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PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME
RADICAL AND M-BAER’S LOWER NILRADICAL OF
MODULES

JOHN A. BEACHY, MAHMOOD BEHBOODI, AND FAEZEH YAZDI

ABSTRACT. Let M be a fixed left R-module. For a left R-module X, we
introduce the notion of M-prime (resp. M-semiprime) submodule of X
such that in the case M = R, it coincides with prime (resp. semiprime)
submodule of X. Other concepts encountered in the general theory are
M-m-system sets, M-n-system sets, M-prime radical and M-Baer’s lower
nilradical of modules. Relationships between these concepts and basic
properties are established. In particular, we identify certain submodules
of M, called “prime M-ideals”, that play a role analogous to that of prime
(two-sided) ideals in the ring R. Using this definition, we show that if M
satisfies condition H (defined later) and Hompg (M, X) # 0 for all mod-
ules X in the category o[M], then there is a one-to-one correspondence
between isomorphism classes of indecomposable M-injective modules in
o[M] and prime M-ideals of M. Also, we investigate the prime M-ideals,
M-prime submodules and M-prime radical of Artinian modules.

1. Introduction

All rings in this paper are associative with identity and modules are unitary
left modules. Let R be a ring and X be an R-module. If Y is a submodule
(resp. proper submodule) of X we write Y < X (resp. ¥ < X).

In the literature, there are many different generalizations of the notion of
prime two-sided ideals to left ideals and also to modules. For instance, a
proper left ideal L of a ring R is called prime if, for any elements a and b
in R such that aRb C L, either a« € L or b € L. Prime left ideals have
properties reminiscent of prime ideals in commutative rings. For example,
Michler [19] and Koh [12] proved that the ring R is left Noetherian if and only
if every prime left ideal is finitely generated. Moreover, Smith [20], showed
that if R is left Noetherian (or even if R has finite left Krull dimension) then
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a left R-module X is injective if and only if, for every essential prime left
ideal L of R and homomorphism ¢ : L — X, there exists a homomorphism
0 : R — X such that 0|, = ¢. Let us mention another generalization of the
notion of prime ideals to modules. Let X be a left R-module. If X # 0 and
Anng(X) = Anng(Y) for all nonzero submodules Y of X then X is called a
prime module. A proper submodule P of X is called a prime submodule if X/P
is a prime module, i.e., for every ideal I C R and every submodule Y C X,
if IY C P, then either Y C P or IX C P. The notion of prime submodule
was first introduced and systematically studied by Dauns [7] and recently has
received some attention. Several authors have extended the theory of prime
ideals of R to prime submodules (see [2, 3, 4, 7, 10, 15, 17, 18]). For example, the
classical result of Cohen is extended to prime submodules over commutative
rings, namely a finitely generated module is Noetherian if and only if every
prime submodule is finitely generated (see [15, Theorem 8] and [11]) and also
any Noetherian module contains only finitely many minimal prime submodules
(see [18, Theorem 4.2]).

We assume throughout the paper g M is a fixed left R-module. The category
o[M] is defined to be the full subcategory of R-Mod that contains all modules
rX such that X is isomorphic to a submodule of an M-generated module (see
[21] for more detail).

Let C be a class of modules in R-Mod, and let  be the set of kernels of
R-homomorphisms from M in to C. That is,

Q={KCM | 3W e and f € Homg(M, W) with K = ker(f)}.

Then the annihilator of C in M, denoted by Anny,(C), is defined to be the
intersection of all elements of €2, i.e., Annp(C) = Ngeq K-

Let N be a submodule of M. Following Beachy [1], for each module p X we
define

N - X =Amnx(C),

where C is the class of modules gW such that f(N) = (0) for all f € Hompg(M,
W). It follows immediately from the definition that

N - X =(0) if and only if f(N) = (0) for all f € Homp(M, X).

Clearly the class C in the definition of N - X is closed under formation of
submodules and direct products, and so N-X is the smallest submodule Y C X
such that N - (X/Y) = (0).

The submodule N of M is called an M -ideal if there is a class C of modules
in o[M] such that N = Annp(C). Note that although the definition of an
M-ideal is given relative to the subcategory o[M], it is easy to check that N
is an M-ideal if and only if N = Ann,(C) for some class C in R-Mod (see [1,
Page 4651]).

In this article for a left R-module X, we introduce the notions of M-prime
submodule, M-semiprime submodule of X and prime M-ideal of M as follows:
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Definition 1.1. Let X be an R-module. A proper submodule P of X is called
an M -prime submodule if for all submodules N < M, Y < X, if N-Y C P,
then either N-X C PorY C P. An R-module X is called an M -prime module
if (0) £ X is an M-prime submodule. Also, a proper submodule P of X is
called an M -semiprime submodule if for all submodules N < M, YV < X, if
N2.Y C P,then N-Y C P, where N2 := N-N. An R-module X is called an
M -semiprime module if (0) £ X is an M-semiprime submodule.

Definition 1.2. A proper M-ideal P of M is called a prime M-ideal (resp.
semiprime M -ideal) if there exists an M-prime module (resp. M-semiprime
module) gX such that P = Anny (X).

It is clear that in case M = R, the notion of an R-prime submodule (resp. R-
semiprime submodule) reduces to the familiar definition of a prime submodule
(resp. semiprime submodule). Also, the notion of an R-ideal (resp. prime R-
ideal) of rR reduces to the familiar definition of an ideal (resp. a prime ideal)
of R.

Recently, the idea of M -prime module was introduced and extensively stud-
ied by Beachy [1] by defining a module g X to be M -prime if Homp (M, X) # 0,
and Annps(Y) = Anny(X) for all submodules Y C X such that Homp(M,Y)
# 0. Also, he defined an M-ideal P to be a prime M -ideal if there exists an M-
prime module g X such that P = Annj;(X). Clearly, our definition of M-prime
module is slightly different than Beachy, and hence, for the sake of clarity, for
the remainder of the paper we will use the term “Beachy-M-prime module”
(resp. “Beachy-prime M-ideal”) rather than “M-prime module” (resp. “prime
M-ideal”) of Beachy [1], respectively.

In ring theory, prime ideals are closely tied to m-system sets (a nonempty set
S C R is said to be an m-system set if for each pair a,b in S, there exists r € R
such that arb € S). The complement of a prime ideal is an m-system, and given
an m-system set S, an ideal disjoint from S and maximal with respect to this
property is always a prime ideal. Moreover, for an ideal I in a ring R, the set
VI := {s € R | every m-system containing s meets I} equals the intersection
of all the prime ideals containing I. In particular, /T is a semiprime ideal in R
and 1/(0) is called Baer-McCoy radical (or prime radical) of R (see for example
[14, Chapter 4], for more details). In this paper, we extend these facts for M-
prime submodules. Relationships between these concepts and basic properties
are established. In Section 2, among other results, for an R-module X we define
M -Baer-McCoy radical (or M -prime radical) of X, denoted radys (X) = %//(0),
to be the intersection of all the M-prime submodules in X. Also, in Section 3,
we extend the notion of nilpotent and strongly nilpotent element of modules
to M-nilpotent and strongly M-nilpotent element of modules X € o[M] for
a fixed module M. Also, for an R-module X € o[M], we define M-Baer’s
lower nilradical of X, denoted by M-Nil,(gX), to be the set of all strongly
M-nilpotent elements of X. In particular, it is shown that if M is projective
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in o[M], then for each X € o[M], Nil,(M)- X C M-Nil.(rX) C radp(X) (see
Proposition 3.6).

In Section 4, we rely on the prime M-ideals of M that play a role analogous
to that of prime ideals in the ring R. The module rpX is called M -injective
if each R-homomorphism f : K — X defined on a submodule K of M can
be extended to an R-homomorphism J?: M — X with f = fi, where ¢ :
K — M is the natural inclusion mapping. We note that Baer’s criterion for
injectivity shows that any R-injective module is injective in the category R-Mod
of all left R-modules. It is well-known that if R is a commutative Noetherian
ring, then there is a one-to-one correspondence between isomorphism classes of
indecomposable injective R-modules and prime ideals of R. Gabriel showed in
[8] that this one-to-one correspondence remains valid for any left Noetherian
ring that satisfies what he called condition H. In current terminology, a module
rX is said to be finitely annihilated if there is a finite subset x1,...,x, of X
with Anng(X) = Anng(x1,...,2,). Then by definition the ring R satisfies
condition H if and only if every cyclic left R-module is finitely annihilated. It
follows immediately that, the ring R satisfies condition H if and only if every
finitely generated left R-module is finitely annihilated. We note the stronger
result due to Krause [13] that if R is left Noetherian, then there is a one-to-one
correspondence between isomorphism classes of indecomposable injective left
R-modules and prime ideals of R if and only if R is a left fully bounded ring
(see [9, Theorem 8.12] for a proof). In [1, Theorem 6.7], Beachy shown that
Gabriel’s correspondence can be extended to M-injective modules, provided
that Homp(M, X) # 0 for all modules X in o[M]. In Section 4, by using our
definition of prime M-ideal, we show that also there is a Gabriel correspondence
between indecomposable M-injective modules in o[M] and our prime M-ideals.

Finally, in Section 5, we study the prime M-ideals, M-prime submodules
and M-prime radical of Artinian modules. The prime radical of the module
M, denoted by P(M), is defined to be the intersection of all prime M-ideals of
M. Recall that a proper submodule P of M is wirtually mazimal if the factor
module M/P is a homogeneous semisimple R-module, i.e., M/P is a direct
sum of isomorphic simple modules. It is shown that if M is an Artinian M-
prime module, then M is a homogeneous semisimple module (see Proposition
5.1). In particular, if M is an Artinian R-module such that it is projective in
o[M], then every prime M-ideal of M is virtually maximal and M/P(M) is a
Noetherian R-module (see Theorem 5.6). Moreover, either P(M) = M or there
exist primitive (prime) M-ideals Pi,..., P, of M such that P(M) = (., P,
(see Theorem 5.7).

2. M-prime submodules and M-prime radical of modules
We begin this section with the following three useful lemmas.

Lemma 2.1 ([1, Proposition 1.6]). Let N be a submodule of M. Then for any
R-module X, N - X = (0) if and only if N C Annp(X).
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Lemma 2.2 ([1, Proposition 1.9]). Let N and K be submodules of M.
(a) If N C K, then N-X C K - X for all submodules pX .
(b) If K is an M-ideal, then so is N - K.
(¢) The submodule N - M is the smallest M -ideal that contains N.
(d) If N is an M-ideal, then N- K C NN K.

Lemma 2.3. Let Y1, Yo be submodules of g X. If Y1 C Ys, then N- Y7 C N-Ys,
for each submodule N of M.

Proof. Suppose N < M and Y7, Y5 are submodules of p X with Y; C Y5. Then
N -Y; = Anny, (C) and N - Y2 = Anny, (C), where C is the class of modules
rW such that f(N) = (0) for all f € Homgr(M,W). On the other hand
N -Yi=Ngeq, K (i =1,2), where

0, ={KCY; | 3We€C and f € Hompg(Y;, W) with K = ker(f)}

Clearly, for each f € Hompg(Y2, W), fly, € Hompg(Y1, W), where fl|y, is the
restriction of f on Y;. Since ker(fly,) C ker(f), we conclude that for each
K € Q,, there exists K’/ € Q; such that K’ C K. Thus N-Y; C N - Y5. O

The following evident proposition offers several characterizations of an M-
prime module.

Proposition 2.4. Let X be a nonzero R-module. Then the following state-
ments are equivalent.

(1) X is an M-prime module.

(2) For every submodule N C M and every nonzero submodule Y C X, if
N -Y =(0), then N-X = (0).

(3) For every M-ideal N C M and every nonzero submodule Y C X, if
N-Y =(0), then N-X = (0).

(4) For all nonzero submodules Y1, Yo C X, Annp (Y1) = Annpy (Ya).

(5) Every nonzero submodule Y C X is an M -prime module.

(6) Homp (M, X) = 0 or for every nonzero submodule Y C X, P=Ann (Y)
is a prime M-ideal of M and P = Annp(X).

Proof. (1) = (2) = (3) is clear.

(3) = (4). Let Y1,Y2 be two nonzero submodules of X and let Ny :=
Annps (Y1), N2 := Annys(Ys). Thus by Lemma 2.1, Ny - Y7 = (0) and Nj -
Ys = (0). Since Ni, N3 are M-ideals, Ny - X = Ny - X = (0) by (3). Thus
Ny € Annjs(X) and No C Annyy(X). On the other hand Anny, (X) € Ny and
Annys(X) € No. Thus N; = Ny = Anny (X).

(4) = (5). Let Y be a nonzero submodule of X. Assume that N is a
submodule of M and Z be a nonzero submodule of Y such that N - Z = (0).
So N C Anny(Z). By (4), Anny(Z) = Annpy(X) and so it follows that
N C Annjps(X) and hence N - X = (0). Since N-Y C N- X, so N-Y = (0).
Thus Y is an M-prime module.

(5) = (1) and (5) = (6) = (4) are clear. O
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Remark 2.5. Clearly every simple R-module X is an M-prime module. Now let
R be a domain which is not a field and let M be a nonzero divisible R-module.
Then every nonzero simple R-module X is an M-prime module, but X is not
a Beachy-M-prime module, since Homp (M, X) = 0.

The following lemma shows that in the case Hompg(M, X) # 0, if X is an
M-prime module then X is also a Beachy-M-prime module.

Lemma 2.6 ([1, Proposition 2.2]). Let X be an R-module such that Hompg(M,
X) #0. Then the following statements are equivalent.

(1) X is a Beachy-M -prime module.

(2) For every M-ideal N of M and every nonzero submodule Y of X with
MY #(0), if N-Y =(0), then N - X = (0).

(3) For each m € M \ Annp(X) and each 0 # f € Homp(M, X), there
exists g € Homp(M, f(M)) such that g(m) # 0.

(4) For any M-ideal N C M and any M-generated submodule Y C X, if
N-Y = (0), then N - X = (0).

Proposition 2.7. Let X be an R-module such that Homp(M,X) # 0. If X
is an M -prime module then X is a Beachy-M -prime module.

Proof. By Proposition 2.4 and Lemma 2.6, it is clear. (|

The following example shows that the converse of Proposition 2.7 is not true
in general.

Example 2.8. Let R = Z. For each prime number p, Homy(Z,__,Z,.) # 0
and for each proper Z-submodule Y’ G Z,,_, Zy_ -Y = (0), since Homg(Z,,,,Y")
= (0). Thus by Lemma 2.6, Z,,__ is a Beachy-Z,,__-prime module but it is not
a Zp, -prime module, since Z,,__ - Z,_ # (0).

Lemma 2.9 ([1, Proposition 5.5]). Assume that M is projective in o[M], and
let N be any submodule of M. The following conditions hold for any module
rX in o[M] and any submodule Y C X.

(@) N X =3 s tomp(u.x) F(N)-

(b) N-(X/Y)=(0) ifand only if N- X C Y.

(¢) If N =Annpn (X/Y), then Annp (X/(N - X)) = N.

Proposition 2.10. Assume that M is projective in o[M], and let g X € o[M].
Then

(i) For a submodule P S X, if P is an M -prime submodule of X, then X/P
is an M -prime module.

(ii) For an M-ideal P < M, the following conditions are equivalent.

(1) P is a prime M -ideal.

(2) P is an M-prime submodule of M.

(3) M/P is an M-prime module.

Proof. (i). Let N be a submodule of M and Y/P be a nonzero submodule of
X/P such that N - (Y/P) = (0). By Lemma 2.9(b), N - Y C P. Since P is an
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M-prime submodule, either N- X CPorY CP. If Y C P, then Y/P = (0),
a contradiction. Thus N-X C P and so N - (X/P) = (0) by Lemma 2.9(b).
Thus by Proposition 2.4, X/P is an M-prime module.

(ii) (1) = (2). Suppose that P is a prime M-ideal and N - K C P, for an
M-ideal N and submodule K of M with K ¢ P. By assumption there is an M-
prime module X with P = Anny,(X), and so there exists f € Homg(M/P, X)
with f((K+P)/P) # (0). Since N-K C P, we have N-K C PNK. Now Lemma
2.9(b) implies that N - (K/(P N K)) = (0) and hence N - f((K + P)/P) = (0)
(since (K + P)/P = K/(PNK)). Since X is an M-prime module, N - X = (0)
by Proposition 2.4, and so N C P (since P = Annj(X)).

(2) = (3). Let N be an M-ideal and K/P be a nonzero submodule of M /P
such that N - (K/P) = (0). Since M is projective in o[M], so N - K C P by
Lemma 2.9(b). Now by (2) either N C P or K C P. Since K/P # (0), so
K 52 P and hence N C P. On the other hand N - M = N, since N is an
M-ideal. Thus N -M C P and hence by Lemma 2.9(b), N - (M/P) = (0). Now
M/P is an M-prime module by Proposition 2.4.

(3) = (1). Since P is an M-ideal, P = Annys(M/P) and since M /P is an
M-prime module, we conclude that P is a prime M-ideal. ([

The following example shows that even in the case the R-module M is
projective in o[M], an M-prime module need not be a Beachy-M-prime module.

Example 2.11. Let R=Q x Q, M =Q x {0} and X = {0} x Q. Then M is
projective as an R-module, but Hompg (M, X) = 0 implies on the on hand that
X is an M-prime module, but it is not a Beachy-M-prime module.

Now we have to adapt the notion of an M-m-system set to modules pX
(Behboodi in [2], has generalized the notion of m-system of rings to modules).

Definition 2.12. Let X be an R-module. A nonempty set S C X \ {0} is
called an M-m-system if, for each submodule N C M, and for all submodules
YV, ZCX,if Y+2Z)NS#Pand (Y +N-X)NS #0, then (Y +N-Z)NS # 0.

Corollary 2.13. Let X be an R-module. Then a submodule P S X is M-
prime if and only if X \ P is an M-m-system.

Proof. (=). Suppose S = X \ P. Let N be a submodule of M and Y, Z be
submodules of X such that (Y +2Z2)NS #QPand (Y +N-X)NS #0. If
(Y—i—N-Z)ﬂS:(Z)thenY—l—N-ZgP. Hence N - Z C P and since P is an
M-prime submodule, Z C P or N - X C P. It follows that (Y +2)NS =0 or
(Y+N-X)NS =0, a contradiction. Therefore, S C X \ {0} is an M-m-system
set.

(«<). Let S = X\ P be an M-m-system in X. Suppose N - Z C P, where
N is a submodule of M and Z is a submodule X. If Z ¢ Pand N-X ¢ P,
then ZNS #0and (N-X)NS # 0. Thus (N-Z)NS # 0, a contradiction.
Therefore, P is an M-prime submodule of X. (I
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Proposition 2.14. Let X be an R-module, P be a proper submodule of X and
S := X\ P. Then the following statements are equivalent.

(1) P is an M-prime submodule.

(2) S is an M-m-system.

(3) For every submodule N < M and for every submodule Z < X, if ZNS #
0 and (N-X)NS #0, then (N -Z)NS #0.
Proof. (1) < (2) is by Corollary 2.13.

(2) = (3) is clear.

(3) = (1). Suppose that N < M and Z < X such that N-Z C P. If

N-X¢Pand Z ¢ P, then (N-X)NS #0and ZN S # 0. It follows that
(N-Z)nS #0 by (3),ie, N-Z ¢ P, a contradiction. O

Proposition 2.15. Let X be an R-module, S C X be an M-m-system and P
be a submodule of X maximal with respect to the property that P is disjoint
from S. Then P is an M-prime submodule of X .

Proof. Suppose N - Z C P, where N < M and Z < X. If Z € P and
N - X ¢ P, then by the maximal property of P, we have, (P + Z)NS # {) and
(P+N-X)NS#0. Thus (P+ N-Z)NS # ( and it follows that PN .S # 0,
a contradiction. Thus P must be an M-prime submodule. (I

Next we need a generalization of the notion of VY for any submodule Y of
X. We adopt the following:

Definition 2.16. Let X be an R-module. For a submodule Y of X, if there
is an M-prime submodule containing Y, then we define

NY = {z € X : every M-m-system containing = meets Y'}.
If there is no M-prime submodule containing Y, then we put ¥Y = X.

Theorem 2.17. Let X be an R-module and Y < X. Then either NY =X
or VY equals the intersection of all M -prime submodules of X containing Y .

Proof. Suppose that ¥/Y # X. This means that
{P: P is an M-prime submodule of X and Y C P} # 0.
We first prove that
NY C ({P :| P is an M-prime submodule of X and Y C P}.

Let € VY and P be any M-prime submodule of X containing Y. Consider
the M-m-system X \ P. This M-m-system cannot contain z, for otherwise it
meets Y and hence also P. Therefore, we have x € P. Conversely, assume
x ¢ VY. Then, by Definition 2.16, there exists an M-m-system S containing
x which is disjoint from Y. By Zorn’s Lemma, there exists a submodule P O Y
which is maximal with respect to being disjoint from S. By Proposition 2.15,
P is an M-prime submodule of X, and we have x ¢ P, as desired. [l
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Also, the following evident proposition offers several characterizations of
M-semiprime modules.

Proposition 2.18. Let X be an R-module. Then the following statements are
equivalent.

(1) X is an M-semiprime module.

(2) For every submodule N C M and every submodule Y C X, if N*-Y =
(0), then N -Y = (0).

(3) Every nonzero submodule Y C X is an M -semiprime module.

(4) For every nonzero submodule Y C X, P = Annp(Y) is a semiprime
M -ideal.

Proof. (1) = (2) = (3) = (4) is clear.

(4) = (1). Suppose (0) # Y < X and N < M such that N?-Y = (0).
It follows that N2 C Anny(Y) and since P = Annp(Y) is a semiprime M-
ideal, there exists an M-semiprime module Z such that Ann,(Y) = Anny, (2).
Thus N? - Z = (0) and so N - Z = (0), i.e., N C Annp/(Z) = Annyp(Y). Thus
N -Y = (0). Therefore X is an M-semiprime module. O

Proposition 2.19. Let X be an R-module. Then any intersection of M-
semiprime submodules of X is an M -semiprime submodule.

Proof. Suppose Z; < X (i € I) are M-semiprime submodules of X and put
Z =(\;es Zi- Suppose Y < X and N < M such that N2.Y C Z. It follows that
N2.Y C Z; for each i. Since each Z; is an M-semiprime submodule, N-Y C Z;
for each 4. Thus NV Y C Z and so Z is an M-semiprime submodule. O

We recall the definition of the notion of n-system in a ring R. A nonempty
set T' C R is said to be an n-system set if for each a in T, there exists r € R
such that ara € T (see for example [14, Chapter 4], for more details). The
complement of a semiprime ideal is an n-system set, and if 7' is an n-system
in a ring R such that a € T, then there exists an m-system S C T such that
a € S (see [14, Lemma 10.10]). This notion of n-system of rings has also
generalized by Behboodi in [2] for modules. Now we have to adapt the notion
of an M-n-system set to modules pX.

Definition 2.20. Let X be an R-module. A nonempty set 77 C X \ {0} is
called an M-n-system if, for every submodule N C M, and for all submodules
Y,ZC X, if (Y+N-Z)NT #0, then (Y + N?-Z2)NT # 0.

Proposition 2.21. Let X be an R-module. Then a submodule P S X is an
M -semiprime submodule if and only if X \ P is an M-n-system.

Proof. (=). Let T = X \ P. Suppose N is a submodule of M and Y, Z are
submodules of X such that (Y + N-2Z)NT # 0. If (Y + N?-Z)NT = (), then
(Y +N2.Z) C P. Since P is M-semiprime submodule, (Y + N -Z) C P. Thus
(Y+N-Z)NT =0, a contradiction. Therefore, T is an M-n-system set in X.
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(«<). Suppose that T = X \ P is an M-n-system in X. Suppose N?-Z C P,
where N < M, Z < X,but N-Z ¢ P. It follows that (N - Z)NT # () and so
(N%2-Z)NT # 0, a contradiction. Therefore, P is an M-semiprime submodule
of X. O

The proof of the next proposition is similar to the proof of Proposition 2.14.

Proposition 2.22. Assume that P be a proper submodule of X and T := X\P.
Then the following statements are equivalent.

(1) P is an M-semiprime submodule.

(2) T is an M-n-system set.

(3) For every submodule N < M and for every submodule Z < X, if (N -
Z)NT # 0, then (N?-Z)NT # 0.

Lemma 2.23 ([1, Proposition 5.6]). Assume that M is projective in o[M], and
let K, N be submodules of M. Then (K -N)-X = K- (N -X) for any module
rX in o[M].

Proposition 2.24. Assume that M is projective in o[M], and let X € o[M].
Then any M -prime submodule of X is an M -semiprime submodule.

Proof. Let P < X be an M-prime submodule of X and N < M, Y < X such
that N2 .Y C P. Since M is projective in o[M], so N>-Y = (N-N) Y =
N - (N -Y) by Lemma 2.23. Hence N - (N -Y) C P. Now by assumption,
N-XCPorN-YCP.If N-Y C P, then P is an M-semiprime submodule. If
N-X C P,then N-Y C N-X C P. Thus P is an M-semiprime submodule. [

Corollary 2.25. Assume that M is projective in o[M] and X € o[M]. Then
any intersection of M-prime submodules of X is an M-semiprime submodule.

Proof. 1t follows by Proposition 2.19 and Proposition 2.24. O

Corollary 2.26. Assume that M is projective in o[M], and let X € o[M].
Then for each submodule Y of X, either VY = X or NY is an M -semiprime
submodule of X .

Proof. By Theorem 2.17 and Corollary 2.25, it is clear. O

Definition 2.27. Let M be an R-module. For any module X, we define
radyr(X) = %/(0). This is called M-Baer-McCoy radical or M -prime radical
of X. Thus if X has an M-prime submodule, then rady;(X) is equal to the
intersection of all the M-prime submodules in X but, if X has no M-prime
submodule, then rady (X) = X.

The following two propositions have been established in [2] for prime radical
of modules. Now by the same method as [2], we extend these facts to M-prime
radical of modules.

Proposition 2.28. Let X be an R-module and Y < X. Then rady(Y) C
radp (X).
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Proof. Let P be any M-prime submodule of X. If Y C P, then rady, (Y) C P.
If Y ¢ P, then it is easy to check that Y N P is an M-prime submodule of
Y, and hence rady(Y) € (Y N P) C P. Thus in any case, radpy(Y) C P. Tt
follows that rads (V) C rada (X). O

Lemma 2.29. Assume that M is projective in o[M], and let X be an R-module
in o[M] such that X = @,cp Xa is a direct sum of submodules X (A € A).
Then for every submodule N C M, we have

N-X=N-X..
AEA
Proof. Since for every A € A, X, C X, N- X, C N-X forevery A € A. It follows
that @, N-X» € N-X. On the other hand, since M is projective in o[M], so N-
X =3 fettomn(m,x) [ (V) and for every A € A, N-Xx =37 cyiomp(ar,xy) [ (V)
by Lemma 2.9 (a). Now let z € N - X. Thus z = Y.'_, fi(n;) where t € N,
n; € N and f; € Homp(M, X). Since f;i(n;) € X, so for every 1 < i < ¢,
filn) = {28 }a, where 2§ € X, Thus @ = {2+ +2{)}s = {mafa(m1) +
<o+ wafe(ng)}a, where my : X — X is the canonical projection for every
A € A. Tt is clear that by Lemma 2.9, Zle mafi(n;) € N - X, for every A € A.
Thus z € @, N - X. O

We note that, since in Lemma 2.29 we assume that M is projective in o[M],
so our product coincides with the product defined in [6, Definition 1.1]. Thus
Lemma 2.29 is also proved in [6, Proposition 1.3 (8)].

Proposition 2.30. Assume that M is projective in o[M], and let X be an
R-module in o[M] such that X = @y, X is a direct sum of submodules X
(A€ A). Then
rady (X) = @radM(X,\).
AEA

Proof. By Proposition 2.28, rady (X)) C radpy(X) for all A € A. Thus
P, radm(Xy) C rady(X). Now let ¢ ¢ @, rady(X,), for some z € X.
Then there exists p € A such that m,(z) ¢ rady(X,), where 7, : X — X,
denotes the canonical projection. Thus there exists an M-prime submodule Y,
of X, such that m,(z) ¢ Y,. Let Z =Y, @(@D,,, X»). It is easy to check
by Lemma 2.29 that Z is an M-prime submodule of X and « ¢ Z. Thus
x ¢ radp (X). It follows that radas (X) C @, radas(Xy). O

3. M-Baer’s lower nilradical of modules

We recall the definition of a nilpotent element in a module. An element x
of an R-module X is called nilpotent if x = 2:21 a;x; for some a; € R, r; € X
and r € N, such that a;*z; = 0(1 < i < r) for some k € N and z is called
strongly nilpotent if x = 2221 a;x;, for some a; € R, x; € X and r € N, such
that for every i (1 < i < r) and every sequence a;1, a2, a;3, . .. where a;; = a;
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and ajn11 € ainRain(Vn), we have a;Rx; = 0 for some k € N (see [4]). It
is clear that every strongly nilpotent element of a module X is a nilpotent
element but the converse is not true (see the example 2.3 [4]). In case that R
is a commutative ring, nilpotent and strongly nilpotent are equal.

This notion has been generalized to modules over a projective module M in
o[M].

Definition 3.1. Assume that M is projective in o[M], and let X be an
R-module in o[M]. Then an element z € X is called M-nilpotent if x =
S rifi(m;) for some r;, € R, m; € M, n € N and f; € Hompg(M, Rx;),
where x; € X such that r;*fi(m;) = 0(1 < i < n) for some k € N. Also, an
element z € X is called strongly M -nilpotent if x = 7" | r; f;(m;) for some
r; € Rym; € M, n € N and f; € Homgr(M, Rx;), where x; € X such that
for every i(1 < i < n) and every sequence r;1, 72,743, . .., where ;1 = r; and
Tit+1 € riRri (Vt), we have ry Rf;(m;) = 0 for some k € N.

Proposition 3.2. Let X be an R-module. Then an element x € X 1is strongly
nilpotent if and only if x is strongly R-nilpotent.

Proof. (=). Suppose that « € X is strongly nilpotent. Then z = > 1" | r;x;
for some r; € R, z; € X, n € N such that for every i (1 < i < n) and for
every sequence 1,2, Tis, - - ., where 751 = r; and r;41 € r; Rryy (Vt), we have
rikRx; = 0 for some k € N. Now consider f; : R — Rx; such that f;(r) = ra;.
Then fi(1) = z; and it follows that @ = Y. ra; = > . 7 fi(1). Since
rieRx; = 0 (1 < i < n) for some k € Nywe conclude that r;Rf;(1) = 0
(1 <i<n)for some k € N, i.e., x is a strongly R-nilpotent element of X.
(«). Assume that € X is strongly R-nilpotent. Thus z = > | r; fi(a;)
for some r;,a; € R, n € N and f; € Hompg(R, Rx;), where x; € X such that
for every i (1 <4 < n) and for every sequence 741, 72,73, . .., where ;1 = r;
and 141 € riRry (VE), we have ryRf;(a;) = 0 for some k € N. Since
fi(a;) € Rx; € X, we conclude that z is a strongly nilpotent element of X. O

Proposition 3.3. Let X be an R-module. Then an element x € X is nilpotent
if and only if © is R-nilpotent.

Proof. (=). Assume that x € X is nilpotent. Thus = Y ", r;z; for some
ri € R, z; € X, n € N such that r;*z; = 0(1 < i < n) for some k € N. Now
consider f; : R — Rux; such that f;(r) = ra;, so fi(1) = z;. It follows that
z =31 1w, =Y . i fi(1). Since r;*z; =0 (1 < i < n) for some k € N, so
ri¥fi(1) =0 (1 <i < n) for some k € N, i.e., x is an R-nilpotent element of X.

(<). Assume that z € X is an R-nilpotent element. Thus z = > | r; fi(a;)
for some r;,a; € R, n € N and f; € Hompg(R, Rx;), where 2; € X such that
ri¥ fi(a;) = 0(1 < i < n) for some k € N. Since fi(a;) € Rr; C X, we conclude
that x is a nilpotent element of X. O
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Proposition 3.4. Assume that R is a commutative ring, M is projective in
o[M] and X € o[M]. Then an element x € X is M-nilpotent if and only if x
s strongly M -nilpotent.

Proof. (=). Assume that z € X is M-nilpotent. Thus z = Y . r; fi(m;)
for some r; € R, m; € M, n € N and f; € Homg(M, Rx;), where z; € X
such that 7% f;(m;) = 0 (1 < i < n) for some k € N. Consider the sequence
731,732, Ti3, - - -, Where 7,17 = r; and 741 € 1 Rry for every 1 < i < n and
(Vt). Thus there exists an element r;; = r;;*r’ (where v’ € R) such that
rieRfi(m;) = ra*r' Rfi(m;) = 0 (since R is commutative and r;1* f;(m;) = 0).
Thus = € X is a strongly M-nilpotent element.

(«<). Suppose that € X is a strongly M-nilpotent element. Thus x =
S rifi(m;) for some r;, € R, m; € M, n € N and f; € Hompg(M, Rx;),
where z; € X such that for every i (1 < ¢ < n) and for every sequence

Ti1,Ti2,Ti3, - - -, Where 751 = 73 and ry 41 € ry Rry (Vt), we have ry Rfi(m;) =0

for some k € N. Consider the sequence r;1,72,7;3,..., where r;; = 7; and
_ 2 4

rig = 1ri1” = ralrg € Ry, rig = 1t = ralraglrglrg € rigRrga, ... By

/

assumption, we have r; Rf;(m;) = 0 for some k € N. Since rj, = ri;* for
some k' € N, so Tilk/Rfi(mi) = rgRfi(m;) = 0. Now for r = 1, we have
Tilk/lfi(mi) = 0. Thus z is an M-nilpotent element. O

We recall the definition of Baer’s lower nilradical in a module. For any
module X, Nil,(gX) is the set of all strongly nilpotent elements of X. In case
R is a commutative ring, Nil,(zX) is the set of all nilpotent elements of X.

Definition 3.5. Assume that M is projective in o[M]. For any module X in
o[M], we define M-Nil.(rX) to be the set of all strongly M -nilpotent elements
of X. This is called M-Baer’s lower nilradical of X.

Proposition 3.6. Assume that M is projective in o[M]. Then for any module
X in o[M]
Nil.(M)-X C M—Nil,(rX) C radpy (X).
Proof. Since M is projective in o[M], by Lemma 2.9(a),
Nil, (M) - X = > F(Nil(M)).
feHomp(M,X)

Now let € Nil,(M) - X. Thus z = >.._, fi(m;) for some m; € Nil, (M),
s € N and f; € Homg(M, X). Since m; € Nil.(M), so m; = 3¢

LT

g=1"%""%;
for some r;; € R, n;; € M, t € N such that for every j (1 < j < ¢) and
for every sequence 7y, 7,75, .., Where vy, = ry; and 1y, ., € i, Rri,

(Vu), we have r;, Rn;; = 0 for some k; € N. Thus = = 77, fi(m;) =
Dy fi(Z§':1 M) = D oiq 2221 ri; fi(ni;). Since i, Rn;; = 0, we con-
clude that 0 = fi(Tijki Rn;,) = Tisk, Rf;i(n;;) for some k; € N, where (1 <i <s)
and (1 < j <t). Thus z € M-Nil,(gX).
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Let 2 € M-Nil,(gX) and z ¢ radpy(X) = %/(0). So z = X" | aifi(m;)
for some a; € R, m; € M, n € N and f; € Homg(M, Rx;) such that for
every i(1 <4 < n) and for every sequence a;1, a;2,a;s,. .., where a;; = a; and
Qiy+1 € apRay, (Vu), we have a;pRfi(m;) = 0 for some k € N. Without loss
of generality, we can assume that ajfi(m;) ¢ radp(X). Thus there exists
an M-m-system S such that ajfi(m1) € S and 0 ¢ S. On the other hand
ai fi(m1) € Rai(Rmy) - (Rz1). Thus Rai(Rmy) - (Rx1) NS # 0 and hence
Rai(Rmy) - X NS # 0. Therefore, if we put N = Rai(Rmy), Y = (0) and
Z = Rai(Rm1)-(Rx1), then (Rai(Rm1))?-(Rxz1) NS # 0 by Proposition 2.14.
Since M is projective in o[M], by Lemma 2.9(a) and Lemma 2.23, we conclude
that

(Ral(le))Q . (RSCl) = (Ral(le) ~Ra1(Rm1)) . (R:L'l)
= (Ra1 (le))(Ral (le) . (R.Tl))

= > f(Rai(Rmy)).

f€Homp(M,Ra1(Rm1)-(Rxz1))

Assume that S1 = 1, aj] = aj and alfl(tlalsgml) S (Ral(le))2 . (RSCl) ﬁS,
where S2, tl € R. Since a1f1 (t1a182m1) = 52a1t1a1f1 (ml) and a1 = altlal, SO
sea12f1(my) € Raja(Rmy)-(Rz1)NS. Tt follows that Raia(Rmy)-(Rx1) NS # 0
and so

(Rau(le))Q . (R:Cl) ns ?é (Z)

Thus there exists sgaizfi(mi) € (Rai2(Rmy))? - (Rz1) NS, where s3 € R,
and a3 = ajatassars for some to € R. We can repeat this argument to get
sequences {sy tuen and {a1y}uen in R, where a;; = a1 and a1y41 € a1, Ra1y
(Vu), such that syai,fi(my) € S for all w > 1. Now by our hypothesis
a1 Rfi(my1) = 0 for some k € N, and so sgaixfi(m1) = 0 € S, a contra-
diction. O

In case M = R, by Proposition 3.6, Nil,(R) - X C R-Nil.(gX) C radg(X).
Since by Proposition 3.2, R-Nil,(gX) is the set of all strongly R-nilpotent
elements of X, so we have R-Nil,(rX) = Nil,(gX) (see also, [2, Lemma 3.2]).

Corollary 3.7. Assume that M is projective in o[M]. Then
Nil,(M) = Nil,(M) - M = M — Nil.(M).

Proof. By Proposition 3.6, Nil,(M)-M C M-Nil,(M). Also, we have Nil,(M)-
M =3 tcromp(aran f(NiL(M)), by Lemma 2.9 (a). Since 1y € Hompg(M,
M), so Nil,(M) C Nil,(M) - M. On the other hand, if x € M-Nil,(M), then
x =" rifi(m;) for some r; € R, m; € M, n € Nand f; € Homg(M, Rx;),
where x; € M such that for every i (1 < ¢ < n) and for every sequence
Tils T2, T3« « oy where i1 =715 and Tit+1 € rithit (Vt), we have rlkaZ(mz) =0
for some k € N. Since f;(m;) € Rx; C M, it follows that x is a strongly
nilpotent element of M. So « € Nil,(M). Tt follows that M-Nil, (M) C Nil, (M)
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and Nil, (M) C Nil,(M) - M C M-Nil,(M) C Nil,(M). Thus Nil,(M)
Nil, (M) - M = M-Nil, (M).

O

Corollary 3.8. Assume that M is projective in o[M]. Then radr(M)
rady (M).

Proof. By Proposition 3.6, we have M-Nil,(M) C radp(M). On the other
hand Nil, (M) = M-Nil,(M) by Corollary 3.7. Thus Nil,.(M) C rady (M).
Since M is projective in o[M], radg(M) = Nil,.(M) by [2, Theorem 3.8]. Thus
radg (M) = Nil, (M) C rady (M). O

N

Proposition 3.9. Assume that M is projective in o[M]. If X € o[M] such
that rady(X) = M-Nil,(X), then rady(Y) = M-Nil.(Y) for any direct
summand Y of X.

Proof. Suppose that X = Y & Z, where Z, Y are submodules of X. By
Proposition 3.6, M-Nil,(Y) C radpy(Y). Let z € rady(Y). By Proposition
2.28, x € rady(X). By hypothesis € M-Nil,(X). Thus z = Y., ri fi(m;)
for some r; € R, m; € M, n € N and f; € Homg(M, Rx;), where z; € X
such that for every i (1 <14 < n) and for every sequence r;1,7i2, 43, . .., where
rin = r; and 141 € e Rry (Vi), we have ri Rfi;(m;) = 0 for some k € N.
Since z; € X, there exist elements y; € Y, z; € Z such that x; = y; + z;
for each ¢ (1 < ¢ < m). On the other hand, f;(m;) € Rx; for each i, and
hence f;(m;) = a;(y; + z;) for some a; € R (1 < i < n). It is clear that
T = ria1y1+raasyet- - +rnanyn, and ri Ra;y; = 0 for some k € N (1 < ¢ < n).

Now for each i (1 < i < n), we consider g; : M LN Rx; C X =5 Ry, C Y,
where 7; is the natural projection map such that g;(m;) = m; fi(m;) = m;(a; (yi+
z;)) = a;y;. Thus © = ria1y1 + reasys + -+ + rnanyn = 2?21 r;g:(m;), where
gi € Homp(M, Ry;) and ry; Ra;y; = riRgi(m;) = 0. Tt follows that € M-
Nil, (V). Thus rady (Y) = M-Nil, (Y). O

4. M-injective modules and prime M-ideals

The module pX is said to be M -generated if there exists an R-epimorphism
from a direct sum of copies of M onto X. Equivalently, for each nonzero R-
homomorphism f : X — Y there exists an R-homomorphism g : M — X with
fg # 0. The trace of M in X is defined to be

vM(X)y=" Y f(M)

feHomp(M,X)

and thus X is M-generated if and only if trM(X) = X.

We recall the definition of prime M-ideal. The proper M-ideal P is said
to be a prime M-ideal if there exists an M-prime module p X such that P =
Annp, (X).
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Proposition 4.1. Let M an R-module with Homgr(M,X) # 0 for every X €
o|[M] and P be a proper M-ideal. Then P is a prime M -ideal if and only if P
s a Beachy-prime M -ideal.

Proof. Assume that P is a prime M-ideal. Thus there exists an M-prime
module X such that P = Annj;(X). Since P # M, Homp(M, X) # 0. Thus
by Proposition 2.7, X is a Beachy-M-prime module. Thus P is a Beachy-prime
M-ideal.

Conversely, let P be a Beachy-prime M-ideal. Thus there exists a Beachy-M-
prime module X in o[M] such that P = Annys(X). Since Homp(M, X) # 0,
so X # (0). Now assume that Y is a nonzero submodule of X. So Y € o[M]
and Homp(M,Y) # 0 by assumption. Therefore, Anny/(X) = Annp(Y) by
the definition of Beachy-M-prime module. Thus by Proposition 2.4, X is an
M-prime module and hence P is a prime M-ideal. (]

The module pX in o[M] is said to be finitely M -generated if there exists an
epimorphism f : M™ — X, for some positive integer n. It is said to be finitely
M -annihilated if there exists a monomorphism g : M/Anny (X) — X™, for
some positive integer m. Also, the module rM is said to satisfy condition H
if every finitely M-generated module is finitely M-annihilated. Note that if
M = R and R is a fully bounded Noetherian ring, then M satisfies condition
H. The same is true if M is an Artinian module, since then M/K has the
finite intersection property.

In [1, Theorem 6.7], it is shown that if M is a Noetherian module such
that M satisfies condition H and Hompg(M, X) # 0 for all modules X in
o[M], then there is a one-to-one correspondence between isomorphism classes
of indecomposable M-injective modules in o[M] and Beachy-prime M-ideals.
Next, in the main result of this section, we show this fact is also true for a
Noetherian module with condition H and the assumption Hompg(M, X) # 0
for all modules X in o[M] via prime M-ideals.

Corollary 4.2. Let M be a Noetherian R-module. If M satisfies condition
H and Homp(M, X) # 0 for all modules X in o[M], then there is a one-to-
one correspondence between isomorphism classes of indecomposable M -injective
modules in o[M] and prime M -ideals.

Proof. By [1, Theorem 6.7] and Proposition 4.1, it is clear. O

5. Prime M-ideals and M-prime radical of Artinian modules

Let M be an R-module. Recall that a proper submodule P of M is virtually
mazimal if the factor module M/ P is a homogeneous semisimple R-module, i.e.,
M/P is a direct sum of isomorphic simple modules. Clearly, every virtually
maximal submodule of M is prime. Also, every maximal submodule of M is
virtually maximal and for M = R and R commutative, this is equivalent to the
notion of maximal ideal in R.
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We recall that Soc(M) is the sum of all minimal submodules of M. If M
has no minimal submodule, then Soc(M) = (0).

Proposition 5.1. Let M be an Artinian R-module. If M is an M -prime
module, then M is a homogeneous semisimple module.

Proof. Since M is an Artinian R-module, Soc(M) # (0). Hence there exists
a simple submodule Rm of M where 0 # m € M. Since M is an M-prime
module, Annys(Rm) = Anny (M) = (0) by Proposition 2.4. Thus (0) =
Anny (Rm) = fettomp (v, rm) Ker(f). Since Rm = M /ker(f) for every f €
Homp (M, Rm), (0) is an intersection of maximal submodules and since M is
Artinian, (0) must be a finite intersection of maximal submodules. It follows
that M is isomorphic to a finite direct sum of copies of Rm. Thus M is a
homogeneous semisimple module. (|

An M-ideal P is said to be a primitive M -ideal if P = Anny,(S) for a simple
module rS (see [1, Definition 3.5]).

Proposition 5.2. Let P be a proper M-ideal. If P is a primitive M -ideal,
then P is a prime M -ideal.

Proof. If P is a primitive M-ideal, then P = Anny,(S) for a simple R-module
S. Since S has no nonzero proper submodule, S is an M-prime module by
Proposition 2.4. Thus P is a prime M-ideal. (I

Proposition 5.3. Let M be an M-prime module with Soc(M) # (0). Then
(0) is a primitive M -ideal.

Proof. Since Soc(M) # (0), there exists a simple submodule Rm of M where
0# m € M. Since M is an M-prime module, so Anny;(Rm) = Anny (M) =
(0). Therefore, (0) is a primitive M-ideal. d

Proposition 5.4. Assume that M is projective in o[M]. If M is an Artinian
R-module, then every prime M -ideal of M is virtually mazimal.

Proof. Suppose that P < M is a prime M-ideal. Since M is projective in
o[M], M/P is an M-prime module by Proposition 2.10. Since M/P is also an
Artinian module, Soc(M/P) # (0) and hence there exists a simple submod-
ule Rm of M/P where 0 # m € M/P. Since M/P is an M-prime module,
Annps(Rm) = Anny(M/P) = P. On the other hand, P = Anny/(Rm) =
(fetomp (v, rim) Ker(f). Since Rm = M/ker(f) for every f € Homp(M, Rmn),
P must be an intersection of maximal submodules. Since M/P is Artinian, P
must be a finite intersection of maximal submodules, and so M/ P is isomorphic
to a finite direct sum of copies of Rm. Thus M/P is a homogeneous semisimple
module, i.e., P is a virtually maximal submodule of M. [l

Definition 5.5. The prime radical of the module M, denoted by P(M), is
defined to be the intersection of all prime M-ideals.
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We note that each prime M-ideal is the annihilator of an M-prime module
in M. Tt follows that P(M) = rad¢(M), where C is the class of all M-prime
left R-modules. If pX is any module with a submodule Y such that X/Y is an
M-prime module, then rade¢(X) C Y. In this case it follows from [1, Lemma
1.8] that P(M)- X CY.

Theorem 5.6. Assume that M is projective in o[M]. If M is an Artinian
R-module, then every prime M-ideal of M is virtually mazimal and M/P(M)
is a Noetherian R-module.

Proof. If M does not contain any prime M-ideal, then P(M) = M. Suppose
that M contains a prime M-ideal. By Proposition 5.4, every prime M-ideal of
M is virtually maximal. Let N be minimal in the collection S of M-ideals of
M which are finite intersections of primes. If P is any prime M-ideal of M,
then PON € S and PN N C N. Thus N = PN N C P by minimality of N
in S. Tt follows that N = P(M). On the other hand, for each prime M-ideal,
the factor module M/P is a homogeneous semisimple module with DCC. So
M/P is Noetherian. Thus M/P is Noetherian for every prime M-ideal P of
M. Since P(M) is a finite intersection of prime M-ideals, M/P(M) is also a
Noetherian R-module. (]

The following theorem is a generalization of [2, Theorem 2.11].

Theorem 5.7. Assume that M is projective in o[M]. If M be an Artinian
R-module, then P(M) = M or there exist primitive M-ideals Py, ..., P, of M
such that P(M) =i, P;.

Proof. Let P be a prime M-ideal of M. Since M is projective in o[M], so M /P
is an M-prime module by Proposition 2.10 (ii). Since M/P is an Artinian R-
module, Soc(M/P) # (0). Thus there exists a simple submodule Rm of M/P
where 0 # m € M/P. Since M/P is an M-prime module, Anny/(Rm) =
Annps(M/P). On the other hand, Anny (M/P) = P, since P is an M-ideal.
Thus P is a primitive M-ideal. Since P is an arbitrary prime M-ideal, so every
prime M-ideal of M is a primitive M-ideal. On the other hand by Proposition
5.2, we have that every primitive M-ideal is a prime M-ideal. Thus P(M) is
the intersection all of primitive M-ideals of M. Now let N be minimal in the
collection S of M-ideals of M which are finite intersections of primes. If @ is
any prime M-ideal of M, then QNN € Sand QNN C N. Thus N = QNN C @
by minimality of N in §. Tt follows that N = P(M). Thus P(M) is a finite
intersection of prime M-ideals and it follows that P(M) is a finite intersection
of primitive M-ideals. So there exist primitive M-ideals P, ..., P, of M such
that P(M) = (;_, P;. Since P; is an M-ideal for every 1 <i <n, P;- M = P,
andso P(M) =, P-M=",F. O

Corollary 5.8. Assume that M is projective in o[M]. If M be an Artinian
M -prime module, then P(M) = (0).
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Proof. By Proposition 5.3, (0) is a primitive M-ideal of M. It follows that
P(M) = (0) by Theorem 5.7. O

Minimal M-prime submodules are defined in a natural way. By Zorn’s
Lemma one can easily see that each M-prime submodule of a module X con-
tains a minimal M-prime submodule of X. In [18, Theorem 5.2], it is shown
that every Noetherian module contain only finitely many minimal prime sub-
modules. It is easy to show that if X is a Noetherian module, then X contain
only finitely many minimal M-prime submodules.

We conclude this paper with the following interesting result, which is a
generalization of [2, Theorem 2.1].

Theorem 5.9. Let X be a Noetherian R-module. If every M -prime submodule
of X is virtually maximal, then X/rady (X) is an Artinian R-module.

Proof. By our hypotheses, for each M-prime submodule P of X, X/P is a
homogeneous semisimple R-module. Since X is a Noetherian R-module, X/P
is also Noetherian. This implies that X/P is an Artinian R-module. On the
other hand rady (X) = PiN---NP, where Py, ..., P, are all minimal M-prime
submodules of M. Thus X/P; & --- @ X/P, is also an Artinian R-module. It
follows that X /rady/(X) is an Artinian R-module. O
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