• Title/Summary/Keyword: power sum polynomials

Search Result 14, Processing Time 0.027 seconds

SOME PROPERTIES OF DEGENERATED EULER POLYNOMIALS OF THE SECOND KIND USING DEGENERATED ALTERNATIVE POWER SUM

  • KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.599-609
    • /
    • 2017
  • We construct degenerated Euler polynomials of the second kind and find some basic properties of this polynomials. From this paper, we can see degenerated alternative power sum is defined and is related to degenerated Euler polynomials of the second kind. Using this power sum, we have a number of symmetric properties of degenerated Euler polynomials of the second kind.

IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS

  • Son, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1045-1073
    • /
    • 2014
  • The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss's multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iterated Volkenborn integral, we derive serval identities of symmetry related to the q-extension power sums and the higher order q-Bernoulli polynomials. Many previous results are special cases of the results presented in this paper, including Tuenter's classical results on the symmetry relation between the power sum polynomials and the Bernoulli numbers in [A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), no. 3, 258-261] and D. S. Kim's eight basic identities of symmetry in three variables related to the q-analogue power sums and the q-Bernoulli polynomials in [Identities of symmetry for q-Bernoulli polynomials, Comput. Math. Appl. 60 (2010), no. 8, 2350-2359].

SOME PROPERTIES OF GENERALIZED q-POLY-EULER NUMBERS AND POLYNOMIALS WITH VARIABLE a

  • KIM, A HYUN
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.133-144
    • /
    • 2020
  • In this paper, we discuss generalized q-poly-Euler numbers and polynomials. To do so, we define generalized q-poly-Euler polynomials with variable a and investigate its identities. We also represent generalized q-poly-Euler polynomials E(k)n,q(x; a) using Stirling numbers of the second kind. So we explore the relation between generalized q-poly-Euler polynomials and Stirling numbers of the second kind through it. At the end, we provide symmetric properties related to generalized q-poly-Euler polynomials using alternating power sum.

SYMMETRY PROPERTIES FOR A UNIFIED CLASS OF POLYNOMIALS ATTACHED TO χ

  • Gaboury, S.;Tremblay, R.;Fugere, J.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.119-130
    • /
    • 2013
  • In this paper, we obtain some generalized symmetry identities involving a unified class of polynomials related to the generalized Bernoulli, Euler and Genocchi polynomials of higher-order attached to a Dirichlet character. In particular, we prove a relation between a generalized X version of the power sum polynomials and this unified class of polynomials.

A RESEARCH ON THE GENERALIZED POLY-BERNOULLI POLYNOMIALS WITH VARIABLE a

  • JUNG, Nam-Soon;RYOO, Cheon Seoung
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.5_6
    • /
    • pp.475-489
    • /
    • 2018
  • In this paper, by using the polylogarithm function, we introduce a generalized poly-Bernoulli numbers and polynomials with variable a. We find several combinatorial identities and properties of the polynomials. We give some properties that is connected with the Stirling numbers of second kind. Symmetric properties can be proved by new configured special functions. We display the zeros of the generalized poly-Bernoulli polynomials with variable a and investigate their structure.

GENERALIZED EULER POWER SERIES

  • KIM, MIN-SOO
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.591-600
    • /
    • 2020
  • This work is a continuation of our investigations for p-adic analogue of the alternating form Dirichlet L-functions $$L_E(s,{\chi})={\sum\limits_{n=1}^{\infty}}{\frac{(-1)^n{\chi}(n)}{n^s}},\;Re(s)>0$$. Let Lp,E(s, t; χ) be the p-adic Euler L-function of two variables. In this paper, for any α ∈ ℂp, |α|p ≤ 1, we give a power series expansion of Lp,E(s, t; χ) in terms of the variable t. From this, we derive a power series expansion of the generalized Euler polynomials with negative index, that is, we prove that $$E_{-n,{\chi}}(t)={\sum\limits_{m=0}^{\infty}}\(\array{-n\\m}\)E_{-(m+n),{\chi}^{t^m}},\;n{\in}{\mathbb{N}}$$, where t ∈ ℂp with |t|p < 1. Some further properties for Lp,E(s, t; χ) has also been shown.

ON THE SYMMETRY PROPERTIES OF THE GENERALIZED HIGHER-ORDER EULER POLYNOMIALS

  • Bayad, Abdelmejid;Kim, Tae-Kyun;Choi, Jong-Sung;Kim, Young-Hee;Lee, Byung-Je
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.511-516
    • /
    • 2011
  • In this paper we prove a generalized symmetry relation between the generalized Euler polynomials and the generalized higher-order (attached to Dirichlet character) Euler polynomials. Indeed, we prove a relation between the power sum polynomials and the generalized higher-order Euler polynomials..

SOME SYMMETRY IDENTITIES FOR GENERALIZED TWISTED BERNOULLI POLYNOMIALS TWISTED BY UNRAMIFIED ROOTS OF UNITY

  • Kim, Dae San
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.603-618
    • /
    • 2015
  • We derive three identities of symmetry in two variables and eight in three variables related to generalized twisted Bernoulli polynomials and generalized twisted power sums, both of which are twisted by unramified roots of unity. The case of ramified roots of unity was treated previously. The derivations of identities are based on the p-adic integral expression, with respect to a measure introduced by Koblitz, of the generating function for the generalized twisted Bernoulli polynomials and the quotient of p-adic integrals that can be expressed as the exponential generating function for the generalized twisted power sums.

SOME UMBRAL CHARACTERISTICS OF THE ACTUARIAL POLYNOMIALS

  • Kim, Eun Woo;Jang, Yu Seon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.73-82
    • /
    • 2016
  • The utility of exponential generating functions is that they are relevant for combinatorial problems involving sets and subsets. Sequences of polynomials play a fundamental role in applied mathematics, such sequences can be described using the exponential generating functions. The actuarial polynomials ${\alpha}^{({\beta})}_n(x)$, n = 0, 1, 2, ${\cdots}$, which was suggested by Toscano, have the following exponential generating function: $${\limits\sum^{\infty}_{n=0}}{\frac{{\alpha}^{({\beta})}_n(x)}{n!}}t^n={\exp}({\beta}t+x(1-e^t))$$. A linear functional on polynomial space can be identified with a formal power series. The set of formal power series is usually given the structure of an algebra under formal addition and multiplication. This algebra structure, the additive part of which agree with the vector space structure on the space of linear functionals, which is transferred from the space of the linear functionals. The algebra so obtained is called the umbral algebra, and the umbral calculus is the study of this algebra. In this paper, we investigate some umbral representations in the actuarial polynomials.