I R is a weakly Krull domain, then ¢-dim(R) = 1, and hence R is
a graded UMT-domain by Corollary 2.3. Also, since N(H) is a multiplicative
subset of R, Ry (g is a weakly Krull domain.

(2) = (3) Clear.

(3) = (4) If Ry(qy is a weakly Krull domain, then ht(Qn(z)) = 1 for all
Q € Q. Thus, dim(Ry(q)) = 1 because R satisfies property (#).

(4) = (1) By Corollary 2.3, t-dim(R) = 1, and thus R = Ngex1(r) Ro-
Next, let f € R be a nonzero nonunit. Since Ry (g is a weakly Krull domain,
f is contained in only finitely many homogeneous maximal t-ideals of R. Also,
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since Ry is a UFD, f is contained in only finitely many uppers to zero in R.
Therefore, R is a weakly Krull domain. O

It is clear that D is a Krull domain if and only if D is a t-almost Dedekind
weakly Krull domain and that a Krull domain D is a Dedekind domain if and
only if dim(D) = 1. Hence, by Corollaries 2.4 and 2.5, we have:

Corollary 2.6 ([9, Corollary 2.4]). Let R = @ cp Ra- Then R is a Krull
domain if and only if Ry gy is a Dedekind domain.

An integral domain D is a weakly factorial domain if each nonzero nonunit
of D can be written as a finite product of primary elements of D. (A nonzero
element x € D is said to be primary if D is a primary ideal.) Since a prime
ideal is a primary ideal, prime elements are primary, and thus UFDs are weakly
factorial domains. It is known that D is a weakly factorial domain if and only
if D is a weakly Krull domain and CI(D) = {0} [6, Theorem|. Note that X
is a prime element of the polynomial ring D[X]; so D[X] is a weakly factorial
domain if and only if D[X, X '] is a weakly factorial domain. Thus, the next
result is a generalization of [5, Theorem 17] that D is a weakly factorial GCD-
domain if and only if D[X] is a weakly factorial domain.

Corollary 2.7. Let R = @ Ra be a graded integral domain with a unit of
nonzero degree. Then the following statements are equivalent.

(1) R is a weakly factorial domain.
(2) R is a weakly factorial GCD-domain.
(3) R is a weakly factorial PvMD.

Proof. (1) = (2) If R is a weakly factorial domain, then R is a weakly Krull
domain and CI(R) = {0}. Hence, each upper to zero @ in R is t-invertible by
Corollary 2.5 and Proposition 1.8, and so @) is principal. Thus, every upper to
zero in R contains a (nonzero) prime element, and hence R is a GCD-domain
[19, Theorem 2.2].

(2) = (3) = (1) Clear. O

3. Graded integral domains with a unit of nonzero degree

Let R = @, Ra be an integral domain graded by a nonzero torsionless
grading monoid ', H be the set of nonzero homogeneous elements of R, N(H) =
{f € R| C(f), = R}, and R be the integral closure of R. Note that R is a
graded integral domain by Lemma 1.6 such that R C R C Ry = Rpy. In this
section, we study a graded UMT-domain property of R with a unit of nonzero

degree.

Lemma 3.1. Let R = @, Ra be a graded integral domain with a unit of
nonzero degree, and let Q be a nonzero homogeneous prime ideal of R. If Q is
not a t-ideal, then there is an upper to zero U in R such that U C Q.
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Proof. Since @ is not a t-ideal, there are some ag, a1, ...,a, € QN H such that
(ag,ai,...,an)y € Q. Let

f=a0+aaz™ +- + anatn,

where z € R is a unit of nonzero degree and k; > 1 is an integer such that
C(f) = (ag,a1,...,a,), and let U C @ be a prime ideal of R minimal over fR.
Then U is a t-ideal. We claim that U is an upper to zero in R.

Let S = H\ Q. Then Qg is a unique homogeneous maximal ideal of Rg,
and so (C(f)Rs): = Rg because (C(f)Rs): = (C(f)iRs): € Qs. Also, note
that Ug is a t-ideal of Rg; hence if a € U N H(# 0), then Rg = ((a, f)Rs)v C
(Us): = Us, a contradiction. Thus, U N H = @, and so Uy is a prime t-ideal
because Uy is minimal over fRyg. Since Ry is a UFD, Uy = gRy for some
g€ R. Thus, U =Uyg NR=gRy N R is an upper to zero in R. ([l

Proposition 3.2. Let R = @ . Ra be a graded UMT-domain with a unit of
nonzero degree, T be a homogeneous overring of R, and Q) be a homogeneous
prime t-ideal of R. If M is a homogeneous prime ideal of T' such that MNR =
Q, then M 1is a t-ideal of T.

Proof. If M is not a t-ideal of T', then there is an upper to zero U in T such that
U C M by Lemma 3.1. Clearly, U N R is an upper to zero in R and U N R C
M N R=C@. Thus, U N R is not a maximal t-ideal of R, a contradiction. [

Corollary 3.3. Let R = @ . Ra be a graded UMT-domain with a unit of
nonzero degree. If Q) is a homogeneous prime t-ideal of R, then Ry\q is a
graded UMT-domain with a unique homogeneous mazimal ideal that is a t-
ideal.

Proof. Clearly, Ry q is a homogeneous t-linked overring of R, and hence R\ g
is a graded UMT-domain by Corollary 1.10. Also, Qp\ is a unique homoge-
neous maximal ideal of R\ q, and by Proposition 3.2, Qp\q is a t-ideal. I

Lemma 3.4. Let R = @, Ra be a graded integral domain. Then R is a
graded-Priifer domain if and only if Rg is a valuation domain for all homoge-
neous mazimal ideals Q of R.

Proof. This follows from the following two observations: (i) R is a (graded)
PvMD if and only if Rqg is a valuation domain for all homogeneous maximal
t-ideals @ of R [18, Lemma 2.7] and (ii) R is a graded-Priifer domain if and only
if R is a graded PuMD whose homogeneous maximal ideals are t-ideals. ([l

We next give the main result of this section which provides characterizations
of graded UMT-domains with a unit of nonzero degree.

Theorem 3.5. Let R = @, Ra be a graded integral domain with a unit of
nonzero degree. Then the following statements are equivalent.

(1) R is a graded UMT-domain.
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(2) If Q is an upper to zero in R, then there is an f € Q such that C(f), =
R.

(3) Ewvery prime ideal of Ry gy is extended from a homogeneous ideal of
R.

(4) RH\Q is a graded-Prifer domain for all homogeneous mazximal t-ideals

Q of R.

) R is a UMT-domain.

) Ry(my is a Priifer domain.

) Ry(wy is a UMT-domain.

) Ry(wy is a quasi-Priifer domain.

Proof. (1) & (2) & (3) Since R has a unit of nonzero degree, R satisfies
property (#). Thus, the results follow directly from Theorem 2.2.

(1) = (4) Let @ be a homogeneous maximal t-ideal of R. Replacing R and
Q with Ry g and Qg respectively, by Corollary 3.3, we may assume that R
has a unique homogeneous maximal ideal () and @ is a t-ideal.

Assume to the contrary that R is not a graded-Priifer domain. Then there
are some ag,ay,...,ar € H such that I = (ag,a1,...,ax)R is not invertible.
Let f = ag + a12™ + --- + apa™*, where z € R is a unit of nonzero degree
and m; > 1 is an integer such that Cz(f) = I. Then fRy N R = fCxr(f)~!
[9, Lemma 1.2(4)], and since [ is not invertible and Cz(f)Cxz(f)~! is homoge-
neous, we have U = fCr(f)~! C Cr(f)Cr(f)~! € M for some homogeneous
maximal ideal M of R. Note that Ry is a UFD; so f = fi'--- fé for some
prime elements f; € Ry and integers e; > 1. Thus,

fRENR = ((fiRu)™ - (faRu)") N R
= ((iRm) NN (faRE)™) N R
= ((ARm)* NR)N---N ((faRu)" NR)
D(fiReNR)*N---N(funRyg NR)".
Thus, M 2 f;Ryg N R for some i, and so
Q=MNR2(fiRuNR)NR= f;RyNR,

which is contrary to the fact that Q is a t-ideal. Therefore, R is a graded-Priifer
domain.

(4) = (1) Assume that R is not a graded UMT-domain, and let Q; =
fRu N R be an upper to zero in R such that Q5 C @ for some homogeneous
maximal t-ideal Q of R (cf. Theorem 1.11). Let T = Ry\g. Then by (4), T
is a graded-Priifer domain, and hence Uy = fRy NT = fCr(f)~' € My for
all homogeneous maximal ideals Mo of T'. Note that Uy N Rp\g = (Qf)m\q»
(Qf)mo € Qm\g, and T is integral over Ry\q. Thus, there is a prime ideal
M of T such that Uy € M and M N R\ = Qu\@- Since Q is homogeneous,
M* N Rp\g = Qu\g- Thus, M = M* is homogeneous, a contradiction.

(1) = (5) Let Q be a maximal ¢-ideal of R. If @ N H # (, then Q is
homogeneous, and thus R m\q 1s a graded-Priifer domain by the equivalence of
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(1) and (4). Note that if M is a prime ideal of Ry such that M N Ry\q =
Qm\q> then M is homogeneous because () is homogeneous; hence (RH\Q) M s
a valuation domain by Lemma 3.4. Clearly, RR\Q = (RH\Q)R\Q. Thus, RR\Q
is a Priifer domain. Next, assume Q N H = (). Then Q = Qy N R, and so if
ht@ > 2, then there is an 0 # f € R such that fRy C Qg is a prime ideal
of Rg. Hence, fRy N R C Qu N R = @, a contradiction. Thus, htQ) =1
and so Rg = (Ru)gy is a rank-one DVR. Therefore, by Theorem 1.2, R is a
UMT-domain.

(5) = (6) Let M be a prime ideal of R such that My g is a maximal ideal
of Ry(y. Then (M N R)N N(H) = 0, and hence M N R is a homogeneous
maximal t-ideal of R. Since R is a UMT-domain, Ry;ng is a Priifer domain by
Theorem 1.2. Note that R]\/fﬂR - RM = (RN(H))MN(H)§ SO (RN(H))MN(H) is a
valuation domain. Thus, RN( m) is a Priifer domain.

(6) = (4) Let M be a homogeneous prime ideal of R such that M\ ¢ is a
homogeneous maximal ideal of RH\Q. Then MNR C Q, and so MNN(H) = ().
Thus, My g is a proper prime ideal of RN(H), and so Ry = (RN(H))MMH) is
a valuation domain. Thus, by Lemma 3.4, RH\Q is a graded-Priifer domain.

(6) < (8) [25, Corollary 6.5.14].

(7) < (8) This follows because each maximal ideal of Ry gy is a t-ideal
[9, Propositions 1.3 and 1.4]. O

Corollary 3.6 ([19, Theorem 2.5]). Let R = @ . Ra be a graded integral
domain with a unit of nonzero degree. Then R is an integrally closed graded
UMT-domain if and only if R is a PvMD.

Proof. R is an integrally closed graded UMT-domain if and only if R is an
integrally closed UMT-domain (by Theorem 3.5), if and only if R is a PoMD
(by Corollary 1.3). O

Corollary 3.7. Let R =@, Ra be a graded integral domain with a unit of
nonzero degree. Then R is a graded-Priifer domain if and only if R is a graded
UMT-domain whose homogeneous mazximal ideals are t-ideals.

Proof. (=) Clearly, R m\q is a graded-Priifer domain for all homogeneous max-
imal t¢-ideals @ of R. Thus, by Theorem 3.5, R is a graded UMT-domain.
Next, let f € R be nonzero such that fRpy is a prime ideal. Note that
fRuNR = fCxr(f)~' ]9, Lemma 1.2(4)]; so if h € Ry with Cx(h) = Cg(f)~!
(such h exists because R has a unit of nonzero degree), then fh € fCxz(f)™?
and Ci(fh) = R. Thus, C(fCg(f)~') = R. Note also that fRy N R =
fOR(f)"' N R and R is integral over R. Hence, C(fRyz N R) = R. Thus, by
Lemma 3.1, each homogeneous maximal ideal of R is a t-ideal.

(«=) Let M be a homogeneous maximal ideal of R. Then M N R is a homoge-
neous ideal of R; so (MNR)NN(H) = () by assumption. Hence, MNN(H) = (),
and thus Ry = (Rn(m)) My, 18 & valuation domain by Theorem 3.5. Thus,

by Lemma 3.4, R is a graded-Priifer domain. (I
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It is well known that each overring of a Priifer domain is a Priifer domain
[28, Theorem 26.1]. The next result is the graded-Priifer domain analog.

Lemma 3.8 ([10, Theorem 2.5(2)]). Let T be a homogeneous overring of a
graded-Priifer domain R = @ cp Ro. Then T is a graded-Priifer domain.

Proof. Let A be a nonzero finitely generated homogeneous ideal of T'. Since
R CT C Ry, there are an o € H and a finitely generated homogeneous ideal
I of R such that A = éIT. Since R is a graded-Priifer domain, I is invertible,

and thus A = é] T is invertible. Hence, T is a graded-Priifer domain. ]

Let D be a UMT-domain, and recall that if P is a nonzero prime ideal of D
with P, C D, then P is a t-ideal [26, Corollary 1.6]. We next give the graded
UMT-domain analog.

Corollary 3.9. Let R = @ . Ra be a graded UMT-domain with a unit of
nonzero degree, and let M be a homogeneous mazximal t-ideal of R. If P C M
is a nonzero prime ideal of R, then P is a homogeneous prime t-ideal.

Proof. Since M is homogeneous, C(P), C M; = M C R. Thus, P is homo-
geneous by Theorem 1.11. Next, note that RH\ M is a graded-Priifer domain
and RH\p is a homogeneous overring of RH\M; so by Lemma 3.8, RH\p is a
graded-Priifer domain. Thus, by Corollary 3.7, PRy p is a prime t-ideal, and
hence P is a prime t-ideal of R. (I

We next give another characterization of graded UMT-domains.

Corollary 3.10. Let R = @, Ra be a graded integral domain with a unit
of nonzero degree. Then the following statements are equivalent.

(1) R is a graded UMT-domain.

(2) Let Q be a nonzero prime ideal of R with C(Q); € R. Then Q is a
homogeneous prime t-ideal.

(3) Let Q be a nonzero prime ideal of R such that @ C M for some ho-
mogeneous mazimal t-ideal M of R. Then Q is a homogeneous prime
t-ideal.

Proof. (1) = (2) Let @ be a nonzero prime ideal of R with C(Q); € R. Clearly,
there is a homogeneous maximal t-ideal M of R such that @ C M. Hence, by
Corollary 3.9, @ is a homogeneous prime t-ideal.

(2) & (3) Clear.

(3) = (1) This follows from Theorem 1.11. O

An integral domain D is called a generalized Krull domain if (i) D =
Npexi(py Dp, (ii) the intersection D = (pcy1(py Dp is locally finite, and
(iii) Dp is a (rank-one) valuation domain for all P € X!(D). Clearly, D is a
generalized Krull domain if and only if D is a weakly Krull domain and Dp
is a valuation domain for all P € X!(D), if and only if D is a weakly Krull
PvMD; and a generalized Krull domain D is a Krull domain, if and only if Dp
is a DVR for all P € X(D).
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Corollary 3.11. Let R = @, . Ra be a graded integral domain with a unit
of nonzero degree. Then the following statements are equivalent.

(1) R is an integrally closed weakly Krull domain.
(2) R is a generalized Krull domain.
(3) Ry(m) is a generalized Krull domain.
(4) Ry(m) is an one-dimensional generalized Krull domain
Proof. (1) = (2) It suffices to show that Rg is a valuation domain for all
Q € X'(R). Let Q be a height-one prime ideal of R. If Q N H = (), then Qg
is a height-one prime ideal of Ry, and since Ry is a UFD, Rg = (Ry)qy is
a valuation domain. If Q N H # (@, then @ is homogeneous, and hence Q N(H)
is a proper prime ideal of Ry (). Note that R is a graded UMT-domain by
Corollary 2.5 and Ry (g is integrally closed; hence Ry gy is a Priifer domain
by Theorem 3.5. Thus, Rg = (Ry(m)) is a valuation domain.

(2) = (3) [28, Corollary 43.6].

(3) = (4) = (1) This follows from Corollary 2.5 because R = Ry N Ry (m),
Ry is integrally closed, and a generalized Krull domain is a weakly Krull do-
main. (]

QN (H)

Let D be the integral closure of an integral domain D, {X,} be a nonempty
set of indeterminates over D, and N, = {f € D[{X,}] | ¢(f)y = D}. It is
known that D is a UMT-domain if and only if D[{X,}] is a UMT-domain,
if and only if D[{X,}]n, is a UMT-domain, if and only if D[{X,}]n, is a
Priifer domain [26, Theorems 2.4 and 2.5], if and only if every prime ideal of
D{Xa}]n, is extended from D (cf. [34, Theorem 3.1]). We next recover this

result as a corollary of Theorem 3.5, and for this we first need a simple lemma.

Lemma 3.12. Let R = @, Ra be a graded integral domain with a set {pg}
of nonzero homogeneous prime elements such that (i) ht(pgR) =1 for each
and (i) N,—; pg, R = (0) for any sequence {pp,} of nonassociate members of
{pp}, and let S be the saturated multiplicative set of R generated by {pg}.

(1) Rs is a homogeneous overring of R.
(2) R is a graded UMT-domain if and only if Rg is a graded UM T-domain.
(3) R is a UMT-domain if and only if Rgs is a UMT-domain.

Proof. (1) Clear.

(2) It is clear that each upper to zero in R is not comparable with pgR
under inclusion for all 8. Also, @ is an upper to zero in R if and only if Qg
is an upper to zero in Rg. Note that t-Max(Rg) = {Qs | @ € t-Max(R) and
Q@ # pgR for all B} [2, Proposition 2.6 and Corollary 3.5]. Thus, each upper
to zero in R is a maximal ¢-ideal if and only if each upper to zero in Rg is a
maximal t-ideal.

(3) Clearly, Ry, r is a rank-one DVR for all 8. Also, if @ is a prime ideal of
R with QNS = 0, then (Rs)gs = Rg. Thus, the result follows from Theorem
1.2 and [2, Proposition 2.6 and Corollary 3.5]. O
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Corollary 3.13. Let R = @, . Ra be a graded integral domain with a nonzero
homogeneous prime element p such that ht(pR) = 1 and deg(p) # 0. Then R
is a graded UMT-domain if and only if R is a UMT-domain.

Proof. Clearly, {p} satisfies the conditions (i) and (ii) of Lemma 3.12. Also, if
S = {up™ | v is a unit of R and n > 0}, then Rg has a unit of nonzero degree.
Thus, R is a graded UMT-domain if and only if Rg is a graded UMT-domain, if
and only if Rg is a UMT-domain, if and only if R is a UMT-domain by Lemma
3.12 and Theorem 3.5. (]

For each a, let Z, = Z be the additive group of integers; so if G = @, Za,
then G is a torsionfree abelian group and the group ring D[G] of G over D
is isomorphic to D[{X,, X '}]. Thus, if R = D[{X,,X;'}], then R has a
unit of nonzero degree and Ry gy = D[{Xa}]n, [9, Proposition 3.1] and every
homogeneous ideal of R has the form IR for an ideal I of D.

Corollary 3.14. Let D be an integral domain, {X,} be a nonempty set of
indeterminates over D, and N, = {f € D{X.}] | ¢(f)» = D}. Then the
following statements are equivalent.

1) D is a UMT-domain.

D[{X,}] is a UMT-domain.

{Xa.}] is a graded UMT-domain.

{Xo, X'} is a UMT-domain.

{Xa, X1} is a graded UMT-domain.

{Xa}n, s a Prifer domain.

{Xa}n, is a UMT-domain.

{Xa}]N, is a quasi-Prifer domain.

Every prime ideal of D[{X4}|n, is extended from D.

Proof. (1) < (5) Let R = D[{X,,X;'}]. Then Ryy) = D[{X.}]n, and
{PR | P € t-Max(D)} is the set of homogeneous maximal t-ideals of R. Note
that RH\pR = Dp[{Xa, X;'}]); and Dp[{X,, X '}] is a graded-Priifer domain
if and only if Dp is a Priifer domain for all P € t-Max(D) (cf. [9, Example
3.6]). Thus, the result follows from Theorems 1.2 and 3.5.

(2) < (3) This follows from Corollary 3.13 because each Xz is a height-one
homogeneous prime element of nonzero degree.

(3) & (5) Clearly, {X,} is a set of nonzero homogeneous prime elements of
D[{X,}] satisfying the two conditions of Lemma 3.12. Also, if S is the multi-
plicative set of D[{X,}] generated by {X,}, then D[{X,}]s = D[{Xa, X;}].
Thus, the result is an immediate consequence of Lemma 3.12(2).

(4) & (5) & (6) & (7) & (8) & (9) Theorem 3.5. O

(
(
3) D
(4) D
(5) D
(6) D
(1) D
8) D
(

2)
3)
4)
5)
6)
7)
8)
9)

4. Counterexamples via the D + X K[X] construction

In this section we use the D + X K[X] construction to show that a graded
UMT-domain need not be a UMT-domain in general. For this, let D be an
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integral domain with quotient field K and D C K, X be an indeterminate over
D, K[X] be the polynomial ring over K, and R = D + XK[X] be a subring
of K[X], ie.,, R={f € K[X] | f(0) € D}; so D[X] € R C K[X] and R is
an Ny-graded integral domain with deg(aX™) = n for 0 # a € K and integer
n >0 (a € D when n = 0). Let H be the set of nonzero homogeneous elements
of Rand N(H) ={f € R| C(f), = R}; then N(H) ={f € R| f(0) is a unit
of R} [15, Lemma 6] and Ry = K[X, X '].

Lemma 4.1. If Q is an upper to zero in R = D + XK[X], then Q = fR for
some f € R with f(0) =1, and hence Q is a maximal t-ideal of R.

Proof. Note that Ry = K[X, X !]; so Q = fK[X, X ']N R for some f €
K[X,X~1]. Since X is a unit of K[X, X !] and K is the quotient field of D,
we may assume that f € R with f(0) = 1. Hence, if g € K[X, X 1] is such
that fg € R, then g € K[X], and since f(0) = 1, we have g(0) € D; so g € R.
Thus, Q = fR. O

It is known that R = D + X K[X] is a PoMD if and only if D is a PuMD
[21, Theorem 4.43]. We next give a UMT-domain analog.

Proposition 4.2. Let R =D + XK[X].

(1) R is a graded UMT-domain.
(2) R is a UMT-domain if and only if D is a UMT-domain.

Proof. (1) Lemma 4.1.

(2) Note that K[X] is a UMT-domain and X K[X] is a maximal ¢-ideal of
K[X]. Thus, R is a UMT-domain if and only if D is a UMT-domain [26,
Proposition 3.5]. O

We end this paper with some counterexamples.

Example 4.3. Let R = D + XK[X]. Then R is a graded UMT-domain.

(1) Counterexample to Proposition 1.7, Theorem 3.5, Corollary 3.6, and
Corollary 3.7: Let R be the field of real numbers, Q be the algebraic closure
of the field Q of rational numbers in R, R[y] be the power series ring over
R, and D = Q + yR[y]. Then D is an integrally closed one-dimensional local
integral domain that is not a valuation domain [11, Theorem 2.1] (hence D is
not a UMT-domain). Hence, R satisfies property (#) [15, Corollary 9], R is
an integrally closed graded UMT-domain, but R is not a UMT-domain (so not
a PoMD). (i) Thus, the converse of Proposition 1.7 does not hold in general.
(ii) Moreover, this shows that Theorem 3.5 is not true if R = @ Ro does
not contain a unit of nonzero degree. (iii) This also shows that Corollary 3.6
is not true in general. (iv) Finally, R = D 4+ X K[X] is an integrally closed
domain but not a graded-Priifer domain, while R = D + X K[X] has a unique
homogeneous maximal t-ideal (which must be a unique homogeneous maximal
ideal). Thus, Corollary 3.7 does not hold in general.
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(2) Let D be an integral domain with a prime ideal P such that P C P, C D.

(For example, let D =R+ (X,Y, Z)C[X,Y, Z], where C is the field of complex
numbers and C[X, Y, Z] is the power series ring, and let P = (X,Y)C[X,Y, Z].
Then P is a prime ideal of D such that P C P, = (X,Y, Z2)C[X,Y,Z] € D.)
Then PR=P+ XK[X]|C P+ XK[X]|=(P+ XK[X]): S R=D+ XK|[X],
and hence PR is a prime ideal of R contained in a homogeneous maximal t-ideal
but PR is not a t-ideal. Thus, Corollary 3.9 does not hold if R = @, Ra
does not contain a unit of nonzero degree.
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