A NOTE ON OPERATORS ON FINSLER MODULES

A. TAGHAVI AND JAFARZADEH

Abstract. let E be a Finsler modules over C*-algebras $\mathcal A$ with norm-map ρ and L(E) set of all $\mathcal A$ -linear bonded operators on E. We show that the canonical homomorphism $\phi: L(E) \to L(E_I)$ sending each operator T to its restriction $T|E_I$ is injective if and only if I is an essential ideal in the underlying C^* -algebra $\mathcal A$. We also show that $T \in L(E)$ is a bounded below if and only if $||x|| = ||\rho'(x)||$ is complete, where $\rho'(x) = \rho(Tx)$ for all $x \in E$. Also, we give a necessary and sufficient condition for the equivalence of the norms generated by the norm map.

1. Introduction

A (left) Hilbert C^* -module over a C^* -algebra A is a left A-module E equipped with A-valued inner product $\langle .,. \rangle$ which is a A-linear in the second and conjugate linear in the first variable such that E is a Banach space with the norm $||x|| = ||\langle x,x \rangle||^{\frac{1}{2}}$.

Finsler modules over C^* -algebras are generalization of Hilbert C^* modules that first investigated in [6].

Definition 1.1. Let A_+ be the positive cone of a C^* -algebra A and E is a complex linear space which is a left A-module (and $\lambda(ax) = (\lambda a)x = a(\lambda x)$ where $\lambda \in C$, $a \in A$ and $x \in E$). An A-valued Finsler norm (norm map) is a map $\rho: E \to A_+$ such that

1) the map $\rho_E: x \to ||\rho(x)||$ is a norm on E, and

Received September 4, 2006. Revised December 16, 2006.

2000 Mathematics Subject Classification: Primary 46C50, 46L08.

Key words and phrases : C*-algebra, essential ideal, Finsler module, Hilbert C^* -Module, ideal submodule.

2)
$$\rho(ax)^2 = a\rho(x)^2a^*$$
 for each $a \in A$ and $x \in E$.

E is equipped with a A-valued Finsler norm is called a pre-Finsler A-module. If $(E, \rho_E = ||.||_E)$ is complete then E is called a Finsler A-module.

If we use the convention $|b| = (bb^*)^{1/2}$ for $b \in \mathcal{A}$, the condition (2) is equivalent to

$$\rho(ax) = |a\rho(x)|.$$

For \mathcal{A} commutative this is the same as $\rho(ax) = |a|\rho(x)$, which is the usual form this sort of axiom takes in the commutative case. But this last version is not appropriate in the noncommutative case.

A Finsler module over C^* -algebra A is said to be full if the linear span $\{\rho_A(x)^2; x \in E\}$ denoted by $\mathcal{F}(E)$ is dense in A.

In [1] was defined an inner product on a arbitrary Hilbert C^* -module by a certain operator and give a necessary and sufficient condition for the equivalence of the norms generated by the inner product. The aim of this paper is to continue this work over finsler modules. Let E be a Finsler modules over C^* -algebras \mathcal{A} with norm-map ρ and L(E) set of all \mathcal{A} -linear bonded operators on E. In section 3, we show that $T \in L(E)$ is a bounded below if and only if $||x|| = ||\rho'(x)||$ is complete, where $\rho'(x) = \rho(Tx)$ for all $x \in E$. Also, we give a necessary and sufficient condition for the equivalence of the norms generated by the norm map.

Ideal submodules in Hilbert C*-modules are investigated in [2] and [6]. And also, the notion of associated (essential) ideal submodule in Finsler modules over C^* -algebras is introduced in [7]. Moreover, it was shown that if essential ideal submodule E_I is a Hilbert I-module, then E is itself a Hilbert A-module.

In section 4, we show that the canonical homomorphism $\phi: L(E) \to L(E_I)$ sending each operator T to its restriction $T|E_I$ is injection if and only if I is an essential in the underlying C^* -algebra A.

2. Preliminaries

Definition 2.1. let E be a Finsler modules over C^* -algebra A, and let I be an ideal in A. The associated ideal submodule E_I is defined by

$$E_I = [EI]^- = [\{eb : e \in E, b \in I\}]^-$$

(the closed linear span of the action of I on E).

Clearly, E_I is a closed submodule of E. It can be also regarded as a Finsler module over I.

In general, there exist closed submodules which are not ideal submodule. For instance, if a C^* -algebra A is regarded as a Hilbert A-module (with the inner product $\langle a,b\rangle=a^*b\rangle$, then ideal submodules of A are precisely ideals in A, while closed submodules of A are closed right ideals in A.

We arise some properties of ideal submodules. Following results are already known of ([2],[1]). let E be a Finsler module over C*-algebra A, and I be an ideal of A. By application of Hewitt-Cohen factorization theorem ([4], Theorem 4.1,[6], proposition 2.31) it is easy to that $E_I = EI = \{eb : e \in E, b \in I\}$. If E be a full Finsler module over A, E_I will be full over I.

Remark 2.2. let E be a Finsler module and I be an ideal of A, and E_I be associated ideal submodule. Define by $q: E \to \frac{E}{E_I}$ and $\pi: A \to \frac{A}{I}$ the quotient maps. By defintion right action of $\frac{A}{I}$ on linear space $\frac{E}{E_I}$ with $q(e)\pi(a)=q(ea), \frac{E}{E_I}$ will be a $\frac{A}{I}$ -module and by [5 Lemma 12], $\frac{E}{E_I}$ is a Finsler $\frac{A}{I}$ -module with norm Finsler $\rho_{\frac{A}{I}}(q(e))=\pi(\rho_A(e))$. Then $\rho_{\frac{A}{I}}(q(E))=\pi(\rho_A(E))$, so $[\rho_{\frac{A}{I}}(q(E))=\pi([\rho_A(E)])$.

In addition, $\frac{E}{E_I}$ is a full Finsler $\frac{A}{I}$ -module if and only if E is full. This follows at once from the evident equality $\left[\rho_{\frac{A}{I}}(q(E))\right] = \pi(\left[\rho_A(E)\right])$.

With similar argument of [2 p. 4], if X be a closed submodule of E, J be an ideal of A such that $\rho(E) \subseteq J$, then $\frac{E}{X}$ with module action $q(x)\pi(a) = q(xa)$ is a $\frac{A}{J}$ -module iff $X = E_J$. Note that smallest of such ideals is A-linear hull $(\rho(E)^2)$.

3. Norm maps on a Finsler module

Definition 3.1. let E and F be Finsler modules over C^* — algebra A. We define L(E,F) to be the set of all bounded operators $T:E\to F$ such that T be A-linear map in the sense T(ax)=aT(x), for all $x\in E$ and $a\in A$.

Theorem 3.2. Let E be a Finsler modules over C^* -algebra A with map $\rho_1: E \to A_+$ and $||.||_1$ is the corresponding norm. Let T be a linear map in L(E), we define $\rho_2(x) = \rho_1(Tx)$, then we have $i)(E, \rho_2)$ is pre-Finsler A-module if and only if kerT = 0. In addition if $kerT = \{0\}$, then the following statements are equivalent. ii) Norms $||.||_1$ and $||.||_2 = ||\rho_2(x)||$ are equivalent on E. iii) T is a bounded below.

iv) $||.||_2$ is complete.

Proof. i) Let (E, ρ_2) be a pre-Finsler A-module and $x \in kerT$. Then $||x||_2 = ||\rho_2(x)|| = ||\rho_1(Tx)|| = 0$, so that x = 0. Hence $kerT = \{0\}$.

Conversely, suppose $kerT=\{0\}$ and $||x||_2=0$. Then $||Tx||=||\rho_1(Tx)||=||\rho_2(x)||=||x||_2=0$. It follows that Tx=0. Thus x=0. It is straightforward to show that ||.|| is indeed a norm and also $\rho_2(ax)^2=\rho_1(Tax)^2=\rho_1(aTx)^2=a\rho_1(Tx)^2a^*=a\rho_2(x)^2a^*$.

 $(ii) \rightarrow (iii)$ Let T is a bounded below, the following show that $||.||_1$ and $||.||_2$ are equivalent:

$$||x||_2 = ||\rho_2(x)|| = ||\rho_1(Tx)|| = ||Tx||_1 \le ||T|| ||x||_1.$$

 $||x||_2 = ||\rho_2(x)|| = ||\rho_1(Tx)|| = ||Tx||_1 \ge \alpha ||x||_1,$

for some α .

- $(iii) \rightarrow (ii)$ suppose two norms are equivalent then there exists a real number α such that $||x||_1 \leq \alpha ||x||_2$, for each $x \in E$, $\alpha^{-1}||x||_1 \leq ||x||_2 = ||\rho_2(x)|| = ||\rho_1(Tx)|| = ||Tx||_1$. So that $||Tx||_1 \geq \alpha^{-1}||x||_1$.
- $(iv) \rightarrow (iii)$ Since $(E, ||.||_1)$ and $(E, ||.||_2)$ are assumed to be Banach spaces and also $||x||_2 = ||\rho_2(x)|| = ||\rho_1(Tx)|| = ||Tx||_1 \le ||T||||x||_1$, by the open mapping theorem, there exists a real number α such that $||.||_1 \le \alpha ||.||_2$, hence the normes are equivalent.

$$(iii) \rightarrow (iv)$$
 It is obvious. \square

Example. Let A be a unital C^* -algebra and E be a Finsler A-module with map ρ . Define $T_x: E \to E$ with $T_x(y) = \rho(x)y$ for some $x \in E$. It is clear that T_x is an A-linear map and by

$$||T_x(y)||_1 = ||\rho(x)y||_1 \le ||\rho(x)||||y||_1 = ||x||||y||_1.$$

Therefore, $||T_x|| \leq ||x||_1$. That is, T_x is a bounded operator on E.

Now suppose that for some $x \in E$, $\rho(x)$ is invertible then T_x is onto operator on E and $T_x^{-1}y = \rho^{-1}(x)y$. Define $\rho'(y) = \rho(T_xy)$. Since $kerT_x = 0$, E with map ρ' is a Finsler A-module and corresponding norms of ρ and ρ' are equivalent. \square

4. Ideal submodule of a Finsler module

Definition 3.3. Let I be an ideal of C^* -algebra A, define $I^{\perp} = \{a \in A : aI = 0\}$ (that is ideal of A). I is essential if $I^{\perp} = \{0\}$, that is equivalent $I \cap J \neq \{0\}$ for all closed ideal J of A.

Theorem 3.4. let E be a Finsler module over C*-algebra A, I be an ideal of A and E_I be associated ideal submodule of it. Then linear operator $\phi: L(E) \to L(E_I)$ with $\phi(K) = K|_{E_I}$ for all $K \in L(E)$ is injective if I is a essential ideal of A.

Conversely, if ϕ is injective and E be a full Finsler A-module then I is essential ideal of A.

Proof. Suppose that I be an essential ideal of A and $\gamma(K) = 0$ for $K \in L(E)$. Then K(bx) = 0 for all $b \in I$ and $x \in E$. Now by [2, Lemma 1.10], we have

$$|| Kx ||^{2} = || \rho(Kx) ||^{2} = \sup_{b \in I, ||b|| \le 1} || b(\rho(Kx)^{2})b^{*} ||$$

$$= \sup_{b \in I, ||b|| \le 1} || (bKx)^{2} || = \sup_{b \in I, ||b|| \le 1} || K(bx) ||^{2}$$

$$= 0$$

Then ϕ is injective.

Conversely, let E be full and γ is injective, but I is not essential means $I^{\perp} \neq 0$. Then there exists $0 \neq c \in I^{\perp}$ and either fullness condition of E by [1 proof Theorem 3.2(iii)], show that $\exists x_0 \in E$ such that $cx_0 \neq 0$. First suppose that A a commutative C^* -algebra. Hence A-linear operator $K_c: E \to E$ with $K_c(x) = cx$ is non zero in value x_0 and $K_c|_{E_I} = 0$, that is contradiction with injectivity of ϕ . Then I is essential.

To prove the general case, Recall that if A,B, and D are C^* -algebra, and if homomorphisms $\varphi:A\to D$ and $\psi:B\to D$ are given, then the

 C^* -algebra $A \oplus_D B$ is defined as

$$A \oplus_D B = \{(a, b) \in A \oplus B : \varphi(a) = \psi(b)\}.$$

We use the same notation for modules, Banach spaces, etc.

Let A be a C^* -algebra. By [5 lemmas 10 and 11] A has a unique maximal commutative ideal I_0 and a closed ideal J such that $I_0 \cap J = \{0\}$ and $\frac{A}{J}$ is commutative, moreover, $A \cong \frac{A}{J} \oplus_{\frac{A}{I_0+J}} \frac{A}{I_0}$ by *-isomorphism $\varphi: A \to \frac{A}{J} \oplus_{\frac{A}{I_0+J}} \frac{A}{I_0}$ such that $\varphi(a) = (a+J, a+I_0)$.

By theorem 17 of [5], we can write $E \cong E_1 \oplus_{E_0} E_2$, where E_2 and E_0 are Hilbert $\frac{A}{I_0}$ and $\frac{A}{I_0+J}$ modules resp., and E_1 is a Finsler module over commutative C*-algebra $\frac{A}{I}$. Clearly, E_1 and E_2 are full if and only if E is full.

If I be an essential ideal in C*-algebra A, then by [7, Lemma 3.5] $\frac{I}{J}$ and $\frac{I}{I_0}$ are essential ideal in commutative C^* -algebras $\frac{A}{J}$ and $\frac{A}{I_0}$ respectively. Let $E_{11} = E_{1\frac{I}{I_0}}$ and $E_{22\frac{I}{J}}$ are associated ideal submodule E_1 and E_2 respectively. Then $E_I = E_{11} \oplus E_{22}$.

 $I^{\perp} \neq 0$ implies that $I_1^{\perp} \neq 0$ or $I_2^{\perp} \neq 0$. Suppose that $I_1^{\perp} \neq 0$ since $\frac{A}{J}$ is a commutative C^* -algebra there exists a non Zero \mathcal{A} -linear map $K_1: E_1 \longrightarrow E$ such that $K|_{E_{11}} = 0$. We can extend K on E by $K|_{E_2} = 0$. This is impossible because ϕ is injective. If $I_2^{\perp} \neq 0$ by assertion follows of [2, Theorem 1.12] because E_2 is a Hilbert $\frac{A}{J}$ -module.

Let E be a Finsler module over C*-algebra A, We say that norm Finsler map ρ' is induced from norm Finsler map ρ , if there exists $K \in L(E)$ such that $\rho'(x) = \rho(K(x))$ for all $x \in E$.

Corollary 3.5. let E be a Finsler module over C*-algebra A, I be an ideal of A and E_I be associated ideal submodule of it. Induced norm

Finsler maps of a norm Finsler map ρ are equal iff are equal over essential ideal submodule E_I of E. \square

Proof. It is enough to show that $K_1 = K_2$ iff $K_1|_{E_I} = K_2|_{E_I}$. Since I is a essential ideal of A, previous assertion is straightforward of Lemma 2.6.

References

- M. Amyari and A. Niknam, Inner Products on a Hilbert C*-Module, J. Analysis 10 (2002), 87-96.
- 2. M. Amyari and A. Niknam, On homomorphisms of Finsler modules, Intern. Math. Journal, vol. 3, No. 3 (2003), 277-281.
- 3. D. Bakic and B. Guljas, On a class of module maps of Hilbert C^* -modules, Mathematica communications, 7(2002), no.2, 177-192.
- 4. E. C. Lance, Hilbert C*-modules, LMS Lecture Note Series 210, Cambridge University Press (1995).
- 5. G. K. Pedersen, Factorization in C^* -algebras, Exposition Math., 16(1998), No 2, 145-156.
- N.C. Phillips, N. Weaver, Modules with Norms which take values in a C*-algebra, Pacific journal of mathematics, vol. 185, no. 1, (1998).
- 7. I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace C^* -algebras, Mathematical surveys and Monographs AMS 60 (1998).
- 8. A. Taghavi and M. Jafarzadeh, Essential Ideals and Finsler Modules, (preprint).

A. Taghavi and Jafarzadeh Department of Mathematics University of Mazandaran Babolsar, Iran.

e-mail: taghavi@nit.ac.ir