J. Korean Math. Soc. **54** (2017), No. 6, pp. 1733–1757 https://doi.org/10.4134/JKMS.j160625 pISSN: 0304-9914 / eISSN: 2234-3008

GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

Gyu Whan Chang

ABSTRACT. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid Γ , \bar{R} be the integral closure of R, H be the set of nonzero homogeneous elements of R, C(f) be the fractional ideal of R generated by the homogeneous components of $f \in R_H$, and $N(H) = \{f \in R \mid C(f)_v = R\}$. Let R_H be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q = fR_H \cap R$ for some $f \in R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if $\bar{R}_{H\setminus Q}$ is a graded-Prüfer domain for all homogeneous maximal t-ideals Q of R, if and only if $\bar{R}_{N(H)}$ is a UMT-domain.

0. Introduction

Prüfer v-multiplication domains (PvMD) are one of the most important research topics in "Multiplicative Ideal Theory" because many essential non-Noetherian integral domains (e.g., Krull domains, Prüfer domains, GCD domains) are PvMDs and an integral domain D is a PvMD if and only if D[X], the polynomial ring over D, is a PvMD. It is known that D is a PvMD if and only if D is an integrally closed UMT-domain; hence UMT-domains can be considered as non-integrally closed PvMDs. UMT-domains were introduced by Houston and Zafrullah [34] and studied in greater detail by Fontana, Gabelli, and Houston [26] and Chang and Fontana [17]. In this paper, we study UMTdomain properties of graded integral domains.

This section consists of three subsections. In Section 0.1, we review the definitions related to the *t*-operation and in Section 0.2, we review those of

©2017 Korean Mathematical Society

Received September 23, 2016; Accepted March 30, 2017.

²⁰¹⁰ Mathematics Subject Classification. 13A02, 13A15, 13F05, 13G05.

Key words and phrases. graded integral domain, (graded) UMT-domain, (graded) Prüfer domain, D + XK[X].

graded integral domains; so the reader who is familiar with these two notions can skip to Section 0.3 where we give the motivation and results of this paper.

0.1. The *t*-operation

Let D be an integral domain with quotient field K. An overring of D means a subring of K containing D. Let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of D. For $I \in \mathbf{F}(D)$, let $I^{-1} = \{x \in K \mid xI \subseteq D\}$, $I_v = (I^{-1})^{-1}$, and $I_t = \bigcup \{J_v \mid J \in \mathbf{F}(D) \text{ is finitely generated and } J \subseteq I\}$. An $I \in \mathbf{F}(D)$ is called a *t-ideal* (resp., *v-ideal*) if $I_t = I$ (resp., $I_v = I$). A *t*-ideal (resp., *v*-ideal) is a maximal *t-ideal* (resp., maximal *v-ideal*) if it is maximal among proper integral *t*-ideals (resp., *v*-ideals). Let *t*-Max(D) (resp., *v*-Max(D)) be the set of maximal *t*-ideals (resp., *v*-ideals) of D. It may happen that *v*-Max(D) = \emptyset even though D is not a field as in the case of a rank-one nondiscrete valuation domain D. However, it is well known that *t*-Max(D) $\neq \emptyset$ if D is not a field; each maximal *t*-ideal is a prime ideal; each proper *t*-ideal is contained in a maximal *t*-ideal; each prime ideal minimal over a *t*-ideal is a *t*-ideal; and $D = \bigcap_{P \in t-Max(D)} D_P$. We mean by *t*-dim(D) = 1 that D is not a field and each prime *t*-ideal of Dis a maximal *t*-ideal of D. Clearly, if dim(D) = 1 (i.e., D is one-dimensional), then *t*-dim(D) = 1.

An $I \in \mathbf{F}(D)$ is said to be *t*-invertible if $(II^{-1})_t = D$, and D is a Prüfer *v*-multiplication domain (PvMD) if each nonzero finitely generated ideal of D is *t*-invertible. Let T(D) (resp., Prin(D)) be the group of *t*-invertible fractional *t*ideals (resp., nonzero principal fractional ideals) of D under the *t*-multiplication $I*J = (IJ)_t$. It is obvious that $Prin(D) \subseteq T(D)$. The *t*-class group of D is the abelian group Cl(D) = T(D)/Prin(D). It is clear that if D is a Krull domain (resp., Prüfer domain), then Cl(D) is the divisor class (resp., ideal class) group of D. Let $\{D_{\alpha}\}$ be a set of integral domains such that $D = \bigcap_{\alpha} D_{\alpha}$. We say that the intersection $D = \bigcap_{\alpha} D_{\alpha}$ is locally finite if each nonzero nonunit of Dis a unit of D_{α} for all but a finite number of D_{α} .

Let $\{X_{\alpha}\}$ be a nonempty set of indeterminates over D, $D[\{X_{\alpha}\}]$ be the polynomial ring over D, and $c_D(f)$ (simply c(f)) be the fractional ideal of D generated by the coefficients of a polynomial $f \in K[\{X_{\alpha}\}]$. It is known that if I is a nonzero fractional ideal of D, then $(ID[\{X_{\alpha}\}])^{-1} = I^{-1}D[\{X_{\alpha}\}],$ $(ID[\{X_{\alpha}\}])_v = I_v D[\{X_{\alpha}\}],$ and $(ID[\{X_{\alpha}\}])_t = I_t D[\{X_{\alpha}\}]$ [32, Lemma 4.1 and Proposition 4.3]; so I is a (prime) t-ideal of D if and only if $ID[\{X_{\alpha}\}]$ is a (prime) t-ideal of $D[\{X_{\alpha}\}].$

0.2. Graded integral domains

Let Γ be a (nonzero) torsionless grading monoid, that is, Γ is a torsionless commutative cancellative monoid (written additively), and $\langle \Gamma \rangle = \{a-b \mid a, b \in \Gamma\}$ be the quotient group of Γ ; so $\langle \Gamma \rangle$ is a torsionfree abelian group. It is well known that a cancellative monoid Γ is torsionless if and only if Γ can be given a total order compatible with the monoid operation [39, page 123]. By a $(\Gamma -)$ graded integral domain $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$, we mean an integral domain graded by Γ . That is, each nonzero $x \in R_{\alpha}$ has degree α , i.e., $\deg(x) = \alpha$, and $\deg(0) = 0$. Thus, each nonzero $f \in R$ can be written uniquely as $f = x_{\alpha_1} + \cdots + x_{\alpha_n}$ with $\deg(x_{\alpha_i}) = \alpha_i$ and $\alpha_1 < \cdots < \alpha_n$. Since R is an integral domain, we may assume that $R_{\alpha} \neq \{0\}$ for all $\alpha \in \Gamma$.

A nonzero $x \in R_{\alpha}$ for every $\alpha \in \Gamma$ is said to be homogeneous. Let H be the saturated multiplicative set of nonzero homogeneous elements of R, i.e., $H = \bigcup_{\alpha \in \Gamma} (R_{\alpha} \setminus \{0\})$. Then R_H , called the homogeneous quotient field of R, is a graded integral domain whose nonzero homogeneous elements are units. Hence, R_H is a completely integrally closed GCD-domain [1, Proposition 2.1] and R_H is a $\langle \Gamma \rangle$ -graded integral domain. We say that an overring T of R is a homogeneous overring of R if $T = \bigoplus_{\alpha \in \langle \Gamma \rangle} (T \cap (R_H)_{\alpha})$; so T is a $\langle \Gamma \rangle$ -graded integral domain such that $R \subseteq T \subseteq R_H$. Clearly, if $\Lambda = \{\alpha \in \langle \Gamma \rangle \mid T \cap (R_H)_{\alpha} \neq \{0\}\}$, then Λ is a torsionless grading monoid such that $\Gamma \subseteq \Lambda \subseteq \langle \Gamma \rangle$ and $T = \bigoplus_{\alpha \in \Lambda} (T \cap (R_H)_{\alpha})$. The integral closure of R is a homogeneous overring of R by Lemma 1.6. Also, R_S is a homogeneous overring of R for a multiplicative set S of nonzero homogeneous elements of R (with $\deg(\frac{a}{b}) = \deg(a) - \deg(b)$ for $a \in H$ and $b \in S$).

For a fractional ideal A of R with $A \subseteq R_H$, let A^* be the fractional ideal of R generated by homogeneous elements in A. It is easy to see that $A^* \subseteq A$; and if A is a prime ideal, then A^* is a prime ideal. The A is said to be homogeneous if $A^* = A$. A homogeneous ideal (resp., homogeneous t-ideal) of R is called a homogeneous maximal ideal (resp., homogeneous maximal tideal) if it is maximal among proper homogeneous ideals (resp., homogeneous t-ideal) of R. It is known that a homogeneous maximal ideal need not be a maximal ideal, while a homogeneous maximal t-ideal is a maximal t-ideal [8, Lemma 2.1]. Also, it is easy to see that each proper homogeneous ideal (resp., homogeneous t-ideal) of R is contained in a homogeneous maximal ideal (resp., homogeneous maximal t-ideal) of R.

For $f \in R_H$, let $C_R(f)$ denote the fractional ideal of R generated by the homogeneous components of f. For a fractional ideal I of R with $I \subseteq R_H$, let $C_R(I) = \sum_{f \in I} C_R(f)$. It is clear that both $C_R(f)$ and $C_R(I)$ are homogeneous fractional ideals of R. If there is no confusion, we write C(f) and C(I) instead of $C_R(f)$ and $C_R(I)$. Let $N(H) = \{f \in R \mid C(f)_v = R\}$ and $S(H) = \{f \in$ $R \mid C(f) = R\}$. It is well known that if $f, g \in R_H$, then $C(f)^{n+1}C(g) =$ $C(f)^n C(fg)$ for some integer $n \geq 1$ [39]; so N(H) and S(H) are saturated multiplicative subsets of R and $S(H) \subseteq N(H)$. Let Ω be the set of maximal t-ideals Q of R with $Q \cap H \neq \emptyset$, i.e., $\Omega = \{Q \in t\text{-Max}(R) \mid Q \text{ is homogeneous}\}$ [8, Lemma 2.1]. As in [9], we say that R satisfies property (#) if $C(I)_t = R$ implies $I \cap N(H) \neq \emptyset$ for all nonzero ideals I of R; equivalently, $Max(R_N(H)) =$ $\{Q_{N(H)} \mid Q \in \Omega\}$ [9, Proposition 1.4]. It is known that R satisfies property (#) if R is one of the following integral domains: (i) R contains a unit of nonzero degree, (ii) $R = D[\Gamma]$ is the monoid domain of Γ over an integral domain D, (iii) R contains a homogeneous prime element of nonzero degree, (iv) $R = D[\{X_{\alpha}\}]$ is the polynomial ring over D, or (v) the intersection $\bigcap_{Q \in \Omega} R_Q$ is locally finite [9, Example 1.6 and Lemma 2.2].

We say that R is a graded-Prüfer domain if each nonzero finitely generated homogeneous ideal of R is invertible. Clearly, invertible ideals are *t*-invertible, and hence a graded-Prüfer domain is a PvMD [1, Theorem 6.4] but need not be a Prüfer domain [9, Example 3.6]. The reader can refer to [10] or [42] for more on graded-Prüfer domains.

0.3. Motivation and results

Let X be an indeterminate over D and D[X] be the polynomial ring over D. A nonzero prime ideal Q of D[X] is called an upper to zero in D[X] if $Q \cap D = (0)$. We say that D is a UMT-domain if each upper to zero in D[X]is a maximal t-ideal of D[X]. (UMT stands for Upper to zero is a Maximal Tideal.) A quasi-Prüfer domain is a UMT-domain in which every maximal ideal is a t-ideal; equivalently, its integral closure is a Prüfer domain [25, Chapter VI]. The most important properties of UMT-domains are that (i) D is a UMTdomain if and only if every prime ideal of $D[X]_{N_v}$, where $N_v = \{f \in D[X] \mid$ $c(f)_v = D$, is extended from D and (ii) D is an integrally closed UMT-domain if and only if D is a PvMD [34, Theorem 3.1 and Proposition 3.2]. A subring $D[X^2, X^3] = D + X^2 D[X]$ of D[X] over a PvMD D is an easy example of a nonintegrally closed UMT-domain. In many cases, UMT-domains are used like: D[X] (or $D[X]_{N_n}$) has a ring-theoretic property (P) if and only if D is a UMTdomain with property (P). For example, t-dim(D[X]) = 1 if and only if D is a UMT-domain with t-dim(D) = 1; and $D[X]_{N_{t}}$ is a pseudo-valuation domain if and only if D is a pseudo-valuation UMT-domain [13, Lemma 3.7]. (A quasilocal domain D with maximal ideal M is a *pseudo-valuation domain* if and only if D has a unique valuation overring with maximal ideal M [31, Theorem 2.7].) For more results on UMT-domains, see, for example, [22,23,41,44] including a survey article [33].

Clearly, Q is an upper to zero in D[X] if and only if $Q = fK[X] \cap D[X]$ for some prime element $0 \neq f \in K[X]$, if and only if either Q = XD[X] or $Q = fK[X, X^{-1}] \cap D[X]$ for some prime element $0 \neq f \in K[X]$. Note that $D[X] = \bigoplus_{n\geq 0} DX^n$ is an \mathbb{N}_0 -graded integral domain, where \mathbb{N}_0 is the additive monoid of nonnegative integers, and if H is the set of nonzero homogeneous elements of D[X], then $D[X]_H = K[X, X^{-1}]$ and $K[X, X^{-1}]$ is a unique factorization domain (UFD). In [19, Section 2], the notion of "upper to zero" was generalized to graded integral domains as follows: Let $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a (nontrivial) graded integral domain graded by an arbitrary torsionless grading monoid Γ and H be the set of nonzero homogeneous elements of R. Assume that R_H is a UFD. Then a nonzero prime ideal Q of R is called an upper to zero in R if $Q = fR_H \cap R$ for some $f \in R_H$. Thus, Q is an upper to zero in D[X] as the original definition if and only if either Q = XD[X] or Q is an upper to zero in

D[X] as a prime ideal of the \mathbb{N}_0 -graded integral domain $D[X] = \bigoplus_{n\geq 0} DX^n$. As a graded integral domain analog, in [19, Theorem 2.5], it was shown that if $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ is a graded integral domain with a unit of nonzero degree such that R_H is a UFD, then R is a PvMD if and only if R is integrally closed and each upper to zero in R is a maximal *t*-ideal. In this paper, we further study some ring-theoretic properties of graded integral domains R such that R_H is a UFD and each upper to zero in R is a maximal *t*-ideal.

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a Γ -graded integral domain. In Section 1, we introduce the notion of graded UMT-domains, and we then study general properties of both UMT-domains and graded UMT-domains. For example, we prove that UMT-domains are graded UMT-domains, and R is a graded UMT-domain if and only if Q is homogeneous for all nonzero prime ideals Q of R with $C(Q)_t \subsetneq R$, if and only if $C(Q)_t = R$ for every upper to zero Q in R. In Section 2, we show that if R satisfies property (#), then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, and R is a weakly Krull domain if and only if $R_{N(H)}$ is a weakly Krull domain. We study in Section 3 graded UMT-domains with a unit of nonzero degree. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if R is a UMT-domain, if and only if the integral closure of $R_{H\setminus Q}$ is a graded-Prüfer domain for all homogeneous maximal t-ideals Q of R, if and only if the integral closure of $R_{N(H)}$ is a Prüfer domain. Finally, in Section 4, we use the D + XK[X] construction to give several counterexamples of the results in Sections 2 and 3. Assume that $D \subsetneq K$, and let $R = D + XK[X] (:= \{f \in K[X] \mid f(0) \in D\})$. Then R is an \mathbb{N}_0 -graded integral domain such that $R_H = K[X, X^{-1}]$ is a UFD. We show that R is a graded UMT-domain, and R is a UMT-domain if and only if D is a UMT-domain. Thus, if D is not a UMT-domain, then R = D + XK[X] is a graded UMT-domain but not a UMT-domain. We also give examples which show that the results of Section 3 do not hold without assuming that R has a unit of nonzero degree.

1. UMT-domains and graded UMT-domains

Let Γ be a nonzero torsionless grading monoid, $\langle \Gamma \rangle = \{a - b \mid a, b \in \Gamma\}$ be the quotient group of Γ , $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a nontrivial Γ -graded integral domain, and H be the set of nonzero homogeneous elements of R. Throughout this paper, R_H is always assumed to be a UFD.

We begin this section with examples of graded integral domains R such that R_H is a UFD.

Example 1.1. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain. Then R_H is a UFD if one of the following conditions is satisfied.

- (1) [7, Proposition 3.5] $\langle \Gamma \rangle$ satisfies the ascending chain condition on its cyclic subgroups.
- (2) $R = D[\{X_{\alpha}\}]$ is the polynomial ring over an integral domain D.

- (3) [38, Section A.I.4.] $\langle \Gamma \rangle = \mathbb{Z}$ is the additive group of integers.
- (4) $R = D[\Gamma]$ is the monoid domain of Γ over D such that $\langle \Gamma \rangle$ satisfies the ascending chain condition on its cyclic subgroups.

Let \overline{D} be the integral closure of an integral domain D. For easy reference, we recall from [37, Theorem 44] that (i) (Lying Over) if P is a prime ideal of D, then there is a prime ideal Q of \overline{D} with $Q \cap D = P$; (ii) (Going Up) if $P_1 \subseteq P_2$ are prime ideals of D and Q_1 is a prime ideal of \overline{D} with $Q_1 \cap D = P_1$, then there exists a prime ideal Q_2 of \overline{D} such that $Q_1 \subseteq Q_2$ and $Q_2 \cap D = P_2$; and (iii) (Incomparable) if $P \subseteq Q$ are prime ideals of \overline{D} with $P \cap D = Q \cap D$, then P = Q.

The next result appears in [26, Theorem 1.5], but we include it because our proof is easy and direct without using other results.

Theorem 1.2. An integral domain D is a UMT-domain if and only if the integral closure of D_P is a Prüfer domain for all $P \in t$ -Max(D).

Proof. Let \overline{D} be the integral closure of D. Hence, \overline{D}_P is the integral closure of D_P for a prime ideal P of D.

(⇒) Assume that \overline{D}_P is not a Prüfer domain for some $P \in t$ -Max(D), and let $T = \overline{D}_P$. Then there are some $0 \neq a, b \in T$ such that (a, b)T is not invertible, and so if we let f = a + bX, then $fK[X] \cap T[X] = fc_T(f)^{-1}[X] \subseteq$ $(c_T(f)c_T(f)^{-1})[X] \subseteq M[X]$ for some maximal ideal M of T (the first equality follows from [28, Corollary 34.9] because T is integrally closed). Thus, $fK[X] \cap$ $D[X] = (fK[X] \cap T[X]) \cap D[X] \subseteq (M[X] \cap D_P[X]) \cap D[X] = P[X]$. Clearly, $fK[X] \cap D[X]$ is an upper to zero in D[X], but $fK[X] \cap D[X]$ is not a maximal t-ideal, a contradiction.

(⇐) Assume that D is not a UMT-domain. Then there are a maximal t-ideal P of D and an upper to zero Q in D[X] such that $Q \subseteq P[X]$ (cf. [34, Proposition 1.1]). Since Q is an upper to zero in D[X], there is an $f \in D[X]$ such that $Q = fK[X] \cap D[X]$. Note that $Q_f := fK[X] \cap \overline{D}_P$ is an upper to zero in $\overline{D}_P[X]$, $Q_f \cap D_P[X] = Q_{D\setminus P}$, and $\overline{D}_P[X]$ is integral over $D_P[X]$. Thus, there is a prime ideal M of $\overline{D}_P[X]$ such that $Q_f \subseteq M$ and $M \cap D_P[X] = PD_P[X]$. Clearly, $M = (M \cap \overline{D}_P)[X]$ because $(M \cap \overline{D}_P)[X] \cap D_P[X] = PD_P[X]$ and $(M \cap \overline{D}_P)[X] \subseteq M$. However, since \overline{D}_P is a Prüfer domain, there is a $g \in Q_f$ such that $\overline{D}_P = c(g)\overline{D}_P \subseteq M \cap \overline{D}_P$, a contradiction.

Bezout domains are Prüfer domains. Hence, if D_P is a Bezout domain for all $P \in t\text{-Max}(D)$, then D is a UMT-domain by Theorem 1.2. In [13, Lemma 2.2], it was shown that D is a UMT-domain if and only if the integral closure of D_P is a Bezout domain for all $P \in t\text{-Max}(D)$. Theorem 1.2 also shows that D_S is a UMT-domain for every multiplicative set S of a UMT-domain D.

Corollary 1.3 ([34, Proposition 3.2]). D is a PvMD if and only if D is an integrally closed UMT-domain.

Proof. It is well known that D is a PvMD if and only if D_P is a valuation domain for all $P \in t$ -Max(D) [30, Theorem 5] and $D = \bigcap_{P \in t$ -Max $(D)} D_P$. Hence, the result follows directly from Theorem 1.2.

Recall that D is an S-domain if ht(PD[X]) = 1 for every prime ideal P of D with htP = 1 [37, p. 26]. It is easy to see that a UMT-domain is an S-domain; and if t-dim(D) = 1 (e.g., dim(D) = 1), then D is an S-domain if and only if D is a UMT-domain (cf. [43, Theorem 8]). However, S-domains need not be UMT-domains. For example, if $D = \mathbb{R} + (X, Y)\mathbb{C}[X, Y]$, where $\mathbb{C}[X, Y]$ is the power series ring over the field \mathbb{C} of complex numbers and \mathbb{R} is the field of real numbers, then D is a 2-dimensional Noetherian domain [12, Theorem 4 and Corollary 9] whose maximal ideal is a t-ideal. Hence, D is an S-domain [37, Theorem 148] but not a UMT-domain [34, Theorem 3.7].

We next introduce the notion of graded UMT-domains.

Definition 1.4. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$, and assume that R_H is a UFD.

- (1) A nonzero prime ideal Q of R is an upper to zero in R if $Q = fR_H \cap R$ for some $f \in R_H$. (In this case, f is a nonzero prime element of R_H and Q is a height-one prime t-ideal of R.)
- (2) R is a graded UMT-domain if every upper to zero in R is a maximal t-ideal of R.

Recall that if Q is a maximal t-ideal of $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ with $Q \cap H \neq \emptyset$, then Q is homogeneous [8, Lemma 2.1]. We use this result without further citation.

Lemma 1.5. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded UMT-domain and Q be a nonzero prime ideal of R. Then Q is a maximal t-ideal of R if and only if either Q is an upper to zero in R or Q is a homogeneous maximal t-ideal.

Proof. Let Q be a maximal t-ideal of R. If $Q \cap H \neq \emptyset$, then Q is homogeneous. Next, assume that $Q \cap H = \emptyset$. Then $Q = Q_H \cap R$, and hence Q contains an upper to zero in R. Thus, Q must be an upper to zero in R because R is a graded UMT-domain. The converse is clear.

We say that $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ is a gr-valuation ring if $x \in R$ or $\frac{1}{x} \in R$ for all nonzero homogeneous elements $x \in R_H$. It is known that if R is a grvaluation ring, then there is a valuation overring V of R such that $V \cap R_H = R$ [35, Theorem 2.3]. Hence, a gr-valuation ring is integrally closed.

Lemma 1.6. Let \overline{R} be the integral closure of $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$. Then \overline{R} is a homogeneous overring of R.

Proof. Let $\{V_{\lambda}\}$ be the set of all homogeneous gr-valuation overrings of R. Then $\overline{R} = \bigcap_{\lambda} V_{\lambda}$ [35, Theorem 2.10], and since each V_{λ} is a homogeneous overring of R, \overline{R} is also a homogeneous overring of R.

We next show that a UMT-domain is a graded UMT-domain, while a graded UMT-domain need not be a UMT-domain (see Example 4.3).

Proposition 1.7. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a UMT-domain. Then R is a graded UMT-domain.

Proof. Let Q' be a prime t-ideal of R such that $Q' \cap H = \emptyset$. Then Q'_H is a t-ideal of R_H [26, Proposition 1.4], and hence $\operatorname{ht} Q' = \operatorname{ht}(Q'_H) = 1$ because R_H is a UFD.

Let $U_f = fR_H \cap R$ be an upper to zero in R. If U_f is not a maximal t-ideal of R, there is a maximal t-ideal Q of R such that $U_f \subsetneq Q$, By the above paragraph, $Q \cap H \neq \emptyset$, and thus Q is homogeneous. Note that $U = fR_H \cap \overline{R}$ is a prime ideal of \overline{R} and $U \cap R = U_f$; so there is a prime ideal M of \overline{R} such that $U \subsetneq M$ and $M \cap R = Q$. However, note that \overline{R} is a graded integral domain by Lemma 1.6; so M^* is a prime ideal of \overline{R} and $M^* \cap R = Q$. Hence, $M^* = M$, and since $U = fC_{\overline{R}}(f)^{-1}$ [9, Lemma 1.2(4)], $C_{\overline{R}}(f)C_{\overline{R}}(f)^{-1} \subseteq M$. By Theorem 1.2, $\overline{R}_M = (\overline{R}_Q)_{M_Q}$ is a valuation domain, and hence $\overline{R}_M = (C_{\overline{R}}(f)_M)(C_{\overline{R}}(f)_M)^{-1} = (C_{\overline{R}}(f)_M)((C_{\overline{R}}(f)^{-1})_M) \subseteq M_M$, a contradiction. Thus, U_f is a maximal t-ideal of R.

Let D[X] be the polynomial ring over an integral domain D, and let Q be an upper to zero in D[X]. It is known that Q is a maximal *t*-ideal if and only if $c(Q)_t = D$, if and only if Q is *t*-invertible [34, Theorem 1.4] (see [27, Theorem 3.3] for the case of arbitrary sets of indeterminates). This was extended to graded integral domains $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ in [8, Corollary 2.2(2)] as follows: If Q is an upper to zero in R, then $C(Q)_t = R$ if and only if Q is *t*-invertible, if and only if Q is a maximal *t*-ideal. We next generalize [8, Corollary 2.2(2)] to prime *t*-ideals Q of R with $Q \cap H = \emptyset$.

Proposition 1.8. Let Q be a prime t-ideal of $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ such that $Q \cap H = \emptyset$. Then the following statements are equivalent.

- (1) $C(Q)_t = R$.
- (2) Q is t-invertible.
- (3) Q is a maximal t-ideal.

In this case, htQ = 1, and hence Q is an upper to zero in R.

Proof. (1) \Rightarrow (2) Since $C(Q)_t = R$, there are some $f_1, \ldots, f_k \in Q$ such that $(C(f_1) + \cdots + C(f_k))_v = R$. Assume that $\operatorname{ht} Q \geq 2$. Since R_H is a UFD, there is a $g \in Q$ such that gR_H is a prime ideal and $f_1 \notin gR_H$. Clearly, $((f_1, \ldots, f_k, g)R_H)_v = R_H$, and hence if $u \in (f_1, \ldots, f_k, g)^{-1}$, then $u \in R_H$. Also, since $(C(f_1) + \cdots + C(f_k))_v = R$, $u \in R$. Thus, $R = (f_1, \ldots, f_k, g)^{-1} = (f_1, \ldots, f_k, g)_v \subseteq Q_t = Q \subsetneq R$, a contradiction. Hence, $\operatorname{ht} Q = 1$, and so Q is an upper to zero in R. Thus, Q is t-invertible [8, Corollary 2.2(2)].

 $(2) \Rightarrow (3)$ [34, Theorem 1.4].

(3) \Rightarrow (1) Note that $Q \subsetneq C(Q)_t \subseteq R$ and $C(Q)_t$ is a *t*-ideal. Hence, if Q is a maximal *t*-ideal, then $C(Q)_t = R$.

Corollary 1.9. Each homogeneous prime t-ideal of $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ has heightone if and only if t-dim(R) = 1. In this case, R is a graded UMT-domain.

Proof. Assume that each homogeneous prime t-ideal of R has height-one, and let Q be a maximal t-ideal of R. If $Q \cap H \neq \emptyset$, then Q is homogeneous, and thus $\operatorname{ht} Q = 1$. Next, if $Q \cap H = \emptyset$, then $C(Q)_t = R$ because each homogeneous maximal t-ideal has height-one. Thus, $\operatorname{ht} Q = 1$ by Proposition 1.8. The converse is clear.

The "In this case" part follows because t-dim(R) = 1 implies that each prime t-ideal of R is a maximal t-ideal.

Let $A \subseteq B$ be an extension of integral domains. As in [23], we say that B is *t*-linked over A if $I^{-1} = A$ for a nonzero finitely generated ideal I of A implies $(IB)^{-1} = B$. It is easy to see that B is *t*-linked over A if and only if $B = \bigcap_{P \in t-\operatorname{Max}(A)} B_P$ [14, Lemma 3.2], if and only if either $Q \cap A = (0)$ or $Q \cap A \neq (0)$ and $(Q \cap A)_t \subsetneq A$ for all $Q \in t\operatorname{-Max}(B)$ [4, Propositions 2.1].

Corollary 1.10. Let T be a homogeneous overing of $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$, and assume that T is t-linked over R (e.g., $T = R_S$ for some multiplicative set $S \subseteq H$). If R is a graded UMT-domain, then T is a graded UMT-domain.

Proof. Let U be an upper to zero in T. If U is not a maximal t-ideal, then $C_T(U)_t \subseteq T$ by Proposition 1.8. Hence, there is a homogeneous maximal t-ideal Q of T such that $U \subseteq Q$. Note that $U \cap R$ is an upper to zero in $R, Q \cap R$ is homogeneous, $(Q \cap R)_t \subseteq R$ because T is t-linked over R, and $U \cap R \subseteq Q \cap R$. Thus, $U \cap R \subseteq (Q \cap R)_t$, a contradiction because $U \cap R$ is a maximal t-ideal by assumption. Hence, U is a maximal t-ideal of T.

Following [3], we say that a multiplicative subset S of D is a t-splitting set if for each $0 \neq d \in D$, $dD = (AB)_t$ for some integral ideals A and B of D, where $A_t \cap sD = sA_t$ (equivalently, $(A, s)_t = D$) for all $s \in S$ and $B_t \cap S \neq \emptyset$. It is known that S is a t-splitting set of D if and only if $dD_S \cap D$ is t-invertible for all $0 \neq d \in D$ [3, Corollary 2.3]. Also, D is a UMT-domain if and only if $D - \{0\}$ is a t-splitting set in D[X] [16, Corollary 2.9].

Theorem 1.11. The following statements are equivalent for $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$.

- (1) R is a graded UMT-domain.
- (2) Let Q be a nonzero prime ideal of R such that $C(Q)_t \subsetneq R$. Then Q is homogeneous.
- (3) Let Q be a nonzero prime ideal of R such that $Q \subsetneq M$ for some homogeneous maximal t-ideal M of R. Then Q is homogeneous.
- (4) $C(Q)_t = R$ for every upper to zero Q in R.
- (5) If $I = fR_H \cap R$ for $0 \neq f \in R$, then $C(I)_t = R$.
- (6) H is a t-splitting set of R.
- (7) Every prime t-ideal of R disjoint from H is t-invertible.
- (8) Every prime t-ideal of R disjoint from H is a maximal t-ideal.

Proof. (1) \Rightarrow (2) Suppose that Q is not homogeneous. Clearly, there is an $f \in Q \setminus H$ such that $C(f) \notin Q$. Let P be a prime ideal of R such that P is minimal over fR and $P \subseteq Q$. If $P \cap H \neq \emptyset$, then $PR_{H \setminus P}$ must be a homogeneous

maximal t-ideal of $R_{H\setminus P}$ (cf. [8, Lemma 2.1]); so P is homogeneous. Hence, $C(f) \subseteq P \subseteq Q$, a contradiction. Thus, $P \cap H = \emptyset$ and PR_H is a prime t-ideal because PR_H is minimal over fR_H , whence P is an upper to zero in R. Thus, P = Q by (1), and so $C(Q)_t = R$ by Proposition 1.8, a contradiction. Thus, Qis homogeneous.

 $(2) \Leftrightarrow (3)$ Clear.

 $(2) \Rightarrow (4)$ Let Q be an upper to zero in R. Then Q is not homogeneous and $Q \subsetneq C(Q)$. However, if $C(Q)_t \subsetneq R$, then Q is homogeneous by (2), a contradiction. Thus, $C(Q)_t = R$.

 $(4) \Rightarrow (1)$ Proposition 1.8.

 $(1) \Rightarrow (5)$ Let $f = f_1^{e_1} \cdots f_n^{e_n}$ be the prime factorization of f in R_H , where $f_i \in R_H$ is a prime element. Then

$$I = (f_1^{e_1} \cdots f_n^{e_n}) R_H \cap R$$

= $(f_1^{e_1} R_H \cap \cdots \cap f_n^{e_n} R_H) \cap R$
= $(f_1^{e_1} R_H \cap R) \cap \cdots \cap (f_n^{e_n} R_H \cap R)$
= $((f_1 R_H \cap R)^{e_1})_t \cap \cdots \cap ((f_n R_H \cap R)^{e_n})_t.$

(For the last equality, note that each $f_i R_H \cap R$ is a maximal *t*-ideal by (1) and $\sqrt{f_i^{e_i} R_H \cap R} = f_i R_H \cap R = \sqrt{((f_i R_H \cap R)^{e_i})_t}$; so $((f_i R_H \cap R)^{e_i})_t$ is primary. Clearly, $((f_i R_H \cap R)^{e_i})_t R_H = f_i^{e_i} R_H$, and thus $((f_i R_H \cap R)^{e_i})_t = f_i^{e_i} R_H \cap R)$. If $C(I)_t \subseteq R$, then $I \subseteq C(I)_t \subseteq M$ for some homogeneous maximal *t*-ideal M of R. Since M is a prime ideal, $f_i R_H \cap R \subseteq M$ for some i, and hence $R = C(f_i R_H \cap R)_t \subseteq C(M)_t = M$ by the equivalence of (1) and (4) above, a contradiction. Thus, $C(I)_t = R$.

 $(5) \Rightarrow (1)$ Let Q be an upper to zero in R. Then $Q = fR_H \cap R$ for some $f \in R$, and hence $C(Q)_t = R$ by (5). Thus, Q is a maximal *t*-ideal by Proposition 1.8.

 $(1) \Rightarrow (6)$ Let Q be a prime t-ideal of R such that $Q \cap H = \emptyset$. Then Q_H is a prime ideal of R_H , and hence $fR_H \subseteq Q_H$ for some nonzero prime element fof R_H . Hence, $fR_H \cap R \subseteq Q$, and since $fR_H \cap R$ is a maximal t-ideal of R by $(1), Q = fR_H \cap R$ and $C(Q)_t = R$. Thus, H is a t-splitting set [8, Theorem 2.1].

 $(6) \Rightarrow (4)$ Let Q be an upper to zero in R. Then Q is a prime t-ideal of R with $Q \cap H = \emptyset$, and thus $C(Q)_t = R$ [8, Theorem 2.1].

(6) \Leftrightarrow (7) [8, Corollary 2.2]. (7) \Leftrightarrow (8) Proposition 1.8.

Let D[X] be the polynomial ring over an integral domain D and $f \in D[X]$ be such that $c(f)_v = D$. If A is an ideal of D[X] with $f \in A$, then A is t-invertible [34, Proposition 4.1] and $fD[X] = (Q_1^{e_1} \cdots Q_n^{e_n})_t$ for some uppers to zero Q_i in D[X] and integers $e_i \ge 1$ [29, p. 144]. We end this section with an extension of these results to graded integral domains.

Proposition 1.12. Let A be a nonzero ideal of $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ such that $C(A)_t = R$. If A contains a nonzero $f \in R$ with $C(f)_v = R$ (e.g., R satisfies

property (#)), then $A_t = (Q_1^{e_1} \cdots Q_n^{e_n})_t$ for some t-invertible uppers to zero Q_i in R and integers $e_i \ge 1$. In particular, A is t-invertible.

Proof. If $A_t = R$, then A is t-invertible; so assume that $A_t \subsetneq R$. Let Q be a maximal t-ideal of R with $A \subseteq Q$; then $f \in Q$. If $Q \cap H \neq \emptyset$, then Qis homogeneous, and hence $R = C(A)_t \subseteq Q_t = Q$, a contradiction. Hence, $Q \cap H = \emptyset$, and so Q contains an upper to zero U in R containing f. Clearly, $C(U)_t = R$; so by Proposition 1.8, U is a maximal t-ideal, and thus Q = U, i.e., Q is an upper to zero in R that is t-invertible. Hence, each prime t-ideal of R containing A is an upper to zero in R that is also t-invertible. Thus, $A_t = (Q_1^{e_1} \cdots Q_n^{e_n})_t$ for some uppers to zero Q_i in R and integers $e_i \ge 1$ (cf. the proof of [29, Theorem 1.3]) and A is t-invertible.

Corollary 1.13. Let $f \in R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be nonzero. If $C(f)_v = R$, then $fR = (Q_1^{e_1} \cdots Q_n^{e_n})_t$ for some uppers to zero Q_i in R and integers $e_i \ge 1$.

Proof. Clearly, $C(fR)_t = R$ and $f \in fR$. Thus, the result is an immediate consequence of Proposition 1.12.

A careful reading of the proof of Proposition 1.12 also shows:

Corollary 1.14. Let A be a nonzero ideal of a graded UMT-domain $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ such that $C(A)_t = R$. Then $A_t = (Q_1^{e_1} \cdots Q_n^{e_n})_t$ for some uppers to zero Q_i in R and integers $e_i \geq 1$, and A is t-invertible.

Let D be an integral domain, S be a t-splitting set of D, $\mathfrak{S} = \{A_1 \cdots A_n \mid A_i = d_i D_S \cap D$ for some $0 \neq d_i \in D\}$, and $D_{\mathfrak{S}} = \{x \in K \mid xA \subseteq D$ for some $A \in \mathfrak{S}\}$. Then $D_{\mathfrak{S}} = \bigcap \{D_P \mid P \in t\text{-Max}(D) \text{ and } P \cap S \neq \emptyset\}$ [3, Lemma 4.2 and Theorem 4.3]. The S is said to be t-lcm if $sD \cap dD$ is t-invertible for all $s \in S$ and $0 \neq d \in D$; and S is called a t-complemented t-splitting set if $D_{\mathfrak{S}} = D_T$ for some multiplicative set T of D and the saturation of T is the t-complement of S.

Corollary 1.15 (cf. [16, Proposition 3.7]). Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ and $N(H) = \{f \in R \mid C(f)_v = R\}$. Then N(H) is a t-lcm t-complemented t-splitting set of R.

Proof. Let $0 \neq f \in R$ and $A = fR_{N(H)} \cap R$. For the *t*-splitting set property of N(H), it suffices to show that A is *t*-invertible [3, Corollary 2.3]. Let Q be a maximal *t*-ideal of R. If $Q \cap N(H) = \emptyset$, then $A_Q = fR_Q$. Next, assume that $Q \cap N(H) \neq \emptyset$. Then $C(Q)_t = R$, and hence Q is an upper to zero in R and R_Q is a rank-one DVR by Proposition 1.8. Now, note that if Q' is an upper to zero in R containing A, then $f \in Q'_H$ and Q'_H is a height-one prime ideal of R_H ; so there are only finitely many uppers to zero in R containing A, say Q_1, \ldots, Q_n . Hence, if $S = R \setminus \bigcup_{i=1}^n Q_i$, then R_S is a principal ideal domain, and thus $AR_S = gR_S$ for some $g \in A$. Let $I = (f, g)_v$. Then $IR_Q = fR_Q$ when $Q \cap N(H) = \emptyset$, and $IR_Q = gR_Q$ when $Q \cap N(H) \neq \emptyset$. Thus, I = A [36, Proposition 2.8(3)]; so A is *t*-invertible [36, Corollary 2.7].

Next, note that every t-ideal of R intersecting N(H) is t-invertible by Proposition 1.12. Thus, N(H) is a t-lcm t-splitting set [16, Theorem 3.4]. Also, if $\mathfrak{S} = \{A_1 \cdots A_n \mid A_i = d_i R_{N(H)} \cap R$ for some $0 \neq d_i \in R\}$, then $R_H \subseteq R_{\mathfrak{S}}$ because $aR_{N(H)} \cap R = aR$ for all $a \in H$. Hence, $R_{\mathfrak{S}}$ is t-linked over R_H [4, Proposition 2.3], and since R_H is a UFD, $R_{\mathfrak{S}} = (R_H)_T$ for some saturated multiplicative set T of R_H [24, Theorem 1.3]. Thus, if $N = T \cap R$, then $R_{\mathfrak{S}} = R_N$.

An integral domain is called a *Mori domain* if it satisfies the ascending chain condition on its (integral) *v*-ideals. Clearly, Krull domains are Mori domains.

Corollary 1.16. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ and $N(H) = \{f \in R \mid C(f)_v = R\}$. Then R is a Mori domain (resp., UMT-domain) if and only if $R_{N(H)}$ is a Mori domain (resp., UMT-domain).

Proof. By Corollary 1.15, N(H) is a t-lcm t-complemented t-splitting set of R. Let N be the t-complement of N(H); then $R_H \subseteq R_N$, and hence R_N is a UFD and $R = R_{N(H)} \cap R_N$. Thus, $R_{N(H)}$ is a Mori domain if and only if R is a Mori domain [40, Theorem 1]. The UMT-domain property follows directly from [16, Corollary 3.6] and Corollary 1.15.

2. Graded integral domains with property (#)

Let Γ be a nonzero torsionless grading monoid, $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a nontrivial Γ -graded integral domain, H be the set of nonzero homogeneous elements of R, and $N(H) = \{f \in R \mid C(f)_v = R\}$. Let Ω be the set of all homogeneous maximal *t*-ideals of R, i.e., $\Omega = \{Q \in t\text{-Max}(R) \mid Q \cap H \neq \emptyset\}$, and recall that R satisfies property (#) if and only if $\text{Max}(R_{N(H)}) = \{Q_{N(H)} \mid Q \in \Omega\}$ [9, Proposition 1.4].

Lemma 2.1. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with property (#), and let Q be an upper to zero in R.

- (1) Q is a maximal t-ideal if and only if $C(g)_v = R$ for some $g \in Q$.
- (2) If Q is a maximal t-ideal of R, then $Q = (f,g)_v$ for some $f,g \in R$.

Proof. (1) Q is a maximal t-ideal if and only if $C(Q)_t = R$ by Proposition 1.8, if and only if $Q \cap N(H) \neq \emptyset$ by property (#).

(2) Since Q is an upper to zero in R, there is an $f \in R$ such that $Q = fR_H \cap R$. Also, there is a $g \in Q$ with $C(g)_v = R$ by (1). Clearly, $(f,g)_v \subseteq Q$. For the reverse containment, let $h \in Q$. Then $\alpha h \in fR$ for some $\alpha \in H$, and thus $h(\alpha,g) \subseteq (f,g)$. Hence, $h(\alpha,g)_v \subseteq (f,g)_v \subseteq Q$. If $\xi \in (\alpha,g)^{-1}$, then $\alpha \in H$ implies $\xi \in R_H$, and since $C(g)_v = R$, $\xi g \in R$ implies $\xi \in R$. Hence, $(\alpha,g)^{-1} = R$, and thus $h \in hR = h(\alpha,g)_v \subseteq (f,g)_v$. Thus, $Q \subseteq (f,g)_v$.

We next give a characterization of graded UMT-domains $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ with property (#).

Theorem 2.2. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with property (#). Then the following statements are equivalent.

- (1) R is a graded UMT-domain.
- (2) If Q is an upper to zero in R, then there is an $f \in Q$ such that $C(f)_v = R$.
- (3) Every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R.
- (4) N(H) is a t-lcm t-complemented t-splitting set of R with t-complement H.

Proof. (1) \Leftrightarrow (2) This follows directly from Lemma 2.1.

 $(1) \Rightarrow (3)$ Let Q' be a nonzero prime ideal of $R_{N(H)}$. Then $Q' = Q_{N(H)}$ for some prime ideal Q of R. Note that $Q \subseteq M$ for some homogeneous maximal *t*-ideal M of R because R satisfies property (#). Thus, Q is homogeneous by Theorem 1.11.

 $(3) \Rightarrow (1)$ Let Q be an upper to zero in R, and assume that Q is not a maximal t-ideal of R. Then $Q \cap N(H) = \emptyset$ by Lemma 2.1(1), and so $Q_{N(H)}$ is a proper ideal of $R_{N(H)}$. Hence, by (3), there is a homogeneous ideal P of R such that $Q_{N(H)} = PR_{N(H)}$. Thus, $P \subseteq PR_{N(H)} \cap R = Q_{N(H)} \cap R = Q$, and so $Q_H = R_H$, a contradiction. Thus, Q is a maximal t-ideal of R.

(1) \Rightarrow (4) By Corollary 1.15, N(H) is a *t*-lcm *t*-complemented *t*-splitting set of *R*. Also, note that $\{Q \in t\text{-Max}(R) \mid Q \cap N(H) \neq \emptyset\}$ is the set of uppers to zero in *R* by property (#) and assumption; so $R_H = R_{\mathfrak{S}}$, where $\mathfrak{S} = \{A_1 \cdots A_n \mid A_i = d_i R_{N(H)} \cap R \text{ for some } 0 \neq d_i \in R\}$. Thus, *H* is the *t*-complement of N(H).

 $(4) \Rightarrow (1)$ Let Q be an upper to zero in R. Then $Q \cap H = \emptyset$, and hence $Q \cap N(H) \neq \emptyset$ [3, Theorem 4.3] because H is the *t*-complement of N(H). Thus, Q is a maximal *t*-ideal of R by Proposition 1.8.

The next result is an immediate consequence of Corollary 1.9, but we use Theorem 2.2 to give another proof.

Corollary 2.3. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with property (#). Then t-dim(R) = 1 if and only if dim $(R_{N(H)}) = 1$. In this case, R is a graded UMT-domain.

Proof. Assume t-dim(R) = 1, and note that $Max(R_{N(H)}) = \{Q_{N(H)} | Q \in \Omega\}$. Thus, dim $(R_{N(H)}) = 1$. Conversely, suppose dim $(R_{N(H)}) = 1$, and let Q be a maximal t-ideal of R. If $Q \cap H \neq \emptyset$, then Q is homogeneous, and thus ht $Q = ht(Q_{N(H)}) = 1$. Next, if $Q \cap H = \emptyset$, then $Q_H \subsetneq R_H$, and hence Q contains an upper to zero Q_0 in R. However, note that since R satisfies property (#), dim $(R_{N(H)}) = 1$ implies $(Q_0)_{N(H)} = R_{N(H)}$. Thus, $Q_0 \cap N(H) \neq \emptyset$, and so Q_0 is a maximal t-ideal by Lemma 2.1. Hence, $Q = Q_0$ and htQ = 1.

For "In this case", note that $\dim(R_{N(H)}) = 1$ implies that every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R. Thus, R is a graded UMT-domain by Theorem 2.2.

An integral domain D is called an *almost Dedekind domain* (resp., *t*-almost Dedekind domain) if D_P is a rank-one DVR for all maximal ideals (resp., maximal *t*-ideals) P of D. Clearly, Dedekind domains are almost Dedekind domains; Krull domains are *t*-almost Dedekind domains; and if D is an almost (resp., a *t*-almost) Dedekind domain, then dim(D) = 1 (resp., *t*-dim(D) = 1).

Corollary 2.4 (cf. [20, Corollary 9]). Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with property (#). Then R is a t-almost Dedekind domain if and only if $R_{N(H)}$ is an almost Dedekind domain.

Proof. (\Rightarrow) By Corollary 2.3, dim $(R_{N(H)}) = 1$. Note that Max $(R_{N(H)}) = \{Q_{N(H)} | Q \in \Omega\}$ and R_Q is a rank-one DVR for all $Q \in \Omega$. Thus, $R_{N(H)}$ is an almost Dedekind domain.

(⇐) If $R_{N(H)}$ is an almost Dedekind domain, then dim $(R_{N(H)}) = 1$, and thus t-dim(R) = 1 by Corollary 2.3. Let Q be a maximal t-ideal of R. If $Q \cap H = \emptyset$, then ht $(Q_H) = \text{ht}Q = 1$, and since R_H is a UFD, R_Q is a rank-one DVR. Next, if $Q \cap H \neq \emptyset$, then Q is homogeneous, and hence $Q_{N(H)} \subsetneq R_{N(H)}$. Thus, R_Q is a rank-one DVR by assumption.

An integral domain D is called a *weakly Krull domain* if (i) $D = \bigcap_{P \in X^1(D)} D_P$, where $X^1(D)$ is the set of height-one prime ideals of D, and (ii) the intersection $D = \bigcap_{P \in X^1(D)} D_P$ is locally finite. It is easy to see that if D is a weakly Krull domain, then t-dim(D) = 1, i.e., $X^1(D) = t$ -Max(D), and D_S is a weakly Krull domain for a multiplicative set S of D. Also, D is a Krull domain if and only if D is a weakly Krull domain and D_P is a rank-one DVR for all $P \in X^1(D)$.

Corollary 2.5. The following statements are equivalent for $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$.

- (1) R is a weakly Krull domain.
- (2) R is a graded UMT-domain and $R_{N(H)}$ is a weakly Krull domain.
- (3) $R_{N(H)}$ is a weakly Krull domain.
- (4) $R_{N(H)}$ is an one-dimensional weakly Krull domain.

Proof. Note that $R_{N(H)}$ is a weakly Krull domain in this corollary. Also, $Q_{N(H)}$ is a prime *t*-ideal of $R_{N(H)}$ for all $Q \in \Omega$ [9, Proposition 1.3]. Hence, the intersection $\bigcap_{Q \in \Omega} R_Q$ is locally finite, and thus R satisfies property (#) [9, Lemma 2.2].

 $(1) \Rightarrow (2)$ If R is a weakly Krull domain, then t-dim(R) = 1, and hence R is a graded UMT-domain by Corollary 2.3. Also, since N(H) is a multiplicative subset of R, $R_{N(H)}$ is a weakly Krull domain.

 $(2) \Rightarrow (3)$ Clear.

(3) \Rightarrow (4) If $R_{N(H)}$ is a weakly Krull domain, then $\operatorname{ht}(Q_{N(H)}) = 1$ for all $Q \in \Omega$. Thus, $\dim(R_{N(H)}) = 1$ because R satisfies property (#).

(4) \Rightarrow (1) By Corollary 2.3, t-dim(R) = 1, and thus $R = \bigcap_{Q \in X^1(R)} R_Q$. Next, let $f \in R$ be a nonzero nonunit. Since $R_{N(H)}$ is a weakly Krull domain, f is contained in only finitely many homogeneous maximal t-ideals of R. Also,

since R_H is a UFD, f is contained in only finitely many uppers to zero in R. Therefore, R is a weakly Krull domain.

It is clear that D is a Krull domain if and only if D is a *t*-almost Dedekind weakly Krull domain and that a Krull domain D is a Dedekind domain if and only if dim(D) = 1. Hence, by Corollaries 2.4 and 2.5, we have:

Corollary 2.6 ([9, Corollary 2.4]). Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$. Then R is a Krull domain if and only if $R_{N(H)}$ is a Dedekind domain.

An integral domain D is a weakly factorial domain if each nonzero nonunit of D can be written as a finite product of primary elements of D. (A nonzero element $x \in D$ is said to be primary if xD is a primary ideal.) Since a prime ideal is a primary ideal, prime elements are primary, and thus UFDs are weakly factorial domains. It is known that D is a weakly factorial domain if and only if D is a weakly Krull domain and $Cl(D) = \{0\}$ [6, Theorem]. Note that Xis a prime element of the polynomial ring D[X]; so D[X] is a weakly factorial domain if and only if $D[X, X^{-1}]$ is a weakly factorial domain. Thus, the next result is a generalization of [5, Theorem 17] that D is a weakly factorial GCDdomain if and only if D[X] is a weakly factorial domain.

Corollary 2.7. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree. Then the following statements are equivalent.

- (1) R is a weakly factorial domain.
- (2) R is a weakly factorial GCD-domain.
- (3) R is a weakly factorial PvMD.

Proof. (1) \Rightarrow (2) If *R* is a weakly factorial domain, then *R* is a weakly Krull domain and $Cl(R) = \{0\}$. Hence, each upper to zero *Q* in *R* is *t*-invertible by Corollary 2.5 and Proposition 1.8, and so *Q* is principal. Thus, every upper to zero in *R* contains a (nonzero) prime element, and hence *R* is a GCD-domain [19, Theorem 2.2].

$$(2) \Rightarrow (3) \Rightarrow (1)$$
 Clear

3. Graded integral domains with a unit of nonzero degree

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be an integral domain graded by a nonzero torsionless grading monoid Γ , H be the set of nonzero homogeneous elements of R, $N(H) = \{f \in R \mid C(f)_v = R\}$, and \overline{R} be the integral closure of R. Note that \overline{R} is a graded integral domain by Lemma 1.6 such that $R \subseteq \overline{R} \subseteq R_H = \overline{R}_H$. In this section, we study a graded UMT-domain property of R with a unit of nonzero degree.

Lemma 3.1. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree, and let Q be a nonzero homogeneous prime ideal of R. If Q is not a t-ideal, then there is an upper to zero U in R such that $U \subseteq Q$.

Proof. Since Q is not a t-ideal, there are some $a_0, a_1, \ldots, a_n \in Q \cap H$ such that $(a_0, a_1, \ldots, a_n)_v \notin Q$. Let

$$f = a_0 + a_1 x^{k_1} + \dots + a_n x^{k_n},$$

where $x \in R$ is a unit of nonzero degree and $k_i \geq 1$ is an integer such that $C(f) = (a_0, a_1, \ldots, a_n)$, and let $U \subseteq Q$ be a prime ideal of R minimal over fR. Then U is a t-ideal. We claim that U is an upper to zero in R.

Let $S = H \setminus Q$. Then Q_S is a unique homogeneous maximal ideal of R_S , and so $(C(f)R_S)_t = R_S$ because $(C(f)R_S)_t = (C(f)_tR_S)_t \notin Q_S$. Also, note that U_S is a t-ideal of R_S ; hence if $a \in U \cap H(\neq \emptyset)$, then $R_S = ((a, f)R_S)_v \subseteq$ $(U_S)_t = U_S$, a contradiction. Thus, $U \cap H = \emptyset$, and so U_H is a prime t-ideal because U_H is minimal over fR_H . Since R_H is a UFD, $U_H = gR_H$ for some $g \in R$. Thus, $U = U_H \cap R = gR_H \cap R$ is an upper to zero in R.

Proposition 3.2. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded UMT-domain with a unit of nonzero degree, T be a homogeneous overring of R, and Q be a homogeneous prime t-ideal of R. If M is a homogeneous prime ideal of T such that $M \cap R = Q$, then M is a t-ideal of T.

Proof. If M is not a t-ideal of T, then there is an upper to zero U in T such that $U \subseteq M$ by Lemma 3.1. Clearly, $U \cap R$ is an upper to zero in R and $U \cap R \subsetneq M \cap R = Q$. Thus, $U \cap R$ is not a maximal t-ideal of R, a contradiction. \Box

Corollary 3.3. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded UMT-domain with a unit of nonzero degree. If Q is a homogeneous prime t-ideal of R, then $R_{H\setminus Q}$ is a graded UMT-domain with a unique homogeneous maximal ideal that is a t-ideal.

Proof. Clearly, $R_{H\setminus Q}$ is a homogeneous t-linked overring of R, and hence $R_{H\setminus Q}$ is a graded UMT-domain by Corollary 1.10. Also, $Q_{H\setminus Q}$ is a unique homogeneous maximal ideal of $R_{H\setminus Q}$, and by Proposition 3.2, $Q_{H\setminus Q}$ is a t-ideal. \Box

Lemma 3.4. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain. Then R is a graded-Prüfer domain if and only if R_Q is a valuation domain for all homogeneous maximal ideals Q of R.

Proof. This follows from the following two observations: (i) R is a (graded) PvMD if and only if R_Q is a valuation domain for all homogeneous maximal *t*-ideals Q of R [18, Lemma 2.7] and (ii) R is a graded-Prüfer domain if and only if R is a graded PvMD whose homogeneous maximal ideals are *t*-ideals. \Box

We next give the main result of this section which provides characterizations of graded UMT-domains with a unit of nonzero degree.

Theorem 3.5. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree. Then the following statements are equivalent.

(1) R is a graded UMT-domain.

- (2) If Q is an upper to zero in R, then there is an $f \in Q$ such that $C(f)_v = R$.
- (3) Every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R.
- (4) R
 _{H\Q} is a graded-Pr
 üfer domain for all homogeneous maximal t-ideals Q of R.
- (5) R is a UMT-domain.
- (6) $\bar{R}_{N(H)}$ is a Prüfer domain.
- (7) $R_{N(H)}$ is a UMT-domain.
- (8) $R_{N(H)}$ is a quasi-Prüfer domain.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) Since R has a unit of nonzero degree, R satisfies property (#). Thus, the results follow directly from Theorem 2.2.

 $(1) \Rightarrow (4)$ Let Q be a homogeneous maximal *t*-ideal of R. Replacing R and Q with $R_{H\setminus Q}$ and $Q_{H\setminus Q}$ respectively, by Corollary 3.3, we may assume that R has a unique homogeneous maximal ideal Q and Q is a *t*-ideal.

Assume to the contrary that R is not a graded-Prüfer domain. Then there are some $a_0, a_1, \ldots, a_k \in H$ such that $I = (a_0, a_1, \ldots, a_k)\bar{R}$ is not invertible. Let $f = a_0 + a_1 x^{m_1} + \cdots + a_k x^{m_k}$, where $x \in R$ is a unit of nonzero degree and $m_i \geq 1$ is an integer such that $C_{\bar{R}}(f) = I$. Then $fR_H \cap \bar{R} = fC_{\bar{R}}(f)^{-1}$ [9, Lemma 1.2(4)], and since I is not invertible and $C_{\bar{R}}(f)C_{\bar{R}}(f)^{-1}$ is homogeneous, we have $U = fC_{\bar{R}}(f)^{-1} \subseteq C_{\bar{R}}(f)C_{\bar{R}}(f)^{-1} \subseteq M$ for some homogeneous maximal ideal M of \bar{R} . Note that R_H is a UFD; so $f = f_1^{e_1} \cdots f_n^{e_n}$ for some prime elements $f_i \in R_H$ and integers $e_i \geq 1$. Thus,

$$fR_H \cap \bar{R} = ((f_1R_H)^{e_1} \cdots (f_nR_H)^{e_n}) \cap \bar{R}$$

= $((f_1R_H)^{e_1} \cap \cdots \cap (f_nR_H)^{e_n}) \cap \bar{R}$
= $((f_1R_H)^{e_1} \cap \bar{R}) \cap \cdots \cap ((f_nR_H)^{e_n} \cap \bar{R})$
 $\supseteq (f_1R_H \cap \bar{R})^{e_1} \cap \cdots \cap (f_nR_H \cap \bar{R})^{e_n}.$

Thus, $M \supseteq f_i R_H \cap \overline{R}$ for some *i*, and so

$$Q = M \cap R \supseteq (f_i R_H \cap R) \cap R = f_i R_H \cap R,$$

which is contrary to the fact that Q is a *t*-ideal. Therefore, \overline{R} is a graded-Prüfer domain.

 $(4) \Rightarrow (1)$ Assume that R is not a graded UMT-domain, and let $Q_f = fR_H \cap R$ be an upper to zero in R such that $Q_f \subseteq Q$ for some homogeneous maximal t-ideal Q of R (cf. Theorem 1.11). Let $T = \bar{R}_{H\setminus Q}$. Then by (4), T is a graded-Prüfer domain, and hence $U_f = fR_H \cap T = fC_T(f)^{-1} \notin M_0$ for all homogeneous maximal ideals M_0 of T. Note that $U_f \cap R_{H\setminus Q} = (Q_f)_{H\setminus Q}$, $(Q_f)_{H\setminus Q} \subsetneq Q_{H\setminus Q}$, and T is integral over $R_{H\setminus Q}$. Thus, there is a prime ideal M of T such that $U_f \subseteq M$ and $M \cap R_{H\setminus Q} = Q_{H\setminus Q}$. Since Q is homogeneous, $M^* \cap R_{H\setminus Q} = Q_{H\setminus Q}$. Thus, $M = M^*$ is homogeneous, a contradiction.

(1) \Rightarrow (5) Let Q be a maximal *t*-ideal of R. If $Q \cap H \neq \emptyset$, then Q is homogeneous, and thus $\bar{R}_{H\setminus Q}$ is a graded-Prüfer domain by the equivalence of

(1) and (4). Note that if M is a prime ideal of $R_{H\setminus Q}$ such that $M \cap R_{H\setminus Q} = Q_{H\setminus Q}$, then M is homogeneous because Q is homogeneous; hence $(\bar{R}_{H\setminus Q})_M$ is a valuation domain by Lemma 3.4. Clearly, $\bar{R}_{R\setminus Q} = (\bar{R}_{H\setminus Q})_{R\setminus Q}$. Thus, $\bar{R}_{R\setminus Q}$ is a Prüfer domain. Next, assume $Q \cap H = \emptyset$. Then $Q = Q_H \cap R$, and so if ht $Q \ge 2$, then there is an $0 \neq f \in R$ such that $fR_H \subseteq Q_H$ is a prime ideal of R_H . Hence, $fR_H \cap R \subsetneq Q_H \cap R = Q$, a contradiction. Thus, htQ = 1 and so $R_Q = (R_H)_{Q_H}$ is a rank-one DVR. Therefore, by Theorem 1.2, R is a UMT-domain.

 $(5) \Rightarrow (6)$ Let M be a prime ideal of \bar{R} such that $M_{N(H)}$ is a maximal ideal of $\bar{R}_{N(H)}$. Then $(M \cap R) \cap N(H) = \emptyset$, and hence $M \cap R$ is a homogeneous maximal t-ideal of R. Since R is a UMT-domain, $\bar{R}_{M\cap R}$ is a Prüfer domain by Theorem 1.2. Note that $\bar{R}_{M\cap R} \subseteq \bar{R}_M = (\bar{R}_{N(H)})_{M_{N(H)}}$; so $(\bar{R}_{N(H)})_{M_{N(H)}}$ is a valuation domain. Thus, $\bar{R}_{N(H)}$ is a Prüfer domain.

(6) \Rightarrow (4) Let M be a homogeneous prime ideal of \overline{R} such that $M_{H\setminus Q}$ is a homogeneous maximal ideal of $\overline{R}_{H\setminus Q}$. Then $M\cap R \subseteq Q$, and so $M\cap N(H) = \emptyset$. Thus, $M_{N(H)}$ is a proper prime ideal of $\overline{R}_{N(H)}$, and so $\overline{R}_M = (\overline{R}_{N(H)})_{M_{N(H)}}$ is a valuation domain. Thus, by Lemma 3.4, $\overline{R}_{H\setminus Q}$ is a graded-Prüfer domain.

 $(6) \Leftrightarrow (8)$ [25, Corollary 6.5.14].

(7) \Leftrightarrow (8) This follows because each maximal ideal of $R_{N(H)}$ is a *t*-ideal [9, Propositions 1.3 and 1.4].

Corollary 3.6 ([19, Theorem 2.5]). Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree. Then R is an integrally closed graded UMT-domain if and only if R is a PvMD.

Proof. R is an integrally closed graded UMT-domain if and only if R is an integrally closed UMT-domain (by Theorem 3.5), if and only if R is a PvMD (by Corollary 1.3).

Corollary 3.7. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree. Then \overline{R} is a graded-Prüfer domain if and only if R is a graded UMT-domain whose homogeneous maximal ideals are t-ideals.

Proof. (\Rightarrow) Clearly, $\bar{R}_{H\setminus Q}$ is a graded-Prüfer domain for all homogeneous maximal t-ideals Q of R. Thus, by Theorem 3.5, R is a graded UMT-domain. Next, let $f \in R$ be nonzero such that fR_H is a prime ideal. Note that $fR_H \cap \bar{R} = fC_{\bar{R}}(f)^{-1}$ [9, Lemma 1.2(4)]; so if $h \in R_H$ with $C_{\bar{R}}(h) = C_{\bar{R}}(f)^{-1}$ (such h exists because R has a unit of nonzero degree), then $fh \in fC_{\bar{R}}(f)^{-1}$ and $C_{\bar{R}}(fh) = \bar{R}$. Thus, $C(fC_{\bar{R}}(f)^{-1}) = \bar{R}$. Note also that $fR_H \cap R = fC_{\bar{R}}(f)^{-1} \cap R$ and \bar{R} is integral over R. Hence, $C(fR_H \cap R) = R$. Thus, by Lemma 3.1, each homogeneous maximal ideal of R is a t-ideal.

 (\Leftarrow) Let M be a homogeneous maximal ideal of \bar{R} . Then $M \cap R$ is a homogeneous ideal of R; so $(M \cap R) \cap N(H) = \emptyset$ by assumption. Hence, $M \cap N(H) = \emptyset$, and thus $\bar{R}_M = (\bar{R}_{N(H)})_{M_{N(H)}}$ is a valuation domain by Theorem 3.5. Thus, by Lemma 3.4, \bar{R} is a graded-Prüfer domain.

It is well known that each overring of a Prüfer domain is a Prüfer domain [28, Theorem 26.1]. The next result is the graded-Prüfer domain analog.

Lemma 3.8 ([10, Theorem 2.5(2)]). Let T be a homogeneous overring of a graded-Prüfer domain $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$. Then T is a graded-Prüfer domain. Proof. Let A be a nonzero finitely generated homogeneous ideal of T. Since

 $R \subseteq T \subseteq R_H$, there are an $\alpha \in H$ and a finitely generated homogeneous ideal of T. Since $R \subseteq T \subseteq R_H$, there are an $\alpha \in H$ and a finitely generated homogeneous ideal I of R such that $A = \frac{1}{\alpha}IT$. Since R is a graded-Prüfer domain, I is invertible, and thus $A = \frac{1}{\alpha}IT$ is invertible. Hence, T is a graded-Prüfer domain. \Box

Let *D* be a UMT-domain, and recall that if *P* is a nonzero prime ideal of *D* with $P_t \subsetneq D$, then *P* is a *t*-ideal [26, Corollary 1.6]. We next give the graded UMT-domain analog.

Corollary 3.9. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded UMT-domain with a unit of nonzero degree, and let M be a homogeneous maximal t-ideal of R. If $P \subseteq M$ is a nonzero prime ideal of R, then P is a homogeneous prime t-ideal.

Proof. Since M is homogeneous, $C(P)_t \subseteq M_t = M \subsetneq R$. Thus, P is homogeneous by Theorem 1.11. Next, note that $\bar{R}_{H\setminus M}$ is a graded-Prüfer domain and $\bar{R}_{H\setminus P}$ is a homogeneous overring of $\bar{R}_{H\setminus M}$; so by Lemma 3.8, $\bar{R}_{H\setminus P}$ is a graded-Prüfer domain. Thus, by Corollary 3.7, $PR_{H\setminus P}$ is a prime *t*-ideal, and hence P is a prime *t*-ideal of R.

We next give another characterization of graded UMT-domains.

Corollary 3.10. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree. Then the following statements are equivalent.

- (1) R is a graded UMT-domain.
- (2) Let Q be a nonzero prime ideal of R with $C(Q)_t \subsetneq R$. Then Q is a homogeneous prime t-ideal.
- (3) Let Q be a nonzero prime ideal of R such that $Q \subseteq M$ for some homogeneous maximal t-ideal M of R. Then Q is a homogeneous prime t-ideal.

Proof. (1) \Rightarrow (2) Let Q be a nonzero prime ideal of R with $C(Q)_t \subseteq R$. Clearly, there is a homogeneous maximal *t*-ideal M of R such that $Q \subseteq M$. Hence, by Corollary 3.9, Q is a homogeneous prime *t*-ideal.

- $(2) \Leftrightarrow (3)$ Clear.
- $(3) \Rightarrow (1)$ This follows from Theorem 1.11.

An integral domain D is called a generalized Krull domain if (i) $D = \bigcap_{P \in X^1(D)} D_P$, (ii) the intersection $D = \bigcap_{P \in X^1(D)} D_P$ is locally finite, and (iii) D_P is a (rank-one) valuation domain for all $P \in X^1(D)$. Clearly, D is a generalized Krull domain if and only if D is a weakly Krull domain and D_P is a valuation domain for all $P \in X^1(D)$, if and only if D is a weakly Krull PvMD; and a generalized Krull domain D is a Krull domain, if and only if D_P is a DVR for all $P \in X^1(D)$.

Corollary 3.11. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a unit of nonzero degree. Then the following statements are equivalent.

- (1) R is an integrally closed weakly Krull domain.
- (2) R is a generalized Krull domain.
- (3) $R_{N(H)}$ is a generalized Krull domain.
- (4) $R_{N(H)}$ is an one-dimensional generalized Krull domain

Proof. (1) \Rightarrow (2) It suffices to show that R_Q is a valuation domain for all $Q \in X^1(R)$. Let Q be a height-one prime ideal of R. If $Q \cap H = \emptyset$, then Q_H is a height-one prime ideal of R_H , and since R_H is a UFD, $R_Q = (R_H)_{Q_H}$ is a valuation domain. If $Q \cap H \neq \emptyset$, then Q is homogeneous, and hence $Q_{N(H)}$ is a proper prime ideal of $R_{N(H)}$. Note that R is a graded UMT-domain by Corollary 2.5 and $R_{N(H)}$ is integrally closed; hence $R_{N(H)}$ is a Prüfer domain by Theorem 3.5. Thus, $R_Q = (R_{N(H)})_{Q_{N(H)}}$ is a valuation domain.

 $(2) \Rightarrow (3)$ [28, Corollary 43.6].

 $(3) \Rightarrow (4) \Rightarrow (1)$ This follows from Corollary 2.5 because $R = R_H \cap R_{N(H)}$, R_H is integrally closed, and a generalized Krull domain is a weakly Krull domain.

Let \overline{D} be the integral closure of an integral domain D, $\{X_{\alpha}\}$ be a nonempty set of indeterminates over D, and $N_v = \{f \in D[\{X_{\alpha}\}] \mid c(f)_v = D\}$. It is known that D is a UMT-domain if and only if $D[\{X_{\alpha}\}]$ is a UMT-domain, if and only if $D[\{X_{\alpha}\}]_{N_v}$ is a UMT-domain, if and only if $\overline{D}[\{X_{\alpha}\}]_{N_v}$ is a Prüfer domain [26, Theorems 2.4 and 2.5], if and only if every prime ideal of $D[\{X_{\alpha}\}]_{N_v}$ is extended from D (cf. [34, Theorem 3.1]). We next recover this result as a corollary of Theorem 3.5, and for this we first need a simple lemma.

Lemma 3.12. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a set $\{p_{\beta}\}$ of nonzero homogeneous prime elements such that (i) $ht(p_{\beta}R) = 1$ for each β and (ii) $\bigcap_{n=1}^{\infty} p_{\beta_n}R = (0)$ for any sequence $\{p_{\beta_n}\}$ of nonassociate members of $\{p_{\beta}\}$, and let S be the saturated multiplicative set of R generated by $\{p_{\beta}\}$.

- (1) R_S is a homogeneous overring of R.
- (2) R is a graded UMT-domain if and only if R_S is a graded UMT-domain.
- (3) R is a UMT-domain if and only if R_S is a UMT-domain.

Proof. (1) Clear.

(2) It is clear that each upper to zero in R is not comparable with $p_{\beta}R$ under inclusion for all β . Also, Q is an upper to zero in R if and only if Q_S is an upper to zero in R_S . Note that t-Max $(R_S) = \{Q_S \mid Q \in t$ -Max(R) and $Q \neq p_{\beta}R$ for all $\beta\}$ [2, Proposition 2.6 and Corollary 3.5]. Thus, each upper to zero in R is a maximal t-ideal if and only if each upper to zero in R_S is a maximal t-ideal.

(3) Clearly, $R_{p_{\beta}R}$ is a rank-one DVR for all β . Also, if Q is a prime ideal of R with $Q \cap S = \emptyset$, then $(\overline{R_S})_{Q_S} = \overline{R}_Q$. Thus, the result follows from Theorem 1.2 and [2, Proposition 2.6 and Corollary 3.5].

Corollary 3.13. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain with a nonzero homogeneous prime element p such that ht(pR) = 1 and $deg(p) \neq 0$. Then R is a graded UMT-domain if and only if R is a UMT-domain.

Proof. Clearly, $\{p\}$ satisfies the conditions (i) and (ii) of Lemma 3.12. Also, if $S = \{up^n \mid u \text{ is a unit of } R \text{ and } n \geq 0\}$, then R_S has a unit of nonzero degree. Thus, R is a graded UMT-domain if and only if R_S is a graded UMT-domain, if and only if R_S is a UMT-domain, if and only if R is a UMT-domain by Lemma 3.12 and Theorem 3.5. \square

For each α , let $\mathbb{Z}_{\alpha} = \mathbb{Z}$ be the additive group of integers; so if $G = \bigoplus_{\alpha} \mathbb{Z}_{\alpha}$, then G is a torsionfree abelian group and the group ring D[G] of G over D is isomorphic to $D[\{X_{\alpha}, X_{\alpha}^{-1}\}]$. Thus, if $R = D[\{X_{\alpha}, X_{\alpha}^{-1}\}]$, then R has a unit of nonzero degree and $R_{N(H)} = D[\{X_{\alpha}\}]_{N_v}$ [9, Proposition 3.1] and every homogeneous ideal of R has the form IR for an ideal I of D.

Corollary 3.14. Let D be an integral domain, $\{X_{\alpha}\}$ be a nonempty set of indeterminates over D, and $N_v = \{f \in D[\{X_\alpha\}] \mid c(f)_v = D\}$. Then the following statements are equivalent.

- (1) D is a UMT-domain.
- (2) $D[\{X_{\alpha}\}]$ is a UMT-domain.
- (3) $D[{X_{\alpha}}]$ is a graded UMT-domain.
- (4) $D[\{X_{\alpha}, X_{\alpha}^{-1}\}]$ is a UMT-domain. (5) $D[\{X_{\alpha}, X_{\alpha}^{-1}\}]$ is a graded UMT-domain.
- (6) $\overline{D}[\{X_{\alpha}\}]_{N_v}$ is a Prüfer domain.
- (7) $D[\{X_{\alpha}\}]_{N_v}$ is a UMT-domain.
- (8) $D[\{X_{\alpha}\}]_{N_v}$ is a quasi-Prüfer domain.
- (9) Every prime ideal of $D[\{X_{\alpha}\}]_{N_v}$ is extended from D.

Proof. (1) \Leftrightarrow (5) Let $R = D[\{X_{\alpha}, X_{\alpha}^{-1}\}]$. Then $R_{N(H)} = D[\{X_{\alpha}\}]_{N_v}$ and $\{PR \mid P \in t\text{-}Max(D)\}$ is the set of homogeneous maximal t-ideals of R. Note that $\bar{R}_{H\setminus PR} = \bar{D}_P[\{X_{\alpha}, X_{\alpha}^{-1}\}];$ and $\bar{D}_P[\{X_{\alpha}, X_{\alpha}^{-1}\}]$ is a graded-Prüfer domain if and only if \overline{D}_P is a Prüfer domain for all $P \in t$ -Max(D) (cf. [9, Example 3.6]). Thus, the result follows from Theorems 1.2 and 3.5.

(2) \Leftrightarrow (3) This follows from Corollary 3.13 because each X_{β} is a height-one homogeneous prime element of nonzero degree.

(3) \Leftrightarrow (5) Clearly, $\{X_{\alpha}\}$ is a set of nonzero homogeneous prime elements of $D[\{X_{\alpha}\}]$ satisfying the two conditions of Lemma 3.12. Also, if S is the multiplicative set of $D[\{X_{\alpha}\}]$ generated by $\{X_{\alpha}\}$, then $D[\{X_{\alpha}\}]_{S} = D[\{X_{\alpha}, X_{\alpha}^{-1}\}].$ Thus, the result is an immediate consequence of Lemma 3.12(2).

 $(4) \Leftrightarrow (5) \Leftrightarrow (6) \Leftrightarrow (7) \Leftrightarrow (8) \Leftrightarrow (9)$ Theorem 3.5.

4. Counterexamples via the D + XK[X] construction

In this section we use the D + XK[X] construction to show that a graded UMT-domain need not be a UMT-domain in general. For this, let D be an

integral domain with quotient field K and $D \subsetneq K$, X be an indeterminate over D, K[X] be the polynomial ring over K, and R = D + XK[X] be a subring of K[X], i.e., $R = \{f \in K[X] \mid f(0) \in D\}$; so $D[X] \subsetneq R \subsetneq K[X]$ and R is an \mathbb{N}_0 -graded integral domain with $\deg(aX^n) = n$ for $0 \neq a \in K$ and integer $n \ge 0$ ($a \in D$ when n = 0). Let H be the set of nonzero homogeneous elements of R and $N(H) = \{f \in R \mid C(f)_v = R\}$; then $N(H) = \{f \in R \mid f(0) \text{ is a unit of } R\}$ [15, Lemma 6] and $R_H = K[X, X^{-1}]$.

Lemma 4.1. If Q is an upper to zero in R = D + XK[X], then Q = fR for some $f \in R$ with f(0) = 1, and hence Q is a maximal t-ideal of R.

Proof. Note that $R_H = K[X, X^{-1}]$; so $Q = fK[X, X^{-1}] \cap R$ for some $f \in K[X, X^{-1}]$. Since X is a unit of $K[X, X^{-1}]$ and K is the quotient field of D, we may assume that $f \in R$ with f(0) = 1. Hence, if $g \in K[X, X^{-1}]$ is such that $fg \in R$, then $g \in K[X]$, and since f(0) = 1, we have $g(0) \in D$; so $g \in R$. Thus, Q = fR.

It is known that R = D + XK[X] is a PvMD if and only if D is a PvMD [21, Theorem 4.43]. We next give a UMT-domain analog.

Proposition 4.2. Let R = D + XK[X].

- (1) R is a graded UMT-domain.
- (2) R is a UMT-domain if and only if D is a UMT-domain.

Proof. (1) Lemma 4.1.

(2) Note that K[X] is a UMT-domain and XK[X] is a maximal *t*-ideal of K[X]. Thus, R is a UMT-domain if and only if D is a UMT-domain [26, Proposition 3.5].

We end this paper with some counterexamples.

Example 4.3. Let R = D + XK[X]. Then R is a graded UMT-domain.

(1) Counterexample to Proposition 1.7, Theorem 3.5, Corollary 3.6, and Corollary 3.7: Let \mathbb{R} be the field of real numbers, $\overline{\mathbb{Q}}$ be the algebraic closure of the field \mathbb{Q} of rational numbers in \mathbb{R} , $\mathbb{R}[\![y]\!]$ be the power series ring over \mathbb{R} , and $D = \overline{\mathbb{Q}} + y\mathbb{R}[\![y]\!]$. Then D is an integrally closed one-dimensional local integral domain that is not a valuation domain [11, Theorem 2.1] (hence D is not a UMT-domain). Hence, R satisfies property (#) [15, Corollary 9], R is an integrally closed graded UMT-domain, but R is not a UMT-domain (so not a PvMD). (i) Thus, the converse of Proposition 1.7 does not hold in general. (ii) Moreover, this shows that Theorem 3.5 is not true if $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ does not contain a unit of nonzero degree. (iii) This also shows that Corollary 3.6 is not true in general. (iv) Finally, R = D + XK[X] is an integrally closed domain but not a graded-Prüfer domain, while R = D + XK[X] has a unique homogeneous maximal *t*-ideal (which must be a unique homogeneous maximal ideal). Thus, Corollary 3.7 does not hold in general. (2) Let D be an integral domain with a prime ideal P such that $P \subsetneq P_t \subsetneq D$. (For example, let $D = \mathbb{R} + (X, Y, Z)\mathbb{C}[\![X, Y, Z]\!]$, where \mathbb{C} is the field of complex numbers and $\mathbb{C}[\![X, Y, Z]\!]$ is the power series ring, and let $P = (X, Y)\mathbb{C}[\![X, Y, Z]\!]$. Then P is a prime ideal of D such that $P \subsetneq P_t = (X, Y, Z)\mathbb{C}[\![X, Y, Z]\!] \subsetneq D$.) Then $PR = P + XK[X] \subsetneq P_t + XK[X] = (P + XK[X])_t \subsetneq R = D + XK[X]$, and hence PR is a prime ideal of R contained in a homogeneous maximal t-ideal but PR is not a t-ideal. Thus, Corollary 3.9 does not hold if $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ does not contain a unit of nonzero degree.

Acknowledgements. The author would like to thank the referee for his/her several valuable comments.

References

- D. D. Anderson and D. F. Anderson, Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), no. 2, 549–569.
- [2] D. D. Anderson, D. F. Anderson, and M. Zafrullah, Splitting the t-class group, J. Pure Appl. Algebra 74 (1991), no. 1, 17–37.
- [3] _____, The ring $D + XD_S[X]$ and t-splitting sets, Arab. J. Sci. Eng. Sect. C Theme Issues **26** (2001), no. 1, 3–16.
- [4] D. D. Anderson, E. Houston, and M. Zafrullah, t-linked extensions, the t-class group, and Nagata's theorem, J. Pure Appl. Algebra 86 (1993), no. 2, 109–124.
- [5] D. D. Anderson and L. Mahaney, On primary factorizations, J. Pure Appl. Algebra 54 (1988), no. 2-3, 141–154.
- [6] D. D. Anderson and M. Zafrullah, Weakly factorial domains and groups of divisibility, Proc. Amer. Math. Soc. 109 (1990), no. 4, 907–913.
- [7] D. F. Anderson, Graded Krull domains, Comm. Algebra 7 (1979), no. 1, 79–106.
- [8] D. F. Anderson and G. W. Chang, Homogeneous splitting sets of a graded integral domain, J. Algebra 288 (2005), no. 2, 527–544.
- [9] _____, Graded integral domains and Nagata rings, J. Algebra **387** (2013), 169–184.
- [10] D. F. Anderson, G. W. Chang, and M. Zafrullah, *Graded-Prüfer domains*, Comm. Algebra, to appear.
- [11] E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form D + M, Michigan Math. J. **20** (1973), 79–95.
- [12] J. Brewer and E. Rutter, D + M constructions with general overrings, Michigan Math. J. 23 (1976), no. 1, 33–42.
- [13] G. W. Chang, Locally pseudo-valuation domains of the form $D[X]_{N_v}$, J. Korean Math. Soc. **45** (2008), no. 5, 1405–1416.
- [14] _____, The A + XB[X] construction from Prüfer v-multiplication domains, J. Algebra **439** (2015), 417–437.
- [15] _____, Graded integral domains and Nagata rings II, Korean J. Math. 25 (2017), 215–227.
- [16] G. W. Chang, T. Dumitrescu, and M. Zafrullah, t-splitting sets in integral domains, J. Pure Appl. Algebra 187 (2004), no. 1-3, 71–86.
- [17] G. W. Chang and M. Fontana, Uppers to zero in polynomial rings and Prüfer-like domains, Comm. Algebra 37 (2009), no. 1, 164–192.
- [18] G. W. Chang, B. G. Kang, and J. W. Lim, Prüfer v-multiplication domains and related domains of the form D + D_S[Γ*], J. Algebra **323** (2010), no. 11, 3124–3133.
- [19] G. W. Chang, H. Kim, and D. Y. Oh, Kaplansky-type theorems in graded integral domains, Bull. Korean Math. Soc. 52 (2015), no. 4, 1253–1268.

- [20] G. W. Chang and D. Y. Oh, On t-almost Dedekind graded domains, Bull. Korean Math. Soc., to appear.
- [21] D. Costa, J. Mott, and M. Zafrullah, The construction $D + XD_S[X]$, J. Algebra 53 (1978), no. 2, 423–439.
- [22] D. Dobbs, E. Houston, T. Lucas, M. Roitman, and M. Zafrullah, On t-linked overrings, Comm. Algebra 20 (1992), no. 5, 1463–1488.
- [23] D. Dobbs, E. Houston, T. Lucas, and M. Zafrullah, t-linked overrings and Prüfer vmultiplication domains, Comm. Algebra 17 (1989), no. 11, 2835–2852.
- [24] _____, t-linked overrings as intersections of localizations, Proc. Amer. Math. Soc. 109 (1990), no. 3, 637–646.
- [25] M. Fontana, J. Huckaba, and I. Papick, Prüfer Domains, Marcel Dekker, New York, 1997.
- [26] M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra 25 (1998), no. 4, 1017–1039.
- [27] S. Gabelli, E. Houston, and T. Lucas, The t#-property for integral domains, J. Pure Appl. Algebra 194 (2004), no. 3, 281–298.
- [28] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [29] R. Gilmer, J. Mott, and M. Zafrullah, t-invertibility and comparability, in: Commutative Ring Theory. Lecture Notes Pure and Appl. Math., pp. 141–150, vol. 153, Marcel Dekker, New York, 1994.
- [30] M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967), 710-722.
- [31] J. Hedstrom and E. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), no. 1, 137–147.
- [32] _____, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), no. 1, 37-44.
- [33] E. Houston, Uppers to zero in polynomial rings, in: J. W. Brewer, S. Glaz, W. J. Heinzer, B. M. Olberding (Eds.), Multiplicative Ideal Theory in Commutative Algebra, pp. 243–261, A Tribute to the Work of Robert Gilmer, Springer, 2006.
- [34] E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17 (1989), no. 8, 1955–1969.
- [35] J. L. Johnson, Integral closure and generalized transforms in graded domains, Pacific J. Math. 107 (1983), no. 1, 173–178.
- [36] B. G. Kang, Prüfer v-multiplication domains and the ring R[X]_{Nv}, J. Algebra 123 (1989), no. 1, 151–170.
- [37] I. Kaplansky, Commutative Rings, revised ed., Univ. of Chicago, Chicago, 1974.
- [38] C. Năstăsescu and F. Van Oystaeyen, Graded Ring Theory, Library of Math. vol. 28, North Holland, Amsterdam, 1982.
- [39] D. G. Northcott, Lessons on Rings, Modules, and Multiplicities, Cambridge Univ. Press, Cambridge, 1968.
- [40] J. Querré, Intersections d'anneaux intègres, J. Algebra 43 (1976), 55-60.
- [41] P. Sahandi, On quasi-Prüfer and UMt domains, Comm. Algebra 42 (2014), 299–305.
 [42] ______, Characterizations of graded Prüfer *-multiplication domains, Korean J. Math. 22 (2014), 181–206.
- [43] A. Seidenberg, A note on the dimension theory of rings, Pacific J. Math. 3 (1953), 505–512.
- [44] F. Wang, On induced operations and UMT-domains, Sichuan Shifan Daxue Xuebao Ziran Kexue Ban 27 (2004), no. 1, 1–9.

PRÜFER-LIKE DOMAINS

Gyu Whan Chang Department of Mathematics Education Incheon National University Incheon 22012, Korea *E-mail address:* whan@inu.ac.kr