
Bull. Korean Math. Soc. 52 (2015), No. 2, pp. 525–530
http://dx.doi.org/10.4134/BKMS.2015.52.2.525

UPPERS TO ZERO IN POLYNOMIAL RINGS

WHICH ARE MAXIMAL IDEALS

Gyu Whan Chang

Abstract. Let D be an integrally closed domain with quotient field K,
X be an indeterminate over D, f = a0 + a1X + · · ·+ anXn ∈ D[X] be
irreducible in K[X], and Qf = fK[X] ∩ D[X]. In this paper, we show
that Qf is a maximal ideal of D[X] if and only if (a1

a0
, . . . , an

a0
) ⊆ P for all

nonzero prime ideals P of D; in this case, Qf = 1
a0

fD[X]. As a corollary,

we have that if D is a Krull domain, then D has infinitely many height-
one prime ideals if and only if each maximal ideal of D[X] has height
≥ 2.

1. Introduction

Let D be an integral domain with quotient field K, D̄ the integral closure
of D in K, X an indeterminate over D, and D[X ] the polynomial ring over D.
We say that a nonzero prime ideal Q of D[X ] is an upper to zero in D[X ] if
Q ∩D = (0); so each upper to zero in D[X ] has height-one. Clearly, if Q is an
upper to zero in D[X ], then Q = fK[X ] ∩ D[X ] for some f ∈ D[X ] which is
irreducible in K[X ].

Let X1, . . . , Xn be indeterminates over D. It is known that the intersection
of the nonzero prime ideals of D is zero if and only if M ∩ D 6= (0) for all
maximal ideals M of D[X1, . . . , Xn] [11, Theorem 14.10]. This result was first
proved by Artin-Tate [2] in the Noetherian case and then by Nagata [11] in
the general case. In [10], May used this result to give an elementary proof
of the Nullstellensatz: if F is an algebraically closed field, then an ideal M
of F [X1, . . . , Xn] is maximal if and only if M = (X1 − a1, . . . , Xn − an) for
a1, . . . , an ∈ F . Let A be the intersection of the nonzero prime ideals of D. It
is clear by [11, Theorem 14.10] that A 6= (0) if and only if there is a maximal
ideal M of D[X ] with M ∩ D = (0). In this case, if we let f = 1 + aX

for 0 6= a ∈ A, then Qf := fK[X ] ∩ D[X ] is a maximal ideal of D[X ] with
Qf ∩ D = (0) [9, Proof of Theorem 24] and Qf = fD[X ]. In this paper, we
completely characterize uppers to zero in D[X ] that are maximal ideals.
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Let f = a0+a1X+ · · ·+anX
n ∈ D[X ] be such that f is irreducible in K[X ]

and Qf = fK[X ] ∩D[X ]. We show that
√

fD[X ] is a maximal ideal of D[X ]
if and only if a0 is a unit in D and (a1, . . . , an) ⊆ P for all nonzero prime ideals
P of D. Then we use this result to show that if D is integrally closed, then Qf

is a maximal ideal if and only if (a1

a0
, . . . , an

a0
) ⊆ P for all nonzero prime ideals P

of D; in this case, Qf = 1
a0
fD[X ]. Also, we give an example of a non-integrally

closed integral domain D with g ∈ D[X ] such that gK[X ]∩D[X ] is a maximal
ideal, but not a principal ideal. Finally, we show that if D is a Krull domain,
then D has infinitely many height-one prime ideals if and only if each maximal
ideal of D[X ] has height ≥ 2.

Let I be a nonzero fractional ideal of D. Then I−1 = {x ∈ K | xI ⊆ D},
Iv = (I−1)−1, and It = ∪{Jv | J ⊆ I is a nonzero finitely generated ideal}.
We say that I is a t-ideal if It = I. A t-ideal of D is a maximal t-ideal if it
is maximal among proper integral t-ideals. Let t-Max(D) denote the set of
maximal t-ideals of D. It is well known that a maximal t-ideal is a prime ideal;
each integral t-ideal is contained in a maximal t-ideal; D = ∩P∈t-Max(D)DP ;
and each prime ideal minimal over a t-ideal is a t-ideal (and hence each height-
one prime ideal is a t-ideal and t-Max(D) 6= ∅ if D is not a field). A nonzero
ideal I of D is said to be t-invertible if (II−1)t = D; equivalently, II−1

* P

for all P ∈ t-Max(D).

2. Main results

Let D be an integral domain with quotient field K, X be an indeterminate
over D, and D[X ] be the polynomial ring over D.

Lemma 1. Let f = a0+a1X+ · · ·+anX
n ∈ D[X ] and I an ideal of D. Then

fD[X ] + I[X ] = D[X ] if and only if a0D + I = D and (a1, . . . , an)
m ⊆ I for

some integer m ≥ 1.

Proof. Note that fD[X ]+I[X ] = D[X ] if and only if D[X ]/I[X ] ∼= (D/I)[X ] =

(f); a0D + I = D if and only if a0 is a unit in D/I; and a1, . . . , an are nilpo-
tent in D/I if and only if ami

i
∈ I for some integer mi ≥ 1, if and only if

(a1, . . . , an)
m ⊆ I for some integer m ≥ 1. Thus the result follows directly

from [3, Exercise 2, page 10] that g = b0 + b1X + · · ·+ bmXm ∈ (D/I)[X ] is a
unit if and only if b0 is a unit in D/I and b1, . . . , bm are nilpotent in D/I. �

Let f = a0+a1X+· · ·+anX
n ∈ D[X ]. We denote by cD(f) (or simply c(f))

the ideal of D generated by the coefficients of f , i.e., cD(f) = (a0, a1, . . . , an).
It is well known that if g, h ∈ D[X ], then there exists a positive integer m

such that c(g)m+1c(h) = c(g)mc(gh) [5, Theorem 28.1]. Using this result, we
can easily show that fK[X ] ∩ D[X ] = fD[X ] if and only if c(f)−1 = D (see,
for example, [1, Lemma 2.1(1)]). Also, it is well known that if D is integrally
closed, then gK[X ] ∩ D[X ] = gc(g)−1[X ] for all 0 6= g ∈ D[X ] [5, Corollary
34.9].
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Lemma 2. Let f = a0 + a1X + · · · + anX
n ∈ D[X ] be irreducible in K[X ].

Then
√

fD[X ] is a maximal ideal of D[X ] if and only if a0 is a unit in D and

(a1, . . . , an) ⊆ P for all nonzero prime ideals P of D. In this case,
√

fD[X ] =
fD[X ].

Proof. (⇒) Suppose that
√

fD[X ] is a maximal ideal of D[X ], and let P be a

nonzero prime ideal ofD; then P *

√

fD[X ], and hence fD[X ]+P [X ] = D[X ].
Thus by Lemma 1, a0 6∈ P and (a1, . . . , an) ⊆ P . In particular, since P is
arbitrary, a0 must be a unit in D.

(⇐) First, note that fK[X ]∩D[X ] = fD[X ] since a0 is a unit in D. Let Q
be a prime ideal of D[X ] with f ∈ Q. If Q∩D 6= (0), then (a1, . . . , an) ⊆ Q∩D

and fD[X ] + (Q ∩ D)[X ] ⊆ Q. Note that a0D + Q ∩ D = D because a0 is
a unit; so by Lemma 1, D[X ] = fD[X ] + (Q ∩ D)[X ] ⊆ Q, a contradiction.
Hence Q ∩ D = (0), and thus Q = fK[X ] ∩ D[X ] and Q is the unique prime

ideal of D[X ] that contains f . Therefore
√

fD[X ] = Q = fD[X ] is a maximal
ideal. �

We are now ready to prove the main result of this paper.

Theorem 3. Let D be an integrally closed domain, f = a0+a1X+· · ·+anX
n ∈

D[X ] be such that f is irreducible in K[X ], and Qf = fK[X ] ∩ D[X ]. Then

Qf is a maximal ideal of D[X ] if and only if (a1

a0
, . . . , an

a0
) ⊆ P for all nonzero

prime ideals P of D. In this case, Qf = 1
a0
fD[X ].

Proof. (⇒) Since Qf is maximal, Qf is a maximal t-ideal, and hence Qf is t-
invertible [7, Theorem 1.4]. Note that Qf = fcD(f)−1[X ] and (ID[X ])t =
ItD[X ] for all nonzero fractional ideals I of D [6, Proposition 3.4]; hence
cD(f)−1 is t-invertible. Let P be a maximal t-ideal of D. Then (Qf )D\P is a

maximal ideal of DP [X ]. Note that cD(f)cD(f)−1
* P ; so cD(f)DP is invert-

ible. Hence cD(f)DP = (cD(f)DP )t = (cD(f)tDP )t ⊇ cD(f)tDP ⊇ cD(f)DP

[8, Lemma 3.4(3)] and cD(f)DP = aiDP for some i [5, Proposition 7.4(2)],
and thus cD(f)tDP = aiDP . Note also that (Qf )D\P = fK[X ] ∩ DP [X ] =
1
ai

fDP [X ]. Hence by Lemma 2, a0

ai

is a unit in DP ; so aiDP = a0DP . Thus

cD(f)t = ∩P∈t-Max(D)cD(f)tDP = ∩P∈t-Max(D)a0DP = a0D [8, Proposition

2.8(3)]. This implies that Qf = fK[X ]∩D[X ] = 1
a0
fD[X ]. Again, by Lemma

2, (a1

a0
, . . . , an

a0
) ⊆ P for all nonzero prime ideals P of D.

(⇐) Let h = 1
a0
f = 1 + a1

a0
X + · · · + an

a0
Xn. Then by Lemma 2, Qf =

hK[X ] ∩D[X ] = hD[X ] is a maximal ideal of D[X ]. �

We next give an example which shows that Theorem 3 does not hold for a
non-integrally closed domain.

Example 4. Let D be a one-dimensional quasi-local domain with maximal
ideal P such that D̄ is quasi-local with maximal ideal Q and PD̄ ( Q. (For
example, let F be a field, t an indeterminate over F , and D = F [[t2, t3]] be
a subring of the power series ring F [[t]]. Then (t2, t3) is a maximal ideal of
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D, D̄ = F [[t]] is a local PID with maximal ideal tD̄, and (t2, t3)D̄ ( tD̄.)
Choose u = b

a
∈ Q \ PD̄, where a, b ∈ D, and let f = a + bX ∈ D[X ]. Then

fK[X ] ∩D[X ] is a maximal ideal of D[X ], but not a principal ideal.

Proof. Obviously, fK[X ] ∩ D̄[X ] = fcD̄(f)−1[X ] = 1
a
fD̄[X ]. Hence fK[X ] ∩

D̄[X ] is a maximal ideal by Theorem 3, and thus fK[X ] ∩D[X ] is a maximal
ideal of D[X ] because D̄[X ] is integral over D[X ]. Next, assume that fK[X ]∩
D[X ] is principal. Then there exists an h ∈ D[X ] such that fK[X ] ∩D[X ] =
hD[X ]. Note that hK[X ] = fK[X ]; so f = αh for some α ∈ K and cD(h) = D.
Hence (a, b) = cD(f) = αD, and thus (a, b) is invertible. But, in this case,
either (a, b) = aD or (a, b) = bD because D is quasi-local. If (a, b) = aD, then
b

a
∈ D ⊆ D̄, and hence b

a
∈ Q ∩ D = P ⊆ PD̄, a contradiction. Assume

(a, b) = bD. Then a

b
∈ D ⊆ D̄, and hence 1 = b

a
· a
b
∈ Q, a contradiction. Thus

fK[X ] ∩D[X ] is not principal. �

Corollary 5. Let f = a0 + a1X + · · · + anX
n ∈ D[X ] be such that f is

irreducible in K[X ]. Then the following statements are equivalent.

(1) Qf := fK[X ] ∩D[X ] is a maximal ideal of D[X ].
(2) Mf := fK[X ] ∩ D̄[X ] is a maximal ideal of D̄[X ].
(3) (a1

a0
, . . . , an

a0
) ⊆ P for all nonzero prime ideals P of D̄.

In particular, if a0 is a unit in D, then Qf is maximal if and only if (a1, . . . , an)
⊆ P for all nonzero prime ideals P of D.

Proof. (1) ⇔ (2) This follows from [9, Theorem 44] because Mf ∩D[X ] = Qf

and D̄[X ] is integral over D[X ]. (2) ⇔ (3) Theorem 3. The “in particular”
part follows because D̄ is integral over D. �

Corollary 6. Let R be a subring of K containing D, f ∈ D[X ] be irreducible in
K[X ], and Qf = fK[X ]∩D[X ]. If Qf is a maximal ideal, then fK[X ]∩R[X ]
is a maximal ideal of R[X ].

Proof. Let R̄ be the integral closure of R in K. Then D̄ ⊆ R̄ ⊆ K, and hence
each a ∈ D̄ that is contained in all nonzero prime ideals of D̄ is contained in all
nonzero prime ideals of R̄. Thus, by Corollary 5, fK[X ] ∩ R[X ] is a maximal
ideal of R[X ]. �

An integral domain D is called a G-domain if K = D[ 1
c
] for some 0 6= c ∈ D.

It is clear that D is a G-domain if and only if the intersection of the nonzero
prime ideals of D is nonzero [4, Lemma 3].

Corollary 7. Let A be the intersection of the nonzero prime ideals of D.

(1) ([9, Proof of Theorem 24]) If f = 1 + aX for 0 6= a ∈ A, then Qf =
fK[X ] ∩D[X ] is a maximal ideal of D[X ] and Qf = fD[X ].

(2) ([9, Theorem 24]) D is a G-domain (i.e., A 6= (0)) if and only if there

exists a maximal ideal M of D[X ] which satisfies M ∩D = (0).
(3) (cf. [11, Theorem 14.10]) A = (0) if and only if M ∩ D 6= (0) for all

maximal ideals M of D[X ].
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Proof. Note that A ⊆ P for all nonzero prime ideals P of D̄; so if we let B be
the intersection of the nonzero prime ideals of D̄, then A 6= (0) if and only if
B 6= (0).

(1) It is clear that f is irreducible in K[X ] and Qf = fD[X ]. Thus, the
result is an immediate consequence of Corollary 5.

(2) If D is a G-domain, then K = D[ 1
c
] for some 0 6= c ∈ D. Clearly, c ∈ A.

So if we set f = 1 + cX and Qf = fK[X ] ∩D[X ], then Qf is a maximal ideal
of D[X ] by (1) and Qf ∩ D = (0). For the converse, note that B 6= (0) by
Corollary 5. Thus A 6= (0).

(3) This follows from (2). �

Let X1(D) be the set of height-one prime ideals of D. Clearly, if each
nonzero prime ideal of D contains a height-one prime ideal, then ∩P∈X1(D)P

is equal to the intersection of the nonzero prime ideals of D. So if D is a
Krull domain (resp., principal ideal domain (PID)), then the intersection of
the nonzero prime ideals of D is zero if and only if |X1(D)| = ∞. Also, it is
well known and easy to prove that D is a Krull domain with |X1(D)| < ∞ if
and only if D is a semilocal PID [4, Theorem 1]. Thus by Corollary 7(3), we
have:

Corollary 8. A Krull domain D has infinitely many height-one prime ideals

if and only if each maximal ideal of D[X ] has height ≥ 2.

Corollary 9 ([12, Theorem 2]). A PID D has infinitely many non-associate

prime elements if and only if each maximal ideal of D[X ] has height 2.

Proof. This follows because the (Krull) dimension of D[X ] over a PID D is
2. �

We end this paper with a concrete example of uppers to zero in D[X ] that
are maximal ideals. This also shows that the converse of Corollary 6 does not
hold.

Example 10. Let Z be the ring of integers, Q be the field of rational numbers,
f = a0 + a1X + · · · + anX

n ∈ Z[X ] with gcd(a0, a1, . . . , an) = 1, ∆ = {P ∈
Spec(Z) | ai ∈ P for i = 1, . . . , n and a0 6∈ P}, S = Z \ ∪P∈∆P , and D = ZS .
Note that fQ[X ] ∩ Z[X ] = fZ[X ] and fQ[X ] ∩D[X ] = fD[X ]. Hence if f is
irreducible in Q[X ], then fD[X ] is a maximal ideal by Lemma 2, but fZ[X ]
is not a maximal ideal of Z[X ] by Corollary 9. (In fact, if R is a ring such
that Z ⊆ R ⊆ Q and fR[X ] is maximal, then D ⊆ R.) For example, let
f = 10 + 15X + 45X3 + 3X4. Then (i) 5 | 10, 5 | 15, and 5 | 45, (ii) 5 ∤ 3 and
52 ∤ 10, and hence f is irreducible in Q[X ] by Eisenstein’s Criterion. Thus if
we set D = Z3Z, then fD[X ] is a maximal ideal of D[X ], while fZ[X ] is not a
maximal ideal of Z[X ].
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