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GRADED w-NOETHERIAN MODULES OVER

GRADED RINGS

Xiaoying Wu

Abstract. In this paper, we study the basic theory of the category of

graded w-Noetherian modules over a graded ring R. Some elementary
concepts, such as w-envelope of graded modules, graded w-Noetherian

rings and so on, are introduced. It is shown that: (1) A graded domain
R is graded w-Noetherian if and only if Rg

m is a graded Noetherian ring
for any gr-maximal w-ideal m of R, and there are only finite numbers of

gr-maximal w-ideals including a for any nonzero homogeneous element a.
(2) Let R be a strongly graded ring. Then R is a graded w-Noetherian

ring if and only if Re is a w-Noetherian ring. (3) Let R be a graded

w-Noetherian domain and let a ∈ R be a homogeneous element. Suppose
p is a minimal graded prime ideal of (a). Then the graded height of the

graded prime ideal p is at most 1.

1. Introduction

In 1978, HOM and EXT are introduced for the category of graded modules
by Goto and Watanabe in [6] and [7]. Since then the study of homological
methods on graded rings have received a good deal of attention in the literature
(refer to [4, 17, 24]). Multiplicative ideal theory plays an important role in
characterizations of the ring structure.

In recent years, there are many references studying multiplicative ideal the-
ory over graded rings (refer to [1–3,16]). Traditionally, in these references, the
assumption is required generally that R is a commutative Γ-graded ring, while
Γ is a torsion-free cancellative commutative monoid. Sometimes it is required
in most of these references that Γ-graded domains are integral domains. In
1979, D. F. Anderson in [1] proved that if G is a torsion-free group and every
nonzero homogeneous element is a unit, the graded domain R =

⊕
σ∈GRσ is

completely integrally closed. In 1982, D. D. Anderson and D. F. Anderson
introduced the notions of graded Krull domains, graded GCD domains, and
graded UFDs over a torsion-free monoid Γ (refer to [2]). In [16], M. H. Park
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proved the graded version of Mori-Nagata theorem: If R is a Γ-graded Noe-
therian domain and Γ is a torsion-free monoid, then the integral closure of R is
a graded Krull domain. But it is worth noting that a torsion-free cancellative
commutative monoid can embed into a commutative abelian group.

A few literatures deal with the star operation theory on graded domains. In
1980, the graded v-ideal I is introduced by D. D. Anderson and D. F. Anderson
[3] for the case that Γ is a torsion-free cancellative monoid and R is a domain
graded by Γ. In the paper, a graded v-ideal I means that I is both a graded
ideal and a v-ideal. In [16], M. H. Park call a graded domain R (graded by
a torsion-free cancellative monoid Γ) a graded SM domain if R satisfies the
ascending chain condition on graded w-ideals, where a graded w-ideal I means
that I is both a graded ideal and a w-ideal. In that paper, it is proved that the
complete integral closure of a graded SM domain R is a graded Krull domain.
Star operation theory provides many methods and techniques for multiplicative
ideal theory on integral domains. Then the problem we face is that how to study
star operations on graded rings. Especially, it is about the w-operation. Then
let us trace the development of the w-operation in the ungraded case.

In [5], F. G. Wang and R. McCasland called a nonzero finitely generated
ideal J a GV-ideal if J−1 = R and a torsion-free module M a w-module if
Jx ⊆ M , for J ∈ GV(R) and x ∈ K ⊗R M , implies x ∈ M , where GV(R) is
the set of GV-ideals of R, and K is the quotient field of R. The w-envelope of
a torsion-free module M is defined as

Mw = {x ∈ K ⊗RM | Jx ⊆M for some J ∈ GV(R)}.

In 2011, Yin et al. [23] generalized these notions to the case that R is a com-
mutative ring with the help of functors Hom and Ext. Let R be a commutative
ring. A finitely generated ideal J of R is called a GV-ideal if HomR(R/J,R) = 0
and Ext1R(R/J,R) = 0 for all J ∈ GV(R). An R-module M is called GV-
torsion-free if HomR(R/J,M) = 0 for all J ∈ GV(R). M is called a w-module
if G is GV-torsion-free and Ext1R(R/J,M) = 0 for all J ∈ GV(R). The w-
envelope of a GV-torsion-free module M is defined as

Mw = {x ∈ E(M) | Jx ⊆M for some J ∈ GV(R)},

where E(M) is the injective hull of M . Applying the w-operation, we can
characterize many integral domains such as Krull domains and PVMDs and
their categories of modules.

In [21], a graded commutative ring R is called a graded domain if nonzero
homogenous elements of R are not zero-divisors and R is called a graded field
if nonzero homogenous elements of R are units. Let S be the set of nonzero
homogenous elements of a graded domain R. Then the localization K :=
RS at S is called the graded quotient field of R, which is certainly a graded
field. Notice that a graded field is not necessary an integral domain (refer
to [21, Example 2]). In [20], let M be a graded R-module. tgr(M) = {x ∈
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M | Jx = 0 for some J ∈ GVgr(R)}, where GVgr(R) is the set of graded GV-
ideals. A graded R-module M is called a graded GV-torsion-free module if
tgr(M) = 0. In [20], graded w-modules are introduced. The authors called a
graded GV-torsion-free module a graded w-module if EXT1

R(R/J,M) = 0 for
any J ∈ GVgr(R), and in [20], some characterizations of graded w-modules
are stated. For example, a GV-torsion-free module M is a graded w-module
if and only if for a graded w-module N containing M , if Jx ⊆ M where
J ∈ GVgr(R) and x ∈ N , then x ∈ M . Following graded w-modules, graded
w-envelopes are introduced in §2, the equivalent characterizations of grade w-
envelopes are given. There are many papers discussing graded Noetherian rings.
Correspondingly, we give the definition of graded w-Noetherian rings in §3.
Naturally, for the requirements of characterizing graded w-Noetherian rings, we
introduce the notions of graded w-exact sequences, graded finite type modules,
and graded finitely presented modules. Besides, in §4, graded w-modules over
strongly graded rings are studied, and so as the application of graded w-module
theory, we prove graded principal ideal theorem over w-Noetherian domains.

Notations. Throughout this paper, G denotes a multiplicative Abelian group
with identity element e and R =

⊕
σ∈GRσ is a commutative G-graded ring

with identity 1. We also call R a graded ring for short. Let M =
⊕

σ∈GMσ

be a graded module. For x ∈ M , we can write as x =
∑
σ xσ, where xσ ∈ Mσ

and only a finite number of xσ 6= 0. If x ∈ Mσ for some σ ∈ G, then x is said
to be homogeneous. We denote by h(M) the set of homogeneous elements of
M . Clearly, h(M) =

⋃
σ∈GMσ. Sometimes we write deg(x) = σ when x ∈Mσ

is a nonzero homogeneous element. Let M be a graded module and N be a
graded submodule of M . If for every nonzero homogeneous element m ∈ M ,
we have N

⋂
Rm 6= 0, in other words, there is an a ∈ h(R) such that am 6= 0,

then N is graded essential. Eg(M) is the graded injective envelop of a graded
R-module M (refer to [14]).

Let N =
⊕

σ∈GNσ be another graded module and put

HomR-gr(M,N) = {f ∈ HomR(M,N) | f(Mσ) ⊆ Nσ,∀σ ∈ G}.

And the elements of HomR-gr(M,N) are said to be graded homomorphisms.
The category of graded R-modules is denoted by R-gr, in which the objects are
graded R-modules and the morphisms are graded homomorphisms.

Fix σ ∈ G, write N(σ)τ = Nτσ for any τ ∈ G. Then N(σ) :=
⊕

τ∈GN(σ)τ
is a graded R-module, which is said to be σ-suspended. Let N ′ be a graded
R-module and let ϕ : N → N ′ be a graded homomorphism. Let ϕσ : N(σ) →
N ′(σ) such that ϕσ(x) = ϕ(x), x ∈ N . Clearly, if 0 → A → B → C → 0
is a graded exact sequence, then the induced sequence 0 → A(σ) → B(σ) →
C(σ)→ 0 is also a graded exact sequence.

Let f : M → N be an R-homomorphism and σ ∈ G. If f(Mτ ) ⊆ N(τσ) =
N(σ)τ for any τ ∈ G, then f is called a homomorphism with degree σ. Clearly,
we have f ∈ HomR-gr(M,N(σ)).
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Let HOMR(M,N)σ = HomR-gr(M,N(σ)). Then

HOMR(M,N) :=
⊕

σ∈G HOMR(M,N)σ =
⊕

σ∈G HomR-gr(M,N(σ))

is a graded R-module.
The right derived functor of HomR-gr(−,−) is denoted by ExtnR-gr(−,−).

Let EXTnR(M,N)σ = ExtnR-gr(M,N(σ)) and let

EXTnR(M,N) =
⊕

σ∈G EXTnR(M,N)σ =
⊕

σ∈G ExtnR-gr(M,N(σ)).

Then EXTnR(M,N) is also a graded R-module.
Any undefined notions or notation are standard, we can refer to [13,14,19].

2. Graded w-envelopes and graded localization

In the ungraded cases, there is a w-envelope for any GV-torsion-free module.
As it follows, we discuss the graded w-envelope over graded commutative rings.

Definition 2.1. Let M be a graded GV-torsion-free module. Set

Mg
w = {x ∈ Eg(M) | Jx ⊆M for some J ∈ GVgr(R)},

which is called the graded w-envelope of M .

Naturally, if M is a graded GV-torsion-free module, then M ⊆Mg
w. Appar-

ently, Mg
w = 0 if and only if M = 0.

Theorem 2.2. Let M be a graded R-module. If N is a graded w-submodule
of Eg(M) and M ⊆ N , then Mg

w ⊆ N . Therefore, Mg
w is the smallest graded

w-submodule of Eg(M) containing M .

Proof. The proof is a similar manner as the ungraded cases (cf. [19, Theorem
6.2.2]). �

Proposition 2.3. Let M be a graded GV-torsion-free module. Then Mg
w/M

is a graded GV-torsion module.

Proof. It’s trivial. �

Theorem 2.4. The following statements are equivalent for a graded GV-
torsion-free module M :

(1) M is a graded w-module.
(2) Every graded homomorphism f : A → M can be extended to Agw for

any graded GV-torsion-free module A.
(3) EXT1

R(Agw/A,M) = 0 for any graded GV-torsion-free module A.
(4) Ext1R-gr(A

g
w/A,M) = 0 for any graded GV-torsion-free module A.

Proof. (1)⇒(3) By [20, Theorem 3.8], the assertion follows.
(3)⇒(4)⇒(2) It is clear.
(2)⇒(1) For J ∈ GVgr(R), by Theorem 2.2, we have Jgw = R. Then by

[20, Theorem 3.8], we can finish the proof. �
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Let M be a graded R-module. A proper graded submodule A of M is called a
graded prime submodule of M if for r ∈ h(R) and x ∈ h(M), whenever rx ∈ A,
then x ∈ A or rM ⊆ A.

Theorem 2.5. Let M be a graded module, M be a w-module, and N be a
graded submodule of M . Then:

(1) Nw = Ng
w.

(2) If N is a maximal w-submodule of M , then N is a gr-maximal w-
submodule of M . Especially, if A is a graded ideal of R and A is a
maximal w-ideal of R, then A is a gr-maximal w-ideal of R.

Proof. (1) By the definitions of w-envelopes as well as graded w-envelopes, we
have Ng

w ⊆ Nw since Eg(N) ⊆ E(N). By [20, Theorem 3.17], we have Ng
w is a

w-module, and thus Nw ⊆ Ng
w.

(2) Let N be a maximal w-submodule of M . According to [20, Theorem
3.17], N is a graded w-module of M . If A is a graded w-module containing N ,
then by [20, Theorem 3.17], A is also a w-submodule of M . So either A = N ,
or A = M . Therefore N is a gr-maximal w-submodule of M . �

Let S be a multiplicative closed set of homogeneous elements of R, denote
S =

⋃
σ∈G Sσ, where Sσ = Rσ ∩ S. Similarly to the ungraded case, let’s con-

struct a fractional ring RS at S, where R =
⊕

σ∈GRσ. By lucky coincidence,
RS =

⊕
µ∈G(RS)µ is also a graded ring (cf. [13, §1.6]), where

(RS)µ =
{r
s
| r ∈ Rσ, s ∈ Sτ , µτ = σ

}
.

Moreover, we have MS is a graded module over a graded ring RS for any graded
R-module M , and MS

∼= RS ⊗RM . Note that S = h(R \ p) is a multiplicative
closed set of homogeneous elements of R − p, where p is a graded prime ideal
of R. Let’s denote by Mg

p the localization of graded R-module M at S. Also
denote by gr-w-Max(R) the set of all gr-maximal w-ideals of R.

Theorem 2.6. Let p be a graded prime w-ideal and let M be a graded GV-
torsion-free module. Then Mg

p = (Mg
w)gp.

Proof. By Proposition 2.3, Mg
w/M is a graded GV-torsion module. According

to [20, Theorem 3.15], we have (Mg
w/M)gp = 0, and therefore (Mg

w)gp = Mg
p . �

If p is a graded prime ideal of R, and p = p0 ⊃ p1 ⊃ · · · ⊃ pn is a chain of
graded prime ideals of p, then we define the graded height of a graded prime
ideal p, denoted by htg p, which is the supremum of the lengths n of all strictly
decreasing chains of graded prime ideals of p. Moreover, the graded Krull
dimension of R is defined as

dimg(R) = sup{htg p | p runs all graded prime ideals of R}.

Proposition 2.7. Let I be a proper graded w-ideal of R and let p be a minimal
graded prime ideal of I. Then p is a graded w-ideal.
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Proof. Assume p is not a graded w-ideal. By Theorem 2.5 and [19, Theorem
6.2.9], we have pgw = R. Then there is J ⊆ p for some J ∈ GVgr(R). Anal-
ogously to the ungraded case, sJn ⊆ I for some positive integer n and some
homogeneous element s ∈ R \ p. On the other hand, since Jn ∈ GVgr(R) and
I is a graded w-ideal, we have s ∈ I ⊆ p, which is a contradiction. Thus p is a
graded w-ideal. �

Theorem 2.8. Let M be a graded w-module and let both A and B be graded
submodules of M . Then Agw = Bgw if and only if Agm = Bgm for any m ∈
gr-w-Max(R). Therefore, if both A and B are graded w-submodules of M , then
A = B if and only if Agm = Bgm for any m ∈ gr-w-Max(R).

Proof. Suppose Agw = Bgw. By Theorem 2.6, Agm = (Agw)gm = (Bgw)gm = Bgm for
any gr-maximal w-ideal m of R.

Conversely, suppose x ∈ Agw. Denote I = (Bgw : x) = {r ∈ R | rx ∈ Bgw}.
Then I is a graded w-ideal of R. Notice that (Bgw)gm = Bgm = Agm = (Agw)gm for
any gr-maximal w-ideal m. Therefore

Im = {a ∈ Rgm | ax ∈ (Bgw)gm} = {a ∈ Rgm | ax ∈ (Agw)gm} = Rgm.

Hence I 6⊆ m for any gr-maximal w-ideal m of R. Since I is a graded w-ideal,
we have I = R. Then we get x ∈ Bgw, i.e., Agw ⊆ Bgw. In the same way, we have
Bgw ⊆ Agw. Therefore Agw = Bgw. �

3. Graded w-Noetherian rings

We begin this section with the definitions of graded w-morphisms.

Definition 3.1. Let both M and N be graded R-modules and let f : M → N
be a graded homomorphism. Then f is called a graded w-monomorphism (resp.,
a graded w-epimorphism, a graded w-isomorphism) if fm : Mm → Nm is a
graded monomorphism (resp., a graded epimorphism, a graded isomorphism)
for any gr-maximal w-ideal m.

Definition 3.2. A sequence of graded modules with graded homomorphisms
A→ B → C is called a graded w-exact sequence if Agm → Bgm → Cgm is a graded
exact sequence for any gr-maximal w-ideal m of R.

Definition 3.3. Let M be an R-module.

(1) M is said to be a graded finite type module if there exists a graded
w-exact sequence F → M → 0, where F is a finitely generated gr-free
module.

(2) M is said to be a graded finitely presented type module if there exists
a graded w-exact sequence F1 → F0 → M → 0, where F0 and F1 are
finitely generated gr-free modules.

It is natural that every finitely generated graded (resp., graded finitely pre-
sented) module is of graded finite type (resp., graded finitely presented type).
By definition, it is clear that if M is of graded finite type (resp., graded finitely
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presented type), then Mg
m is a finitely generated graded (resp., graded finitely

presented type) Rm-module for any gr-maximal w-ideal m of R. Clearly, every
graded GV-torsion module must be a graded finitely presented type module.

Recall that a graded R-module M is said to be graded Noetherian if every
graded submodule of M is finitely generated graded. A graded ring R is said
to be graded Noetherian if every graded ideal of R is finitely generated graded.
For the general theory of graded Noetherian modules and graded Noetherian
rings, the reader may consult [8–11,15,17,18].

Definition 3.4. Let R be a graded ring and let M be a graded R-module.
Then M is called a graded w-Noetherian module if every graded submodule of
M is of graded finite type. And a graded ring R is called a graded w-Noetherian
ring if R as a graded R-module is a graded w-Noetherian module.

Since every finitely generated graded module must be of graded finite type,
every graded Noetherian module must be a graded w-Noetherian module and
every graded Noetherian ring must be a graded w-Noetherian ring. Especially,
every graded GV-torsion module must be a graded w-Noetherian module.

Proposition 3.5. (1) Let M be a graded w-Noetherian module. Then Mg
m

is a graded Noetherian module for any gr-maximal w-ideal m of R.

(2) Let M1, . . . ,Mk be graded w-Noetherian modules. Then
⊕k

i=1Mi is a
graded w-Noetherian module.

(3) Let R be a graded w-Noetherian ring. Then Rgm is a graded Noetherian
ring for any gr-maximal w-ideal m of R.

Proof. (1) Let A be a graded submodule of Mg
m and B = {b ∈ R | b1 ∈ A}.

Then it’s easy to prove that B is a graded submodule of M and A = Bgm. From
assumption, B is of graded finite type, i.e., there is a graded exact sequence
F → B → 0, where F is a finitely generated gr-free module. According to the
ungraded case, F gm is a finitely generated gr-free Rgm-module and the sequence
F gm → Bgm → 0 is exact. Therefore A is a finitely generated graded Rgm-module.
Thus Mg

m is a graded Noetherian module.
(2) This follows analogously to the ungraded case.
(3) This follows by (1). �

Let R be a graded domain. Denote by K = RS the graded quotient field of
R, where S is a multiplicative closet of nonzero homogeneous elements of R. For
a nonzero graded submodule A of K, we define A−1g = {x ∈ K |xA ⊆ R}. And

we call A a graded v-ideal if A is a graded ideal of R and Agv := (A−1g )−1g = A.
Let R be a graded domain and let M be a graded R-module. Recall that M

is called a graded torsion-free module if sx = 0 implies x = 0, where x ∈ h(M)
and 0 6= s ∈ h(R). And M is said to be graded divisible if for any nonzero
homogeneous element a ∈ R and x ∈ M , there is y ∈ M , such that sy = x.
Note that both x and y, above mentioned, can be assumed as homogeneous
elements. Obviously, K is a graded torsion-free module as well as a graded
divisible module.
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Lemma 3.6. Let R be a graded domain, K be the graded quotient field of R,
A be a graded submodule of K, and J be a nonzero graded ideal of R.

(1) J−1g
∼= HOMR(J,R).

(2) Let J be a finitely generated graded ideal of R. Then J ∈ GVgr(R) if
and only if J−1g = R, equivalently, Jgv = R.

Proof. (1) Let J−1g =
⊕

σ∈G(J−1g )σ. Consider a natural graded homomorphism

ψ : J−1g → HOMR(J,R), ψ(x)(a) = ax, a ∈ J , x ∈ J−1g . Let ψ =
⊕
ψσ, where

ψσ : (J−1g )σ → HomR-gr(J,R(σ)). In the following, we will show that ψσ is a
bijective mapping, i.e., ψ is an isomorphism.

If x ∈ (J−1g )σ with ψ(x) = 0, then ψ(x)(a) = ax = 0 for any nonzero
homogeneous element a ∈ J . Since K is a graded field, we have x = 0. Thus
ψσ is a monomorphism.

Let f ∈ HomR-gr(J,R(σ)) and let a, b ∈ J be nonzero homogeneous ele-

ments. Since f(ab) = af(b) = bf(a), we have f(a)
a = f(b)

b , which shows that

xf := f(a)
a is independent of the choice of a nonzero homogeneous element a.

If the degree of a is τ , then f(a) ∈ R(σ)τ = Rτσ, and thus xf ∈ Kσ. So we
have xfa = f(a) ∈ Rτσ ⊆ R for any nonzero τ -homogeneous element a ∈ J .
Hence xf ∈ J−1g . Then clearly xf ∈ (J−1g )σ. Since ψσ(xf )(a) = xfa = f(a) for
any nonzero homogeneous element a ∈ J , we get ψσ(xf ) = f . That is, ψσ is
an epimorphism, too.

(2) Clearly R−1g = R, and so R ⊆ J−1g . Assume J ∈ GVgr(R) and let

x ∈ J−1g . Then Jx ⊆ R. Since R is a graded w-module, x ∈ R. Therefore

J−1g = R.

For the converse, assume that J−1g = R. Consider the following commutative
diagram:

R // J−1g

��
R

φ // HOMR(J,R)

By (3), the vertical arrow on the right is an isomorphism, and hence φ is an
isomorphism. Therefore J ∈ GVgr(R). �

Comparing with [2,3,16], it’s worth noting that G here can be any Abelian
group and graded domains need not be integral domains, and therefore it has
more general applicability.

Lemma 3.7. Let R be a graded w-Noetherian domain.

(1) Let m be a gr-maximal w-ideal of R. Then m is a graded v-ideal.
(2) Let A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · be a descending chain on graded v-ideals

of R with
⋂∞
n=1An 6= 0. Then there exists a positive integer m such

that An = Am for all n ≥ m.
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Proof. (1) Suppose m = (x1, . . . , xn)gw and denote J = (x1, . . . , xn). If m−1g =

R, then by Lemma 3.6, we have J−1g = R. Hence J ∈ GVgr(R) and J ⊆ m,

which contradicts to the fact that m is a gr-maximal w-ideal. So m−1g 6= R, and
then mgv 6= R. Since m ⊆ mgv, we have mgv = m.

(2) Consider a nonzero homogeneous element x ∈
⋂∞
n=1An. Then x(An)−1g

is a graded w-ideal of R. As a consequence,

x(A1)−1g ⊆ x(A2)−1g ⊆ · · · ⊆ x(An)−1g ⊆ · · ·

is an ascending chain of graded w-ideals of R. Therefore there exists a positive
integer m such that x(An)−1g = x(Am)−1g for all n ≥ m. In this case, we have
An = Am for all n ≥ m. �

Theorem 3.8. A graded domain R is a graded w-Noetherian domain if and
only if Rgm is a graded Noetherian ring for any gr-maximal w-ideal m of R
and there are only finite numbers of gr-maximal w-ideals containing a for any
nonzero homogeneous element a.

Proof. Suppose R is a graded w-Noetherian domain and m is a gr-maximal
w-ideal of R. Then by Proposition 3.5, Rgm is a graded Noetherian ring.

Assume on the contrary that there are infinite numbers of gr-maximal w-
ideals containing a. Then we may pick m1,m2, . . . ,mn, . . . as distinct gr-
maximal w-ideals including a. Thus a ∈

⋂∞
n=1 mn. Since m1 ⊇ m1∩m2 ⊇ · · · ⊇⋂n

i=1 mi ⊇ · · · is a descending chain on graded v-ideals of R, by Lemma 3.7

there exists some n such that
⋂n
i=1 mi =

⋂n+1
i=1 mi. Thus we have m1m2 · · ·mn ⊆

mn+1. Hence mi ⊆ mn+1 for some i, where 1 ≤ i ≤ n. So mi = mn+1, which is
a contradiction. That is, there are only finite numbers of gr-maximal w-ideals
including a.

Conversely, let I be any nonzero graded w-ideal of R. Select a nonzero
homogeneous element a ∈ I. Then there are only finite numbers of gr-maximal
w-ideals containing a, denoted by m1, . . . ,mn. Since Rgmi is a graded Noetherian
ring, we have Igmi = (xi1, . . . , xit)

g
mi for homogeneous elements xi1, . . . , xit ∈ I,

where i = 1, . . . , n. Denote by B the ideal generated by a and those xij , where
i = 1, . . . , n, j = 1, . . . , t. Then B ⊆ I. If there is some i (1 6 i 6 n) such that
m = mi for any gr-maximal w-ideal m of R, then Igm = (xi1, . . . , xit)

g
m ⊆ Bgm,

and so Igm = Bgm. And if m 6= mi, i = 1, . . . , n, then a 6∈ m, and hence Bgm =
Rgm = Igm. That is, by Theorem 2.8, Bw = Iw = I for any m ∈ gr-w-Max(R)
and Bgm = Igm, which shows that I is of graded finite type. Therefore R is a
graded w-Noetherian domain. �

4. Graded w-modules over strongly graded rings

Let R be a graded ring. We define F(A) = R ⊗Re A for any Re-module A,
and define F(f) = 1 ⊗ f for f ∈ HomRe(A,B). Then F : ReM → R-gr is an
additive functor. On the other hand, we define G(M) = Mσ for a fixed σ ∈ G
and any M ∈ R-gr. Let both M and N be graded modules and let g : N →M
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be a graded homomorphism. Define G(g) = gσ := g|Nσ . Then G : R-gr→ ReM
is also an additive functor. When σ = e, we denote G(g) = ρ, i.e.,

ρ : HomR-gr(N,M)→ HomRe(Ne,Me), ρ(g) = g|Ne , g ∈ HomR-gr(N,M).

Clearly ρ is an Re-homomorphism.
Recall that a graded ring R is said to be a strongly graded ring if RσRτ = Rστ

for any σ, τ ∈ G. Then RσRσ−1 = Re. Therefore, if R is a strongly graded ring,
then there is an inverse element in each Rσ. Let D be a commutative ring and
x be an indeterminate. Then D[x, x−1] is an example of a strongly (Z-)graded
ring. By Dade’s theorem (cf. [14, Theorem 3.1.1]), if R is a strongly graded
ring, then the same F as G is an equivalent functor. Thus we have:

Lemma 4.1. Let R be a strongly graded ring and let M , N be graded R-
modules. Then:

(1) ρ is a graded isomorphism.
(2) If n > 1, then there exists a natural graded isomorphism

ExtnR-gr(N,M) ∼= ExtnRe(Ne,Me).

Proposition 4.2. Let M be a graded R-module. Then M is a graded GV-
torsion-free module if and only if the natural graded homomorphism φ : M →
HOMR(J,M) is a monomorphism for any J ∈ GVgr(R), that is,

HOMR(R/J,M) = 0.

Proof. Let J ∈ GVgr(R). Notice that φ is a graded monomorphism if and only
if ϕ : M → HomR(J,M) is a monomorphism. So the rest of the proof is good
enough for ϕ.

Let M be a graded GV-torsion-free module. Suppose x ∈M and ϕ(x) = 0.
Then ϕ(x)(a) = ax = 0 for any a ∈ J , and so Jx = 0. Since M is a graded
GV-torsion-free module, we have x = 0, that is, ϕ is a monomorphism.

Conversely, let J ∈ GVgr(R), x ∈ M and Jx = 0. Define f(r̄) = rx
for r ∈ R. Then f is well-defined, and therefore f ∈ HomR(R/J,M). By
hypothesis, ϕ is a monomorphism. Hence we get HomR(R/J,M) = 0, and thus
f = 0. So x = f(1̄) = 0, and then M is a graded GV-torsion-free module. �

We use the notation we (instead of w) whenever we treat w-modules as well
as w-envelopes over the ring Re.

Theorem 4.3. Let R be a strongly graded ring, let J be a finitely generated
graded ideal, and let M be a graded R-module. Then:

(1) J ∈ GVgr(R) if and only if Je ∈ GV(Re).
(2) Let I ∈ GV(Re). Then J := IR ∈ GVgr(R), and thus R is a w-linked

extension of Re, i.e., R as an Re-module is a we-module.
(3) M is a graded GV-torsion-free module if and only if Me is a GV-

torsion-free Re-module.
(4) M is a graded w-module if and only if Me is a we-module.
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Proof. (1) Because J is a finitely generated graded ideal, it is clear that Je is
a finitely generated ideal of Re. If J ∈ GVgr(R), then HOMR(R/J,R) = 0

and EXT1
R(R/J,R) = 0. By Lemma 4.1, we have HomRe(Re/Je, Re) = 0 and

Ext1Re(Re/Je, Re) = 0. Therefore, Je ∈ GV(Re).
Conversely, suppose Je ∈ GV(Re). By Lemma 4.1, we have

HomR-gr(R/J,R) = HomRe(Re/Je, Re) = 0.

By Dade’s theorem, we get

HOMR(R/J,R) =
⊕
σ∈G

HomR-gr(R/J,R) = 0.

In a similar way, EXT1
R(R/J,R) = 0. Therefore, J ∈ GVgr(R).

(2) Applying (1), clearly we have Je = I.
(3) According to Lemma 4.1, M is a graded GV-torsion-free module if and

only if HOMR(R/J,M) = 0 for any J ∈ GVgr(R); according to Dade’s the-
orem, if and only if HomR-gr(R/J,M) = 0; by Lemma 4.1(1), if and only if
HomRe(Re/I,Me) = 0 for any I ∈ GV(Re); and if and only if Me is a GV-
torsion-free Re-module.

(4) Similarly to (3), we have EXT1
R(R/J,M) = 0 for any J ∈ GVgr(R) if

and only if Ext1Re(Re/I,Me) = 0 for any I ∈ GV(Re). Then M is a graded
w-module if and only if Me is a we-module. �

Lemma 4.4. Let R be a strongly graded ring and let N be a graded submodule
of graded R-module M . Then N = M if and only if Ne = Me.

Proof. Consider M/N =
⊕

σ∈G(Mσ/Nσ). Then the assertion follows by [14,
Theorem 3.1.1(5)]. �

In [8], Goto and Yamagishi proved that let H be a finitely generated abelian
group and A =

⊕
h∈H Ah an H-graded ring. Then A is a Noetherian ring if

and only if the ring A0 is Noetherian and A is a finitely generated A0-algebra, if
and only if every homogeneous ideal of A is finitely generated. In the following,
we will give the relationship between R and Re over a graded w-Noetherian
ring R.

Theorem 4.5. Let R be a strongly graded ring. Then R is a graded w-
Noetherian ring if and only if Re is a w-Noetherian ring.

Proof. Assume that R is a graded w-Noetherian ring and let I1 ⊆ I2 ⊆ · · · ⊆
In ⊆ · · · be an ascending chain of we-ideals of Re. Then RIn is a graded ideal
of R and (RIn)e = In for each n. By Theorem 4.3, we get RI1 ⊆ RI2 ⊆ · · · ⊆
RIn ⊆ · · · is an ascending chain on w-ideals of R. Thus there exists a positive
integer m such that if n ≥ m, then RIn = RIm. Then, applying Lemma 4.4,
we have In = Im for all n ≥ m. Therefore Re is a w-Noetherian ring.

Conversely, suppose Re is a w-Noetherian ring and let A1 ⊆ A2 ⊆ · · · ⊆
An ⊆ · · · be an ascending chain on graded w-ideals of R. Set In = (An)e,
n ∈ N. By Theorem 4.3, we have I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · is an ascending
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chain of we-ideals of Re. Thus there exists a positive integer m such that if
n ≥ m, then RIn = RIm. Applying Lemma 4.4, when n ≥ m, we get An = Am.
Hence R is a graded w-Noetherian ring. �

There are some classic results of Krull’s principal ideal theorem. In [5],
the authors proved the principal ideal theorem over SM domains. Let R be
an integral domain and let G be a torsion-free monoid. Then the principal
ideal theorem over graded SM domains was verified in [17]. And in [22], they
showed the principal ideal theorem over w-Noetherian rings. In 2011, C. H.
Park and M. H. Park provided the graded version of principal ideal theorem over
graded Noetherian rings as follows: Let R be a graded Noetherian ring (under
convention G be a torsion-free monoid). Then the hight of the minimal graded
prime ideal of a nonunit homogeneous element is at most 1 (cf. [17, Theorem
3.5]). In the following, we will prove the principal ideal theorem over graded
Noetherian rings (without the assumption that G is a torsion-free group), where
the method derives from [12] and [17], and we only make somewhat adjustment
if necessary. Based on the principal ideal theorem over graded Noetherian rings,
we will show the principal ideal theorem over graded w-Noetherian domain,
without the assumption that R is an integral domain and G is a torsion-free
group.

Lemma 4.6. Let R be a graded integral domain and let a, b be nonzero homo-
geneous elements of R with deg(a) = α, deg(b) = β. Then:

(1) There exists a graded isomorphism (a, b)/(a) ∼= ((a2, ab)/(a2))(α).
(2) If ra2 ∈ (b) implies ra ∈ (b), then there exists a graded isomorphism

(a)/(a2) ∼= ((a2, b)/(a2, ab))(σ), where σ = α−1β.
(3) If a = sa2 + tb, where s, t ∈ R, then there exists homogeneous element

u, v ∈ R such that a = ua2 + vb.

Proof. (1) Define f(rb+(a)) = rab+(a2), r ∈ R. Then f is an isomorphism with
degree α. Therefore f : (a, b)/(a)→ ((a2, ab)/(a2))(α) is a graded isomorphism.

(2) Define g : (a)→ (a2, b)/(a2, ab), g(ra) = rb+ (a2, ab), r ∈ R. Then g is
an isomorphism with degree σ. Thus g : (a)/(a2) → ((a2, b)/(a2, ab))(σ) is a
graded isomorphism.

(3) Let s =
∑
σ∈G sσ, t =

∑
µ∈G tµ. Then a =

∑
σ∈G a

2 +
∑
µ∈G tµb. Let

u = sα−1 , v = tαβ−1 . Hence u, v are homogeneous elements. It is clear that
a = ua2 + vb by comparing the degree. �

Lemma 4.7. Let I be an ideal of a graded ring R and let S be a multiplicative
set of homogeneous elements of R. Suppose that I ∩ S = ∅. Then there exists
a graded prime ideal p such that I ⊆ p as well as p ∩ S = ∅.

Proof. Let Γ = {J | J is a graded ideal of R, I ⊆ J , and J ∩ S = ∅}. Clearly,
I ∈ Γ, and hence Γ is not empty. By Zorn’s lemma, there exists a maximal
element in Γ, which is denoted by p. Then it is trivial to conclude that p is a
graded prime ideal of R. �



GRADED w-NOETHERIAN MODULES OVER GRADED RINGS 1331

Let M be a graded R-module. Recall that M is said to have a graded
composition series if there exists an ascending chain of graded submodules

0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn−1 ⊂Mn = M,

in which Mi/Mi−1 is a graded simple module for i = 1, 2, . . . , n. When M
has a graded composition series, the index n is fixed, which called the graded
length of M , denoted by lg(M). Apparently, if M has a graded composition
series, then M(σ) also has a graded composition series for any σ ∈ G and
lg(M(σ)) = lg(M).

Let R be a strongly graded ring. By Lemma 4.1, we have that a graded
R-module M is a graded projective module if and only if Me is a graded
projective Re-module. Hence R is a graded semisimple ring if and only if Re is
a semisimple ring. Let K be a graded field, then K is a graded semisimple ring
by [13, Theorem I.5.8]. Thus every finitely generated K-module has a graded
composition series.

Lemma 4.8 (cf. [17, Lemma 3.1]). Let (R, p) be a graded Noetherian ring with
the unique graded prime ideal p. Then:

(1) p is a nilpotent ideal.
(2) Every finitely generated graded module has a graded composition series.

Proof. (1) Since p is generated by homogeneous elements, it is good enough to
prove that the homogeneous elements of p are nilpotent.

Suppose on the contrary that x ∈ p is a homogeneous element, but not a
nilpotent. Consider a multiplicative set S of the homogeneous elements of R:
S = {xn |n ∈ N}. By Lemma 4.7, there exists a graded prime ideal q of R such
that x 6∈ q, which contradicts to the fact that p is the unique graded prime
ideal of R.

(2) By (1), we can let pn = 0 for some positive integer n. Let M be a
finitely generated graded R-module. Then M has an ascending chain of graded
submodules

0 = pnM ⊆ pn−1M ⊆ pn−2M ⊆ · · · ⊆ pM ⊆M.

What we want is that every pkM has a graded composition series for k =
0, 1, . . . , n− 1. For this purpose, it is good enough to prove that every Mk :=
pk−1M/pkM has a graded composition series. Since Mk is a finitely gener-
ated graded R/p-module and R/p is a graded field, we have Mk is a graded
semisimple ring. Therefore Mk has a graded composition series. �

Proposition 4.9 (The principal ideal theorem over a graded Noetherian ring).
Let R be a graded Noetherian ring and a ∈ h(R). Assume p is a graded minimal
prime ideal of (a). Then htg p ≤ 1.

Proof. With the localization method, we may assume that (R, p) is a graded
local ring and p0 is a graded minimal prime ideal of R which is contained in p.
Then in the graded integral domain R = R/p0, p/p0 is a graded minimal prime
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ideal of a. Replacing R with R and a with a respectively, we may assume that
R is an integral domain. If p = p0, then ht p = 0. Now, suppose p 6= p0. Then
a 6= 0. Let q be a graded prime ideal of R with q ⊂ p. Assume on the contrary
that q 6= 0. Consider a homogeneous element b ∈ q, b 6= 0. Then Ik = ((b) : ak)
is a graded ideal of R and Ik ⊆ Ik+1. Since R is a graded Noetherian domain,
there exists a positive n such that Ik = In for all k ≥ n. Therefore, ra2n ∈ (b)
can imply that ran ∈ (b). Since p is a minimal prime ideal of an, for the sake of
convenience in writing, we replace an with a. Then ra2 ∈ (b) can imply ra ∈ (b).
Let R = R/(a2). Then R is a graded Noetherian ring. Obviously, p/(a2) is the
unique graded prime ideal of R. Now let A = (a, b)/(a2) and B = (a2, b)/(a2).
Then both A and B are finitely generated graded R-modules. By Lemma 4.8,
both A and B have graded composition series. Consider the following graded
exact sequences

0→ (a)/(a2)→ A→ (a, b)/(a)→ 0

and

0→ (a2, ab)/(a2)→ B → (a2, b)/(a2, ab)→ 0.

After counting the graded lengths of graded composition series, we have l(A) =
l(B) by Lemma 4.6(1) and (2). Notice that B ⊆ A, and so A = B. Thus
(a, b) = (a2, b), and so there exist s, t ∈ R such that a = sa2 + tb. Applying
Lemma 4.6, we may choose homogeneous elements s, t. Hence (tb : a) is a
graded ideal. Since (1− sa)a = tb, we have 1− sa ∈ (tb : a). By the fact that
1 − sa 6∈ p and p is the unique graded maximal ideal of R, 1 − sa is a unit.
Thus a ∈ (b) ⊆ q, which contradicts to the fact that p is a minimal prime ideal
of a. Therefore q = 0, and hence ht p = 1. �

In 2011, C. H. Park and M. H. Park provided the graded version of principal
ideal theorem over graded Noetherian rings as follows:

Let x be a nonunit homogeneous element in a graded Noetherian ring R and
let p be a prime ideal minimal over (x). Then htg p ≤ 1.

The following is the w-analogue of the above result.

Theorem 4.10 (The principal ideal theorem over a graded w-Noetherian do-
main). Let R be a graded w-Noetherian domain and let a ∈ R be a homogeneous
element. Suppose p is a minimal graded prime ideal of (a). Then htg p ≤ 1.

Proof. Since R is a graded domain, (a) is a graded w-ideal. By Proposition 2.7,
p is a graded w-ideal. By Proposition 3.5, Rgp is a graded Noetherian ring. By
Proposition 4.9, there is a one-to-one correspondence between the set of graded
prime ideals of R which is contained p and the set of graded prime ideals of
Rgp. Therefore htg p = dimg(Rgp) ≤ 1. �

In [19], according to the definition of SM domains, a w-Noetherian domain
must be an SM domain. In [16], a graded SM domain is an integral domain.
Therefore let R be a graded ring and G be a multiplicative Abelian group. Then
a graded w-Noetherian graded domain is not necessary an integral domain.
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Hence a graded w-Noetherian graded domain is not necessary a graded SM
domain. Now, we will show the example.

Example 4.11. Let G = {e, σ} be a torsion group of order 2 and R =
Z2[X]/(X2 − 1). Then R = Re

⊕
Rσ is a G-graded ring, where Re = Z2,

Rσ = {0, x}, and x is the image of X in R. So the unit element of R is
1 and nonzero homogeneous elements of R are 1 and x. Since x2 = 1, we
have that R is a graded field. So R is a graded integral domain. Notice that
(1 + x)2 = 1 + 1 = 0, and thus R is not an integral domain. Besides R is also
a Noetherian ring. Clearly R is a w-Noetherian ring, and so R is a graded
w-Noetherian graded domain. Since R is not an integral domain, we have that
R is not a graded SM domain.
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