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PRIME M-IDEALS, M-PRIME SUBMODULES, M-PRIME

RADICAL AND M-BAER’S LOWER NILRADICAL OF

MODULES

John A. Beachy, Mahmood Behboodi, and Faezeh Yazdi

Abstract. Let M be a fixed left R-module. For a left R-module X, we
introduce the notion of M -prime (resp. M -semiprime) submodule of X
such that in the case M = R, it coincides with prime (resp. semiprime)
submodule of X. Other concepts encountered in the general theory are
M -m-system sets, M -n-system sets, M -prime radical and M-Baer’s lower
nilradical of modules. Relationships between these concepts and basic
properties are established. In particular, we identify certain submodules
of M , called “prime M -ideals”, that play a role analogous to that of prime
(two-sided) ideals in the ring R. Using this definition, we show that if M
satisfies condition H (defined later) and HomR(M,X) 6= 0 for all mod-
ules X in the category σ[M ], then there is a one-to-one correspondence
between isomorphism classes of indecomposable M -injective modules in
σ[M ] and prime M -ideals of M . Also, we investigate the prime M -ideals,
M -prime submodules and M -prime radical of Artinian modules.

1. Introduction

All rings in this paper are associative with identity and modules are unitary
left modules. Let R be a ring and X be an R-module. If Y is a submodule
(resp. proper submodule) of X we write Y ≤ X (resp. Y � X).

In the literature, there are many different generalizations of the notion of
prime two-sided ideals to left ideals and also to modules. For instance, a
proper left ideal L of a ring R is called prime if, for any elements a and b
in R such that aRb ⊆ L, either a ∈ L or b ∈ L. Prime left ideals have
properties reminiscent of prime ideals in commutative rings. For example,
Michler [19] and Koh [12] proved that the ring R is left Noetherian if and only
if every prime left ideal is finitely generated. Moreover, Smith [20], showed
that if R is left Noetherian (or even if R has finite left Krull dimension) then
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a left R-module X is injective if and only if, for every essential prime left
ideal L of R and homomorphism ϕ : L → X , there exists a homomorphism
θ : R → X such that θ|L = ϕ. Let us mention another generalization of the
notion of prime ideals to modules. Let X be a left R-module. If X 6= 0 and
AnnR(X) = AnnR(Y ) for all nonzero submodules Y of X then X is called a
prime module. A proper submodule P of X is called a prime submodule if X/P
is a prime module, i.e., for every ideal I ⊆ R and every submodule Y ⊆ X ,
if IY ⊆ P , then either Y ⊆ P or IX ⊆ P . The notion of prime submodule
was first introduced and systematically studied by Dauns [7] and recently has
received some attention. Several authors have extended the theory of prime
ideals ofR to prime submodules (see [2, 3, 4, 7, 10, 15, 17, 18]). For example, the
classical result of Cohen is extended to prime submodules over commutative
rings, namely a finitely generated module is Noetherian if and only if every
prime submodule is finitely generated (see [15, Theorem 8] and [11]) and also
any Noetherian module contains only finitely many minimal prime submodules
(see [18, Theorem 4.2]).

We assume throughout the paper RM is a fixed left R-module. The category
σ[M ] is defined to be the full subcategory of R-Mod that contains all modules

RX such that X is isomorphic to a submodule of an M -generated module (see
[21] for more detail).

Let C be a class of modules in R-Mod, and let Ω be the set of kernels of
R-homomorphisms from M in to C. That is,

Ω = {K ⊆ M | ∃ W ∈ C and f ∈ HomR(M,W ) with K = ker(f)}.
Then the annihilator of C in M , denoted by AnnM (C), is defined to be the
intersection of all elements of Ω, i.e., AnnM (C) = ⋂

K∈ΩK.
Let N be a submodule of M . Following Beachy [1], for each module RX we

define

N ·X = AnnX(C),
where C is the class of modules RW such that f(N) = (0) for all f ∈ HomR(M ,
W ). It follows immediately from the definition that

N ·X = (0) if and only if f(N) = (0) for all f ∈ HomR(M,X).

Clearly the class C in the definition of N · X is closed under formation of
submodules and direct products, and so N ·X is the smallest submodule Y ⊆ X
such that N · (X/Y ) = (0).

The submodule N of M is called an M -ideal if there is a class C of modules
in σ[M ] such that N = AnnM (C). Note that although the definition of an
M -ideal is given relative to the subcategory σ[M ], it is easy to check that N
is an M -ideal if and only if N = AnnM (C) for some class C in R-Mod (see [1,
Page 4651]).

In this article for a left R-module X , we introduce the notions of M -prime
submodule, M -semiprime submodule of X and prime M -ideal of M as follows:
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Definition 1.1. Let X be an R-module. A proper submodule P of X is called
an M -prime submodule if for all submodules N ≤ M, Y ≤ X , if N · Y ⊆ P ,
then either N ·X ⊆ P or Y ⊆ P . An R-module X is called an M -prime module

if (0) � X is an M -prime submodule. Also, a proper submodule P of X is
called an M -semiprime submodule if for all submodules N ≤ M, Y ≤ X , if
N2 · Y ⊆ P , then N · Y ⊆ P , where N2 := N ·N . An R-module X is called an
M -semiprime module if (0) � X is an M -semiprime submodule.

Definition 1.2. A proper M -ideal P of M is called a prime M -ideal (resp.
semiprime M -ideal) if there exists an M -prime module (resp. M -semiprime
module) RX such that P = AnnM (X).

It is clear that in caseM = R, the notion of an R-prime submodule (resp. R-
semiprime submodule) reduces to the familiar definition of a prime submodule
(resp. semiprime submodule). Also, the notion of an R-ideal (resp. prime R-
ideal) of RR reduces to the familiar definition of an ideal (resp. a prime ideal)
of R.

Recently, the idea of M -prime module was introduced and extensively stud-
ied by Beachy [1] by defining a module RX to be M -prime if HomR(M,X) 6= 0,
and AnnM (Y ) = AnnM (X) for all submodules Y ⊆ X such that HomR(M,Y )
6= 0. Also, he defined an M -ideal P to be a prime M -ideal if there exists an M -
prime module RX such that P = AnnM (X). Clearly, our definition ofM -prime
module is slightly different than Beachy, and hence, for the sake of clarity, for
the remainder of the paper we will use the term “Beachy-M -prime module”
(resp. “Beachy-prime M -ideal”) rather than “M -prime module” (resp. “prime
M -ideal”) of Beachy [1], respectively.

In ring theory, prime ideals are closely tied to m-system sets (a nonempty set
S ⊆ R is said to be an m-system set if for each pair a, b in S, there exists r ∈ R
such that arb ∈ S). The complement of a prime ideal is an m-system, and given
an m-system set S, an ideal disjoint from S and maximal with respect to this
property is always a prime ideal. Moreover, for an ideal I in a ring R, the set√
I := {s ∈ R | every m-system containing s meets I} equals the intersection

of all the prime ideals containing I. In particular,
√
I is a semiprime ideal in R

and
√
(0) is called Baer-McCoy radical (or prime radical) of R (see for example

[14, Chapter 4], for more details). In this paper, we extend these facts for M -
prime submodules. Relationships between these concepts and basic properties
are established. In Section 2, among other results, for an R-moduleX we define
M -Baer-McCoy radical (orM -prime radical) of X , denoted radM (X) = M

√
(0),

to be the intersection of all the M -prime submodules in X . Also, in Section 3,
we extend the notion of nilpotent and strongly nilpotent element of modules
to M -nilpotent and strongly M -nilpotent element of modules X ∈ σ[M ] for
a fixed module M . Also, for an R-module X ∈ σ[M ], we define M -Baer’s

lower nilradical of X , denoted by M -Nil∗(RX), to be the set of all strongly
M -nilpotent elements of X . In particular, it is shown that if M is projective
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in σ[M ], then for each X ∈ σ[M ], Nil∗(M) ·X ⊆ M -Nil∗(RX) ⊆ radM (X) (see
Proposition 3.6).

In Section 4, we rely on the prime M -ideals of M that play a role analogous
to that of prime ideals in the ring R. The module RX is called M -injective

if each R-homomorphism f : K → X defined on a submodule K of M can

be extended to an R-homomorphism f̂ : M → X with f = f̂ i, where i :
K → M is the natural inclusion mapping. We note that Baer’s criterion for
injectivity shows that any R-injective module is injective in the categoryR-Mod
of all left R-modules. It is well-known that if R is a commutative Noetherian
ring, then there is a one-to-one correspondence between isomorphism classes of
indecomposable injective R-modules and prime ideals of R. Gabriel showed in
[8] that this one-to-one correspondence remains valid for any left Noetherian
ring that satisfies what he called conditionH . In current terminology, a module

RX is said to be finitely annihilated if there is a finite subset x1, . . . , xn of X
with AnnR(X) = AnnR(x1, . . . , xn). Then by definition the ring R satisfies
condition H if and only if every cyclic left R-module is finitely annihilated. It
follows immediately that, the ring R satisfies condition H if and only if every
finitely generated left R-module is finitely annihilated. We note the stronger
result due to Krause [13] that if R is left Noetherian, then there is a one-to-one
correspondence between isomorphism classes of indecomposable injective left
R-modules and prime ideals of R if and only if R is a left fully bounded ring
(see [9, Theorem 8.12] for a proof). In [1, Theorem 6.7], Beachy shown that
Gabriel’s correspondence can be extended to M -injective modules, provided
that HomR(M,X) 6= 0 for all modules X in σ[M ]. In Section 4, by using our
definition of primeM -ideal, we show that also there is a Gabriel correspondence
between indecomposable M -injective modules in σ[M ] and our prime M -ideals.

Finally, in Section 5, we study the prime M -ideals, M -prime submodules
and M -prime radical of Artinian modules. The prime radical of the module
M , denoted by P (M), is defined to be the intersection of all prime M -ideals of
M . Recall that a proper submodule P of M is virtually maximal if the factor
module M/P is a homogeneous semisimple R-module, i.e., M/P is a direct
sum of isomorphic simple modules. It is shown that if M is an Artinian M -
prime module, then M is a homogeneous semisimple module (see Proposition
5.1). In particular, if M is an Artinian R-module such that it is projective in
σ[M ], then every prime M -ideal of M is virtually maximal and M/P (M) is a
Noetherian R-module (see Theorem 5.6). Moreover, either P (M) = M or there
exist primitive (prime) M -ideals P1, . . . , Pn of M such that P (M) =

⋂n

i=1 Pi

(see Theorem 5.7).

2. M-prime submodules and M-prime radical of modules

We begin this section with the following three useful lemmas.

Lemma 2.1 ([1, Proposition 1.6]). Let N be a submodule of M . Then for any

R-module X, N ·X = (0) if and only if N ⊆ AnnM (X).
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Lemma 2.2 ([1, Proposition 1.9]). Let N and K be submodules of M .

(a) If N ⊆ K, then N ·X ⊆ K ·X for all submodules RX.

(b) If K is an M -ideal, then so is N ·K.

(c) The submodule N ·M is the smallest M -ideal that contains N .

(d) If N is an M -ideal, then N ·K ⊆ N ∩K.

Lemma 2.3. Let Y1, Y2 be submodules of RX. If Y1 ⊆ Y2, then N ·Y1 ⊆ N ·Y2,

for each submodule N of M .

Proof. Suppose N ≤ M and Y1, Y2 are submodules of RX with Y1 ⊆ Y2. Then
N · Y1 = AnnY1

(C) and N · Y2 = AnnY2
(C), where C is the class of modules

RW such that f(N) = (0) for all f ∈ HomR(M,W ). On the other hand
N · Yi =

⋂
K∈Ωi

K (i = 1, 2), where

Ωi = {K ⊆ Yi | ∃ W ∈ C and f ∈ HomR(Yi,W ) with K = ker(f)}
Clearly, for each f ∈ HomR(Y2,W ), f |Y1

∈ HomR(Y1,W ), where f |Y1
is the

restriction of f on Y1. Since ker(f |Y1
) ⊆ ker(f), we conclude that for each

K ∈ Ω2, there exists K ′ ∈ Ω1 such that K ′ ⊆ K. Thus N · Y1 ⊆ N · Y2. �

The following evident proposition offers several characterizations of an M -
prime module.

Proposition 2.4. Let X be a nonzero R-module. Then the following state-

ments are equivalent.

(1) X is an M -prime module.

(2) For every submodule N ⊆ M and every nonzero submodule Y ⊆ X, if

N · Y = (0), then N ·X = (0).
(3) For every M -ideal N ⊆ M and every nonzero submodule Y ⊆ X, if

N · Y = (0), then N ·X = (0).
(4) For all nonzero submodules Y1, Y2 ⊆ X, AnnM (Y1) = AnnM (Y2).
(5) Every nonzero submodule Y ⊆ X is an M -prime module.

(6) HomR(M,X) = 0 or for every nonzero submodule Y ⊆ X, P =AnnM (Y )
is a prime M -ideal of M and P = AnnM (X).

Proof. (1) ⇒ (2) ⇒ (3) is clear.
(3) ⇒ (4). Let Y1, Y2 be two nonzero submodules of X and let N1 :=

AnnM (Y1), N2 := AnnM (Y2). Thus by Lemma 2.1, N1 · Y1 = (0) and N2 ·
Y2 = (0). Since N1, N2 are M -ideals, N1 · X = N2 · X = (0) by (3). Thus
N1 ⊆ AnnM (X) and N2 ⊆ AnnM (X). On the other hand AnnM (X) ⊆ N1 and
AnnM (X) ⊆ N2. Thus N1 = N2 = AnnM (X).

(4) ⇒ (5). Let Y be a nonzero submodule of X . Assume that N is a
submodule of M and Z be a nonzero submodule of Y such that N · Z = (0).
So N ⊆ AnnM (Z). By (4), AnnM (Z) = AnnM (X) and so it follows that
N ⊆ AnnM (X) and hence N ·X = (0). Since N · Y ⊆ N ·X , so N · Y = (0).
Thus Y is an M -prime module.

(5) ⇒ (1) and (5) ⇒ (6) ⇒ (4) are clear. �
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Remark 2.5. Clearly every simple R-module X is an M -prime module. Now let
R be a domain which is not a field and let M be a nonzero divisible R-module.
Then every nonzero simple R-module X is an M -prime module, but X is not
a Beachy-M -prime module, since HomR(M,X) = 0.

The following lemma shows that in the case HomR(M,X) 6= 0, if X is an
M -prime module then X is also a Beachy-M -prime module.

Lemma 2.6 ([1, Proposition 2.2]). Let X be an R-module such that HomR(M ,

X) 6= 0. Then the following statements are equivalent.

(1) X is a Beachy-M -prime module.

(2) For every M -ideal N of M and every nonzero submodule Y of X with

M · Y 6= (0), if N · Y = (0), then N ·X = (0).
(3) For each m ∈ M \ AnnM (X) and each 0 6= f ∈ HomR(M,X), there

exists g ∈ HomR(M, f(M)) such that g(m) 6= 0.
(4) For any M -ideal N ⊆ M and any M -generated submodule Y ⊆ X, if

N · Y = (0), then N ·X = (0).

Proposition 2.7. Let X be an R-module such that HomR(M,X) 6= 0. If X
is an M -prime module then X is a Beachy-M -prime module.

Proof. By Proposition 2.4 and Lemma 2.6, it is clear. �

The following example shows that the converse of Proposition 2.7 is not true
in general.

Example 2.8. Let R = Z. For each prime number p, HomZ(Zp∞
,Zp∞

) 6= 0
and for each proper Z-submodule Y $ Zp∞

, Zp∞
·Y = (0), since HomZ(Zp∞

, Y )
= (0). Thus by Lemma 2.6, Zp∞

is a Beachy-Zp∞
-prime module but it is not

a Zp∞
-prime module, since Zp∞

· Zp∞
6= (0).

Lemma 2.9 ([1, Proposition 5.5]). Assume that M is projective in σ[M ], and
let N be any submodule of M . The following conditions hold for any module

RX in σ[M ] and any submodule Y ⊆ X.

(a) N ·X =
∑

f∈HomR(M,X) f(N).

(b) N · (X/Y ) = (0) if and only if N ·X ⊆ Y .

(c) If N = AnnM (X/Y ), then AnnM (X/(N ·X)) = N .

Proposition 2.10. Assume that M is projective in σ[M ], and let RX ∈ σ[M ].
Then

(i) For a submodule P � X, if P is an M -prime submodule of X, then X/P
is an M -prime module.

(ii) For an M -ideal P � M , the following conditions are equivalent.

(1) P is a prime M -ideal.

(2) P is an M -prime submodule of M .

(3) M/P is an M -prime module.

Proof. (i). Let N be a submodule of M and Y/P be a nonzero submodule of
X/P such that N · (Y/P ) = (0). By Lemma 2.9(b), N · Y ⊆ P . Since P is an
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M -prime submodule, either N ·X ⊆ P or Y ⊆ P . If Y ⊆ P , then Y/P = (0),
a contradiction. Thus N · X ⊆ P and so N · (X/P ) = (0) by Lemma 2.9(b).
Thus by Proposition 2.4, X/P is an M -prime module.

(ii) (1) ⇒ (2). Suppose that P is a prime M -ideal and N · K ⊆ P , for an
M -ideal N and submodule K of M with K * P . By assumption there is an M -
prime module X with P = AnnM (X), and so there exists f ∈ HomR(M/P,X)
with f((K+P )/P ) 6= (0). SinceN ·K ⊆ P , we haveN ·K ⊆ P∩K. Now Lemma
2.9(b) implies that N · (K/(P ∩K)) = (0) and hence N · f((K + P )/P ) = (0)
(since (K +P )/P ∼= K/(P ∩K)). Since X is an M -prime module, N ·X = (0)
by Proposition 2.4, and so N ⊆ P (since P = AnnM (X)).

(2) ⇒ (3). Let N be an M -ideal and K/P be a nonzero submodule of M/P
such that N · (K/P ) = (0). Since M is projective in σ[M ], so N · K ⊆ P by
Lemma 2.9(b). Now by (2) either N ⊆ P or K ⊆ P . Since K/P 6= (0), so
K * P and hence N ⊆ P . On the other hand N · M = N , since N is an
M -ideal. Thus N ·M ⊆ P and hence by Lemma 2.9(b), N · (M/P ) = (0). Now
M/P is an M -prime module by Proposition 2.4.

(3) ⇒ (1). Since P is an M -ideal, P = AnnM (M/P ) and since M/P is an
M -prime module, we conclude that P is a prime M -ideal. �

The following example shows that even in the case the R-module M is
projective in σ[M ], anM -prime module need not be a Beachy-M -primemodule.

Example 2.11. Let R = Q×Q, M = Q× {0} and X = {0} ×Q. Then M is
projective as an R-module, but HomR(M,X) = 0 implies on the on hand that
X is an M -prime module, but it is not a Beachy-M -prime module.

Now we have to adapt the notion of an M -m-system set to modules RX
(Behboodi in [2], has generalized the notion of m-system of rings to modules).

Definition 2.12. Let X be an R-module. A nonempty set S ⊆ X \ {0} is
called an M -m-system if, for each submodule N ⊆ M , and for all submodules
Y, Z ⊆ X , if (Y +Z)∩S 6= ∅ and (Y +N ·X)∩S 6= ∅, then (Y +N ·Z)∩S 6= ∅.

Corollary 2.13. Let X be an R-module. Then a submodule P � X is M -

prime if and only if X \ P is an M -m-system.

Proof. (⇒). Suppose S = X \ P . Let N be a submodule of M and Y , Z be
submodules of X such that (Y + Z) ∩ S 6= ∅ and (Y + N · X) ∩ S 6= ∅. If
(Y +N · Z) ∩ S = ∅ then Y +N · Z ⊆ P . Hence N · Z ⊆ P and since P is an
M -prime submodule, Z ⊆ P or N ·X ⊆ P . It follows that (Y + Z) ∩ S = ∅ or
(Y +N ·X)∩S = ∅, a contradiction. Therefore, S ⊆ X \{0} is an M -m-system
set.

(⇐). Let S = X \ P be an M -m-system in X . Suppose N · Z ⊆ P , where
N is a submodule of M and Z is a submodule X . If Z 6⊆ P and N ·X 6⊆ P ,
then Z ∩ S 6= ∅ and (N ·X) ∩ S 6= ∅. Thus (N · Z) ∩ S 6= ∅, a contradiction.
Therefore, P is an M -prime submodule of X . �
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Proposition 2.14. Let X be an R-module, P be a proper submodule of X and

S := X \ P . Then the following statements are equivalent.

(1) P is an M -prime submodule.

(2) S is an M -m-system.

(3) For every submodule N ≤ M and for every submodule Z ≤ X, if Z∩S 6=
∅ and (N ·X) ∩ S 6= ∅, then (N · Z) ∩ S 6= ∅.
Proof. (1) ⇔ (2) is by Corollary 2.13.

(2) ⇒ (3) is clear.
(3) ⇒ (1). Suppose that N ≤ M and Z ≤ X such that N · Z ⊆ P . If

N ·X * P and Z * P , then (N ·X) ∩ S 6= ∅ and Z ∩ S 6= ∅. It follows that
(N · Z) ∩ S 6= ∅ by (3), i.e., N · Z * P , a contradiction. �

Proposition 2.15. Let X be an R-module, S ⊆ X be an M -m-system and P
be a submodule of X maximal with respect to the property that P is disjoint

from S. Then P is an M -prime submodule of X.

Proof. Suppose N · Z ⊆ P , where N ≤ M and Z ≤ X . If Z 6⊆ P and
N ·X 6⊆ P , then by the maximal property of P , we have, (P +Z)∩ S 6= ∅ and
(P +N ·X) ∩ S 6= ∅. Thus (P +N · Z) ∩ S 6= ∅ and it follows that P ∩ S 6= ∅,
a contradiction. Thus P must be an M -prime submodule. �

Next we need a generalization of the notion of
√
Y for any submodule Y of

X . We adopt the following:

Definition 2.16. Let X be an R-module. For a submodule Y of X , if there
is an M -prime submodule containing Y , then we define

M
√
Y = {x ∈ X : every M -m-system containing x meets Y }.

If there is no M -prime submodule containing Y , then we put M
√
Y = X .

Theorem 2.17. Let X be an R-module and Y ≤ X. Then either
M
√
Y = X

or
M
√
Y equals the intersection of all M -prime submodules of X containing Y .

Proof. Suppose that M
√
Y 6= X . This means that

{P : P is an M -prime submodule of X and Y ⊆ P} 6= ∅.

We first prove that

M
√
Y ⊆ ⋂{P : | P is an M -prime submodule of X and Y ⊆ P}.

Let x ∈ M
√
Y and P be any M -prime submodule of X containing Y . Consider

the M -m-system X \ P . This M -m-system cannot contain x, for otherwise it
meets Y and hence also P . Therefore, we have x ∈ P . Conversely, assume
x /∈ M

√
Y . Then, by Definition 2.16, there exists an M -m-system S containing

x which is disjoint from Y . By Zorn’s Lemma, there exists a submodule P ⊇ Y
which is maximal with respect to being disjoint from S. By Proposition 2.15,
P is an M -prime submodule of X , and we have x /∈ P , as desired. �
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Also, the following evident proposition offers several characterizations of
M -semiprime modules.

Proposition 2.18. Let X be an R-module. Then the following statements are

equivalent.

(1) X is an M -semiprime module.

(2) For every submodule N ⊆ M and every submodule Y ⊆ X, if N2 · Y =
(0), then N · Y = (0).

(3) Every nonzero submodule Y ⊆ X is an M -semiprime module.

(4) For every nonzero submodule Y ⊆ X, P = AnnM (Y ) is a semiprime

M -ideal.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) is clear.
(4) ⇒ (1). Suppose (0) 6= Y ≤ X and N ≤ M such that N2 · Y = (0).

It follows that N2 ⊆ AnnM (Y ) and since P = AnnM (Y ) is a semiprime M -
ideal, there exists an M -semiprime module Z such that AnnM (Y ) = AnnM (Z).
Thus N2 · Z = (0) and so N · Z = (0), i.e., N ⊆ AnnM (Z) = AnnM (Y ). Thus
N · Y = (0). Therefore X is an M -semiprime module. �

Proposition 2.19. Let X be an R-module. Then any intersection of M -

semiprime submodules of X is an M -semiprime submodule.

Proof. Suppose Zi ≤ X (i ∈ I) are M -semiprime submodules of X and put
Z =

⋂
i∈I Zi. Suppose Y ≤ X andN ≤ M such thatN2 ·Y ⊆ Z. It follows that

N2 ·Y ⊆ Zi for each i. Since each Zi is an M -semiprime submodule, N ·Y ⊆ Zi

for each i. Thus N · Y ⊆ Z and so Z is an M -semiprime submodule. �

We recall the definition of the notion of n-system in a ring R. A nonempty
set T ⊆ R is said to be an n-system set if for each a in T , there exists r ∈ R
such that ara ∈ T (see for example [14, Chapter 4], for more details). The
complement of a semiprime ideal is an n-system set, and if T is an n-system
in a ring R such that a ∈ T , then there exists an m-system S ⊆ T such that
a ∈ S (see [14, Lemma 10.10]). This notion of n-system of rings has also
generalized by Behboodi in [2] for modules. Now we have to adapt the notion
of an M -n-system set to modules RX .

Definition 2.20. Let X be an R-module. A nonempty set T ⊆ X \ {0} is
called an M -n-system if, for every submodule N ⊆ M , and for all submodules
Y, Z ⊆ X , if (Y +N · Z) ∩ T 6= ∅, then (Y +N2 · Z) ∩ T 6= ∅.
Proposition 2.21. Let X be an R-module. Then a submodule P � X is an

M -semiprime submodule if and only if X \ P is an M -n-system.

Proof. (⇒). Let T = X \ P . Suppose N is a submodule of M and Y, Z are
submodules of X such that (Y +N ·Z)∩ T 6= ∅. If (Y +N2 ·Z)∩ T = ∅, then
(Y +N2 ·Z) ⊆ P . Since P is M -semiprime submodule, (Y +N ·Z) ⊆ P . Thus
(Y +N ·Z)∩ T = ∅, a contradiction. Therefore, T is an M -n-system set in X .
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(⇐). Suppose that T = X \P is an M -n-system in X . Suppose N2 ·Z ⊆ P ,
where N ≤ M , Z ≤ X , but N · Z * P . It follows that (N · Z) ∩ T 6= ∅ and so
(N2 ·Z)∩ T 6= ∅, a contradiction. Therefore, P is an M -semiprime submodule
of X . �

The proof of the next proposition is similar to the proof of Proposition 2.14.

Proposition 2.22. Assume that P be a proper submodule of X and T := X\P .

Then the following statements are equivalent.

(1) P is an M -semiprime submodule.

(2) T is an M -n-system set.

(3) For every submodule N ≤ M and for every submodule Z ≤ X, if (N ·
Z) ∩ T 6= ∅, then (N2 · Z) ∩ T 6= ∅.
Lemma 2.23 ([1, Proposition 5.6]). Assume that M is projective in σ[M ], and
let K, N be submodules of M . Then (K ·N) ·X = K · (N ·X) for any module

RX in σ[M ].

Proposition 2.24. Assume that M is projective in σ[M ], and let X ∈ σ[M ].
Then any M -prime submodule of X is an M -semiprime submodule.

Proof. Let P � X be an M -prime submodule of X and N ≤ M , Y ≤ X such
that N2 · Y ⊆ P . Since M is projective in σ[M ], so N2 · Y = (N · N) · Y =
N · (N · Y ) by Lemma 2.23. Hence N · (N · Y ) ⊆ P . Now by assumption,
N ·X ⊆ P or N ·Y ⊆ P . If N ·Y ⊆ P , then P is an M -semiprime submodule. If
N ·X ⊆ P , then N ·Y ⊆ N ·X ⊆ P . Thus P is an M -semiprime submodule. �

Corollary 2.25. Assume that M is projective in σ[M ] and X ∈ σ[M ]. Then

any intersection of M -prime submodules of X is an M -semiprime submodule.

Proof. It follows by Proposition 2.19 and Proposition 2.24. �

Corollary 2.26. Assume that M is projective in σ[M ], and let X ∈ σ[M ].

Then for each submodule Y of X, either
M
√
Y = X or

M
√
Y is an M -semiprime

submodule of X.

Proof. By Theorem 2.17 and Corollary 2.25, it is clear. �

Definition 2.27. Let M be an R-module. For any module X , we define
radM (X) = M

√
(0). This is called M -Baer-McCoy radical or M -prime radical

of X . Thus if X has an M -prime submodule, then radM (X) is equal to the
intersection of all the M -prime submodules in X but, if X has no M -prime
submodule, then radM (X) = X .

The following two propositions have been established in [2] for prime radical
of modules. Now by the same method as [2], we extend these facts to M -prime
radical of modules.

Proposition 2.28. Let X be an R-module and Y ≤ X. Then radM (Y ) ⊆
radM (X).
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Proof. Let P be any M -prime submodule of X . If Y ⊆ P , then radM (Y ) ⊆ P .
If Y * P , then it is easy to check that Y ∩ P is an M -prime submodule of
Y , and hence radM (Y ) ⊆ (Y ∩ P ) ⊆ P . Thus in any case, radM (Y ) ⊆ P . It
follows that radM (Y ) ⊆ radM (X). �

Lemma 2.29. Assume that M is projective in σ[M ], and let X be an R-module

in σ[M ] such that X =
⊕

λ∈Λ Xλ is a direct sum of submodules Xλ (λ ∈ Λ).
Then for every submodule N ⊆ M , we have

N ·X =
⊕

λ∈Λ

N ·Xλ.

Proof. Since for every λ ∈ Λ, Xλ ⊆ X , N ·Xλ ⊆ N ·X for every λ ∈ Λ. It follows
that

⊕
ΛN ·Xλ ⊆ N ·X . On the other hand, sinceM is projective in σ[M ], soN ·

X =
∑

f∈HomR(M,X) f(N) and for every λ ∈ Λ, N ·Xλ =
∑

f∈HomR(M,Xλ)
f(N)

by Lemma 2.9 (a). Now let x ∈ N · X . Thus x =
∑t

i=1 fi(ni) where t ∈ N,
ni ∈ N and fi ∈ HomR(M,X). Since fi(ni) ∈ X , so for every 1 ≤ i ≤ t,

fi(ni) = {x(i)
λ }Λ, where x(i)

λ ∈ Xλ. Thus x = {x(1)
λ + · · ·+x

(t)
λ }Λ = {πλf1(n1)+

· · · + πλft(nt)}Λ, where πλ : X −→ Xλ is the canonical projection for every

λ ∈ Λ. It is clear that by Lemma 2.9,
∑t

i=1 πλfi(ni) ∈ N ·Xλ for every λ ∈ Λ.
Thus x ∈ ⊕

Λ N ·Xλ. �

We note that, since in Lemma 2.29 we assume that M is projective in σ[M ],
so our product coincides with the product defined in [6, Definition 1.1]. Thus
Lemma 2.29 is also proved in [6, Proposition 1.3 (8)].

Proposition 2.30. Assume that M is projective in σ[M ], and let X be an

R-module in σ[M ] such that X =
⊕

λ∈ΛXλ is a direct sum of submodules Xλ

(λ ∈ Λ). Then

radM (X) =
⊕

λ∈Λ

radM (Xλ).

Proof. By Proposition 2.28, radM (Xλ) ⊆ radM (X) for all λ ∈ Λ. Thus⊕
Λ radM (Xλ) ⊆ radM (X). Now let x /∈ ⊕

Λ radM (Xλ), for some x ∈ X .
Then there exists µ ∈ Λ such that πµ(x) /∈ radM (Xµ), where πµ : X → Xµ

denotes the canonical projection. Thus there exists an M -prime submodule Yµ

of Xµ such that πµ(x) /∈ Yµ. Let Z = Yµ

⊕
(
⊕

λ6=µ Xλ). It is easy to check

by Lemma 2.29 that Z is an M -prime submodule of X and x /∈ Z. Thus
x /∈ radM (X). It follows that radM (X) ⊆ ⊕

Λ radM (Xλ). �

3. M-Baer’s lower nilradical of modules

We recall the definition of a nilpotent element in a module. An element x
of an R-module X is called nilpotent if x =

∑r

i=1 aixi for some ai ∈ R, xi ∈ X

and r ∈ N, such that ai
kxi = 0(1 ≤ i ≤ r) for some k ∈ N and x is called

strongly nilpotent if x =
∑r

i=1 aixi, for some ai ∈ R, xi ∈ X and r ∈ N, such
that for every i (1 ≤ i ≤ r) and every sequence ai1, ai2, ai3, . . . where ai1 = ai
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and ain+1 ∈ ainRain(∀n), we have aikRxi = 0 for some k ∈ N (see [4]). It
is clear that every strongly nilpotent element of a module X is a nilpotent
element but the converse is not true (see the example 2.3 [4]). In case that R
is a commutative ring, nilpotent and strongly nilpotent are equal.

This notion has been generalized to modules over a projective module M in
σ[M ].

Definition 3.1. Assume that M is projective in σ[M ], and let X be an
R-module in σ[M ]. Then an element x ∈ X is called M -nilpotent if x =∑n

i=1 rifi(mi) for some ri ∈ R, mi ∈ M , n ∈ N and fi ∈ HomR(M,Rxi),

where xi ∈ X such that ri
kfi(mi) = 0(1 ≤ i ≤ n) for some k ∈ N. Also, an

element x ∈ X is called strongly M -nilpotent if x =
∑n

i=1 rifi(mi) for some
ri ∈ R, mi ∈ M , n ∈ N and fi ∈ HomR(M,Rxi), where xi ∈ X such that
for every i(1 ≤ i ≤ n) and every sequence ri1, ri2, ri3, . . ., where ri1 = ri and
rit+1 ∈ ritRrit (∀t), we have rikRfi(mi) = 0 for some k ∈ N.

Proposition 3.2. Let X be an R-module. Then an element x ∈ X is strongly

nilpotent if and only if x is strongly R-nilpotent.

Proof. (⇒). Suppose that x ∈ X is strongly nilpotent. Then x =
∑n

i=1 rixi

for some ri ∈ R, xi ∈ X , n ∈ N such that for every i (1 ≤ i ≤ n) and for
every sequence ri1, ri2, ri3, . . ., where ri1 = ri and rit+1 ∈ ritRrit (∀t), we have
rikRxi = 0 for some k ∈ N. Now consider fi : R → Rxi such that fi(r) = rxi.
Then fi(1) = xi and it follows that x =

∑n

i=1 rixi =
∑n

i=1 rifi(1). Since
rikRxi = 0 (1 ≤ i ≤ n) for some k ∈ N,we conclude that rikRfi(1) = 0
(1 ≤ i ≤ n) for some k ∈ N, i.e., x is a strongly R-nilpotent element of X .

(⇐). Assume that x ∈ X is strongly R-nilpotent. Thus x =
∑n

i=1 rifi(ai)
for some ri, ai ∈ R, n ∈ N and fi ∈ HomR(R,Rxi), where xi ∈ X such that
for every i (1 ≤ i ≤ n) and for every sequence ri1, ri2, ri3, . . ., where ri1 = ri
and rit+1 ∈ ritRrit (∀t), we have rikRfi(ai) = 0 for some k ∈ N. Since
fi(ai) ∈ Rxi ⊆ X , we conclude that x is a strongly nilpotent element of X . �

Proposition 3.3. Let X be an R-module. Then an element x ∈ X is nilpotent

if and only if x is R-nilpotent.

Proof. (⇒). Assume that x ∈ X is nilpotent. Thus x =
∑n

i=1 rixi for some

ri ∈ R, xi ∈ X , n ∈ N such that ri
kxi = 0(1 ≤ i ≤ n) for some k ∈ N. Now

consider fi : R → Rxi such that fi(r) = rxi, so fi(1) = xi. It follows that
x =

∑n
i=1 rixi =

∑n
i=1 rifi(1). Since ri

kxi = 0 (1 ≤ i ≤ n) for some k ∈ N, so
ri

kfi(1) = 0 (1 ≤ i ≤ n) for some k ∈ N, i.e., x is an R-nilpotent element of X .
(⇐). Assume that x ∈ X is an R-nilpotent element. Thus x =

∑n

i=1 rifi(ai)
for some ri, ai ∈ R, n ∈ N and fi ∈ HomR(R,Rxi), where xi ∈ X such that
ri

kfi(ai) = 0(1 ≤ i ≤ n) for some k ∈ N. Since fi(ai) ∈ Rxi ⊆ X , we conclude
that x is a nilpotent element of X . �
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Proposition 3.4. Assume that R is a commutative ring, M is projective in

σ[M ] and X ∈ σ[M ]. Then an element x ∈ X is M -nilpotent if and only if x
is strongly M -nilpotent.

Proof. (⇒). Assume that x ∈ X is M -nilpotent. Thus x =
∑n

i=1 rifi(mi)
for some ri ∈ R, mi ∈ M , n ∈ N and fi ∈ HomR(M,Rxi), where xi ∈ X
such that ri

kfi(mi) = 0 (1 ≤ i ≤ n) for some k ∈ N. Consider the sequence
ri1, ri2, ri3, . . ., where ri1 = ri and rit+1 ∈ ritRrit for every 1 ≤ i ≤ n and
(∀t). Thus there exists an element rik = ri1

kr′ (where r′ ∈ R) such that
rikRfi(mi) = ri1

kr′Rfi(mi) = 0 (since R is commutative and ri1
kfi(mi) = 0).

Thus x ∈ X is a strongly M -nilpotent element.
(⇐). Suppose that x ∈ X is a strongly M -nilpotent element. Thus x =∑n

i=1 rifi(mi) for some ri ∈ R, mi ∈ M , n ∈ N and fi ∈ HomR(M,Rxi),
where xi ∈ X such that for every i (1 ≤ i ≤ n) and for every sequence
ri1, ri2, ri3, . . ., where ri1 = ri and rit+1 ∈ ritRrit (∀t), we have rikRfi(mi) = 0
for some k ∈ N. Consider the sequence ri1, ri2, ri3, . . ., where ri1 = ri and
ri2 = ri1

2 = ri11ri1 ∈ ri1Rri1, ri3 = ri1
4 = ri11ri11ri11ri1 ∈ ri2Rri2, . . .. By

assumption, we have rikRfi(mi) = 0 for some k ∈ N. Since rik = ri1
k′

for

some k′ ∈ N, so ri1
k′

Rfi(mi) = rikRfi(mi) = 0. Now for r = 1, we have

ri1
k′

1fi(mi) = 0. Thus x is an M -nilpotent element. �

We recall the definition of Baer’s lower nilradical in a module. For any
module X , Nil∗(RX) is the set of all strongly nilpotent elements of X . In case
R is a commutative ring, Nil∗(RX) is the set of all nilpotent elements of X .

Definition 3.5. Assume that M is projective in σ[M ]. For any module X in
σ[M ], we define M -Nil∗(RX) to be the set of all stronglyM -nilpotent elements
of X . This is called M -Baer’s lower nilradical of X .

Proposition 3.6. Assume that M is projective in σ[M ]. Then for any module

X in σ[M ]

Nil∗(M) ·X ⊆ M−Nil∗(RX) ⊆ radM (X).

Proof. Since M is projective in σ[M ], by Lemma 2.9(a),

Nil∗(M) ·X =
∑

f∈HomR(M,X)

f(Nil∗(M)).

Now let x ∈ Nil∗(M) · X . Thus x =
∑s

i=1 fi(mi) for some mi ∈ Nil∗(M),

s ∈ N and fi ∈ HomR(M,X). Since mi ∈ Nil∗(M), so mi =
∑t

j=1 rijnij

for some rij ∈ R, nij ∈ M , t ∈ N such that for every j (1 ≤ j ≤ t) and
for every sequence rij1 , rij2 , rij3 , . . ., where rij1 = rij and riju+1

∈ rijuRriju
(∀u), we have rijkiRnij = 0 for some ki ∈ N. Thus x =

∑s
i=1 fi(mi) =∑s

i=1 fi(
∑t

j=1 rijnij ) =
∑s

i=1

∑t

j=1 rijfi(nij ). Since rijkiRnij = 0, we con-

clude that 0 = fi(rijkiRnij ) = rijkiRfi(nij ) for some ki ∈ N, where (1 ≤ i ≤ s)

and (1 ≤ j ≤ t). Thus x ∈ M -Nil∗(RX).
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Let x ∈ M -Nil∗(RX) and x /∈ radM (X) = M
√
(0). So x =

∑n

i=1 aifi(mi)
for some ai ∈ R, mi ∈ M , n ∈ N and fi ∈ HomR(M,Rxi) such that for
every i(1 ≤ i ≤ n) and for every sequence ai1, ai2, ai3, . . ., where ai1 = ai and
aiu+1 ∈ aiuRaiu (∀u), we have aikRfi(mi) = 0 for some k ∈ N. Without loss
of generality, we can assume that a1f1(m1) /∈ radM (X). Thus there exists
an M -m-system S such that a1f1(m1) ∈ S and 0 /∈ S. On the other hand
a1f1(m1) ∈ Ra1(Rm1) · (Rx1). Thus Ra1(Rm1) · (Rx1) ∩ S 6= ∅ and hence
Ra1(Rm1) · X ∩ S 6= ∅. Therefore, if we put N = Ra1(Rm1), Y = (0) and
Z = Ra1(Rm1) ·(Rx1), then (Ra1(Rm1))

2 ·(Rx1) ∩S 6= ∅ by Proposition 2.14.
Since M is projective in σ[M ], by Lemma 2.9(a) and Lemma 2.23, we conclude
that

(Ra1(Rm1))
2 · (Rx1) = (Ra1(Rm1) ·Ra1(Rm1)) · (Rx1)

= (Ra1(Rm1)).(Ra1(Rm1) · (Rx1))

=
∑

f∈HomR(M,Ra1(Rm1)·(Rx1))

f(Ra1(Rm1)).

Assume that s1 = 1, a11 = a1 and a1f1(t1a1s2m1) ∈ (Ra1(Rm1))
2 · (Rx1) ∩S,

where s2, t1 ∈ R. Since a1f1(t1a1s2m1) = s2a1t1a1f1(m1) and a12 = a1t1a1, so
s2a12f1(m1) ∈ Ra12(Rm1)·(Rx1)∩S. It follows that Ra12(Rm1)·(Rx1) ∩S 6= ∅
and so

(Ra12(Rm1))
2 · (Rx1) ∩ S 6= ∅.

Thus there exists s3a13f1(m1) ∈ (Ra12(Rm1))
2 · (Rx1) ∩ S, where s3 ∈ R,

and a13 := a12t2s2a12 for some t2 ∈ R. We can repeat this argument to get
sequences {su}u∈N and {a1u}u∈N in R, where a11 = a1 and a1u+1 ∈ a1uRa1u
(∀u), such that sua1uf1(m1) ∈ S for all u ≥ 1. Now by our hypothesis
a1kRf1(m1) = 0 for some k ∈ N, and so ska1kf1(m1) = 0 ∈ S, a contra-
diction. �

In case M = R, by Proposition 3.6, Nil∗(R) ·X ⊆ R-Nil∗(RX) ⊆ radR(X).
Since by Proposition 3.2, R-Nil∗(RX) is the set of all strongly R-nilpotent
elements of X , so we have R-Nil∗(RX) = Nil∗(RX) (see also, [2, Lemma 3.2]).

Corollary 3.7. Assume that M is projective in σ[M ]. Then

Nil∗(M) = Nil∗(M) ·M = M −Nil∗(M).

Proof. By Proposition 3.6, Nil∗(M) ·M ⊆ M -Nil∗(M). Also, we have Nil∗(M) ·
M =

∑
f∈HomR(M,M) f(Nil∗(M)), by Lemma 2.9 (a). Since 1M ∈ HomR(M ,

M), so Nil∗(M) ⊆ Nil∗(M) · M . On the other hand, if x ∈ M -Nil∗(M), then
x =

∑n
i=1 rifi(mi) for some ri ∈ R, mi ∈ M , n ∈ N and fi ∈ HomR(M,Rxi),

where xi ∈ M such that for every i (1 ≤ i ≤ n) and for every sequence
ri1, ri2, ri3, . . ., where ri1 = ri and rit+1 ∈ ritRrit (∀t), we have rikRfi(mi) = 0
for some k ∈ N. Since fi(mi) ∈ Rxi ⊆ M , it follows that x is a strongly
nilpotent element ofM . So x ∈ Nil∗(M). It follows thatM -Nil∗(M) ⊆ Nil∗(M)
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and Nil∗(M) ⊆ Nil∗(M) · M ⊆ M -Nil∗(M) ⊆ Nil∗(M). Thus Nil∗(M) =
Nil∗(M) ·M = M -Nil∗(M). �

Corollary 3.8. Assume that M is projective in σ[M ]. Then radR(M) ⊆
radM (M).

Proof. By Proposition 3.6, we have M -Nil∗(M) ⊆ radM (M). On the other
hand Nil∗(M) = M -Nil∗(M) by Corollary 3.7. Thus Nil∗(M) ⊆ radM (M).
Since M is projective in σ[M ], radR(M) = Nil∗(M) by [2, Theorem 3.8]. Thus
radR(M) = Nil∗(M) ⊆ radM (M). �

Proposition 3.9. Assume that M is projective in σ[M ]. If X ∈ σ[M ] such
that radM (X) = M -Nil∗(X), then radM (Y ) = M -Nil∗(Y ) for any direct

summand Y of X.

Proof. Suppose that X = Y ⊕ Z, where Z, Y are submodules of X . By
Proposition 3.6, M -Nil∗(Y ) ⊆ radM (Y ). Let x ∈ radM (Y ). By Proposition
2.28, x ∈ radM (X). By hypothesis x ∈ M -Nil∗(X). Thus x =

∑n
i=1 rifi(mi)

for some ri ∈ R, mi ∈ M , n ∈ N and fi ∈ HomR(M,Rxi), where xi ∈ X
such that for every i (1 ≤ i ≤ n) and for every sequence ri1, ri2, ri3, . . ., where
ri1 = ri and rit+1 ∈ ritRrit (∀t), we have rikRfi(mi) = 0 for some k ∈ N.
Since xi ∈ X , there exist elements yi ∈ Y , zi ∈ Z such that xi = yi + zi
for each i (1 ≤ i ≤ n). On the other hand, fi(mi) ∈ Rxi for each i, and
hence fi(mi) = ai(yi + zi) for some ai ∈ R (1 ≤ i ≤ n). It is clear that
x = r1a1y1+r2a2y2+· · ·+rnanyn, and rikRaiyi = 0 for some k ∈ N (1 ≤ i ≤ n).

Now for each i (1 ≤ i ≤ n), we consider gi : M
fi−→ Rxi ⊆ X

πi−→ Ryi ⊆ Y ,
where πi is the natural projection map such that gi(mi) = πifi(mi) = πi(ai(yi+
zi)) = aiyi. Thus x = r1a1y1 + r2a2y2 + · · ·+ rnanyn =

∑n

i=1 rigi(mi), where
gi ∈ HomR(M,Ryi) and rikRaiyi = rikRgi(mi) = 0. It follows that x ∈ M -
Nil∗(Y ). Thus radM (Y ) = M -Nil∗(Y ). �

4. M-injective modules and prime M-ideals

The module RX is said to be M -generated if there exists an R-epimorphism
from a direct sum of copies of M onto X . Equivalently, for each nonzero R-
homomorphism f : X → Y there exists an R-homomorphism g : M → X with
fg 6= 0. The trace of M in X is defined to be

trM (X) =
∑

f∈HomR(M,X)

f(M)

and thus X is M -generated if and only if trM (X) = X .
We recall the definition of prime M -ideal. The proper M -ideal P is said

to be a prime M -ideal if there exists an M -prime module RX such that P =
AnnM (X).
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Proposition 4.1. Let M an R-module with HomR(M,X) 6= 0 for every X ∈
σ[M ] and P be a proper M -ideal. Then P is a prime M -ideal if and only if P
is a Beachy-prime M -ideal.

Proof. Assume that P is a prime M -ideal. Thus there exists an M -prime
module X such that P = AnnM (X). Since P 6= M , HomR(M,X) 6= 0. Thus
by Proposition 2.7, X is a Beachy-M -prime module. Thus P is a Beachy-prime
M -ideal.

Conversely, let P be a Beachy-primeM -ideal. Thus there exists a Beachy-M -
prime module X in σ[M ] such that P = AnnM (X). Since HomR(M,X) 6= 0,
so X 6= (0). Now assume that Y is a nonzero submodule of X . So Y ∈ σ[M ]
and HomR(M,Y ) 6= 0 by assumption. Therefore, AnnM (X) = AnnM (Y ) by
the definition of Beachy-M -prime module. Thus by Proposition 2.4, X is an
M -prime module and hence P is a prime M -ideal. �

The module RX in σ[M ] is said to be finitely M -generated if there exists an
epimorphism f : Mn → X , for some positive integer n. It is said to be finitely

M -annihilated if there exists a monomorphism g : M/AnnM (X) → Xm, for
some positive integer m. Also, the module RM is said to satisfy condition H
if every finitely M -generated module is finitely M -annihilated. Note that if
M = R and R is a fully bounded Noetherian ring, then M satisfies condition
H . The same is true if M is an Artinian module, since then M/K has the
finite intersection property.

In [1, Theorem 6.7], it is shown that if M is a Noetherian module such
that M satisfies condition H and HomR(M,X) 6= 0 for all modules X in
σ[M ], then there is a one-to-one correspondence between isomorphism classes
of indecomposable M -injective modules in σ[M ] and Beachy-prime M -ideals.
Next, in the main result of this section, we show this fact is also true for a
Noetherian module with condition H and the assumption HomR(M,X) 6= 0
for all modules X in σ[M ] via prime M -ideals.

Corollary 4.2. Let M be a Noetherian R-module. If M satisfies condition

H and HomR(M,X) 6= 0 for all modules X in σ[M ], then there is a one-to-

one correspondence between isomorphism classes of indecomposable M -injective

modules in σ[M ] and prime M -ideals.

Proof. By [1, Theorem 6.7] and Proposition 4.1, it is clear. �

5. Prime M-ideals and M-prime radical of Artinian modules

Let M be an R-module. Recall that a proper submodule P of M is virtually
maximal if the factor moduleM/P is a homogeneous semisimple R-module, i.e.,
M/P is a direct sum of isomorphic simple modules. Clearly, every virtually
maximal submodule of M is prime. Also, every maximal submodule of M is
virtually maximal and for M = R and R commutative, this is equivalent to the
notion of maximal ideal in R.
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We recall that Soc(M) is the sum of all minimal submodules of M . If M
has no minimal submodule, then Soc(M) = (0).

Proposition 5.1. Let M be an Artinian R-module. If M is an M -prime

module, then M is a homogeneous semisimple module.

Proof. Since M is an Artinian R-module, Soc(M) 6= (0). Hence there exists
a simple submodule Rm of M where 0 6= m ∈ M . Since M is an M -prime
module, AnnM (Rm) = AnnM (M) = (0) by Proposition 2.4. Thus (0) =
AnnM (Rm) =

⋂
f∈HomR(M,Rm) ker(f). Since Rm ∼= M/ker(f) for every f ∈

HomR(M,Rm), (0) is an intersection of maximal submodules and since M is
Artinian, (0) must be a finite intersection of maximal submodules. It follows
that M is isomorphic to a finite direct sum of copies of Rm. Thus M is a
homogeneous semisimple module. �

An M -ideal P is said to be a primitive M -ideal if P = AnnM (S) for a simple
module RS (see [1, Definition 3.5]).

Proposition 5.2. Let P be a proper M -ideal. If P is a primitive M -ideal,

then P is a prime M -ideal.

Proof. If P is a primitive M -ideal, then P = AnnM (S) for a simple R-module
S. Since S has no nonzero proper submodule, S is an M -prime module by
Proposition 2.4. Thus P is a prime M -ideal. �

Proposition 5.3. Let M be an M -prime module with Soc(M) 6= (0). Then

(0) is a primitive M -ideal.

Proof. Since Soc(M) 6= (0), there exists a simple submodule Rm of M where
0 6= m ∈ M . Since M is an M -prime module, so AnnM (Rm) = AnnM (M) =
(0). Therefore, (0) is a primitive M -ideal. �

Proposition 5.4. Assume that M is projective in σ[M ]. If M is an Artinian

R-module, then every prime M -ideal of M is virtually maximal.

Proof. Suppose that P � M is a prime M -ideal. Since M is projective in
σ[M ], M/P is an M -prime module by Proposition 2.10. Since M/P is also an
Artinian module, Soc(M/P ) 6= (0) and hence there exists a simple submod-
ule Rm̄ of M/P where 0 6= m̄ ∈ M/P . Since M/P is an M -prime module,
AnnM (Rm̄) = AnnM (M/P ) = P . On the other hand, P = AnnM (Rm̄) =⋂

f∈HomR(M,Rm̄) ker(f). Since Rm̄ ∼= M/ker(f) for every f ∈ HomR(M,Rm̄),

P must be an intersection of maximal submodules. Since M/P is Artinian, P
must be a finite intersection of maximal submodules, and soM/P is isomorphic
to a finite direct sum of copies of Rm̄. Thus M/P is a homogeneous semisimple
module, i.e., P is a virtually maximal submodule of M . �

Definition 5.5. The prime radical of the module M , denoted by P (M), is
defined to be the intersection of all prime M -ideals.
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We note that each prime M -ideal is the annihilator of an M -prime module
in M . It follows that P (M) = radC(M), where C is the class of all M -prime
left R-modules. If RX is any module with a submodule Y such that X/Y is an
M -prime module, then radC(X) ⊆ Y . In this case it follows from [1, Lemma
1.8] that P (M) ·X ⊆ Y .

Theorem 5.6. Assume that M is projective in σ[M ]. If M is an Artinian

R-module, then every prime M -ideal of M is virtually maximal and M/P (M)
is a Noetherian R-module.

Proof. If M does not contain any prime M -ideal, then P (M) = M . Suppose
that M contains a prime M -ideal. By Proposition 5.4, every prime M -ideal of
M is virtually maximal. Let N be minimal in the collection S of M -ideals of
M which are finite intersections of primes. If P is any prime M -ideal of M ,
then P ∩N ∈ S and P ∩N ⊆ N . Thus N = P ∩N ⊆ P by minimality of N
in S. It follows that N = P (M). On the other hand, for each prime M -ideal,
the factor module M/P is a homogeneous semisimple module with DCC. So
M/P is Noetherian. Thus M/P is Noetherian for every prime M -ideal P of
M . Since P (M) is a finite intersection of prime M -ideals, M/P (M) is also a
Noetherian R-module. �

The following theorem is a generalization of [2, Theorem 2.11].

Theorem 5.7. Assume that M is projective in σ[M ]. If M be an Artinian

R-module, then P (M) = M or there exist primitive M -ideals P1, . . . , Pn of M
such that P (M) =

⋂n

i=1 Pi.

Proof. Let P be a prime M -ideal of M . Since M is projective in σ[M ], so M/P
is an M -prime module by Proposition 2.10 (ii). Since M/P is an Artinian R-
module, Soc(M/P ) 6= (0). Thus there exists a simple submodule Rm̄ of M/P
where 0 6= m̄ ∈ M/P . Since M/P is an M -prime module, AnnM (Rm̄) =
AnnM (M/P ). On the other hand, AnnM (M/P ) = P , since P is an M -ideal.
Thus P is a primitive M -ideal. Since P is an arbitrary prime M -ideal, so every
prime M -ideal of M is a primitive M -ideal. On the other hand by Proposition
5.2, we have that every primitive M -ideal is a prime M -ideal. Thus P (M) is
the intersection all of primitive M -ideals of M . Now let N be minimal in the
collection S of M -ideals of M which are finite intersections of primes. If Q is
any primeM -ideal ofM , then Q∩N ∈ S and Q∩N ⊆ N . ThusN = Q∩N ⊆ Q
by minimality of N in S. It follows that N = P (M). Thus P (M) is a finite
intersection of prime M -ideals and it follows that P (M) is a finite intersection
of primitive M -ideals. So there exist primitive M -ideals P1, . . . , Pn of M such
that P (M) =

⋂n
i=1 Pi. Since Pi is an M -ideal for every 1 ≤ i ≤ n, Pi ·M = Pi

and so P (M) =
⋂n

i=1 Pi ·M =
⋂n

i=1 Pi. �

Corollary 5.8. Assume that M is projective in σ[M ]. If M be an Artinian

M -prime module, then P (M) = (0).
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Proof. By Proposition 5.3, (0) is a primitive M -ideal of M . It follows that
P (M) = (0) by Theorem 5.7. �

Minimal M -prime submodules are defined in a natural way. By Zorn’s
Lemma one can easily see that each M -prime submodule of a module X con-
tains a minimal M -prime submodule of X . In [18, Theorem 5.2], it is shown
that every Noetherian module contain only finitely many minimal prime sub-
modules. It is easy to show that if X is a Noetherian module, then X contain
only finitely many minimal M -prime submodules.

We conclude this paper with the following interesting result, which is a
generalization of [2, Theorem 2.1].

Theorem 5.9. Let X be a Noetherian R-module. If every M -prime submodule

of X is virtually maximal, then X/radM (X) is an Artinian R-module.

Proof. By our hypotheses, for each M -prime submodule P of X , X/P is a
homogeneous semisimple R-module. Since X is a Noetherian R-module, X/P
is also Noetherian. This implies that X/P is an Artinian R-module. On the
other hand radM (X) = P1∩· · ·∩Pn where P1, . . . , Pn are all minimal M -prime
submodules of M . Thus X/P1 ⊕ · · · ⊕X/Pn is also an Artinian R-module. It
follows that X/radM (X) is an Artinian R-module. �
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