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SOME PROPERTIES OF DEGENERATED EULER

POLYNOMIALS OF THE SECOND KIND USING

DEGENERATED ALTERNATIVE POWER SUM

JUNG YOOG KANG

Abstract. We construct degenerated Euler polynomials of the second
kind and find some basic properties of this polynomials. From this pa-

per, we can see degenerated alternative power sum is defined and is related
to degenerated Euler polynomials of the second kind. Using this power

sum, we have a number of symmetric properties of degenerated Euler poly-

nomials of the second kind.
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1. Introduction

The Euler numbers are the numbers En (n = 0, 1, 2, · · · ) in the Maclaurin
Series representation

∞∑
n=0

Ẽn
tn

n!
=

1

cosht
=

2et

e2t + 1
, (|t| < π

2
).

We know that E2n+1 = 0, (n = 0, 1, 2, · · · ). Sometimes, mathematicians refer to
Euler numbers of the second kind in order to distinguish Euler numbers of the
first kind. As well known, we can also represent Euler numbers of the second
kind using exponential function .

Definition 1.1. The Euler numbers of the second kind define
∞∑
n=0

Ẽn
tn

n!
=

2et

e2t + 1
, (|t| < π

2
).

From these numbers, many mathematicians have studied the Euler, Bernoulli,
and Genocchi polynomials. In 1961, L. Calitz introduced serveral properties of
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the Bernoulli and Euler polynomials of the second kind(see [3]). In [1-4,6-15],
Mathematicians have also researched interesting relations between the Bernoulli,
Euler, and Genocchi polynomials combining q-number or Apostol number or etc.
Various numbers and polynomials are advanced, expanded by many mathemati-
cians and taken a number of application and many branches of mathematics.

Definition 1.2. The Euler polynomials of the second kind define
∞∑
n=0

Ẽn(x)
tn

n!
=

2et

e2t + 1
etx, |t| < π

2
.

From Definition 1.2, mathematicians have observed various properties and
identities(see [3,6,12]).

Theorem 1.3. For any positive integer n, we have

(i) For any positive integer m(=odd),

Ẽn(x) = mn
m−1∑
i=0

(−1)iẼn

(
2i+ x+ 1−m

m

)
for n ≥ 0,

(ii) Ẽl(x+ y) =

l∑
n=0

(
l

n

)
Ẽn(x)yl−n,

(iii) Ẽn(x) = (−1)nẼn(−x),

(iv)

In [2,10-12], we can see a numerical investigation on the zeros of various poly-
nomials(see the above figure) and find some conjectures. In addition, we can also
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research the phenomenon of roots that form real numbers and complex numbers
in their polynomials.

In this paper, the main aim is to find some identities of degenerated Eu-
ler polynomials of the second kind using degenerated alternative power sum.
To make symmetric property of degenerated Euler polynomials of the second
kind, we construct degenerated alternative power sum. We also have some basic
properties of degenerated Euler polynomials of the second kind using various
methods.

2. Some basic properties of degenerated Euler polynomials of the
second kind

In this section we define degenerated Euler polynomials of the second kind.
Fron this definition, we find serveral theorems that have important for finding
these polynomials applications. Furthermore, we try to find a form, (x|λ)n,
which is related to degenerated Euler polynomials of the second kind.

Definition 2.1. Let n be any non-negative integer. For x ∈ C, we define
degenerated Euler polynomials of the second kind as

∞∑
n=0

Ẽn(x, λ)
tn

n!
=

2

(1 + λt)
2
λ + 1

(1 + λt)
1+x
λ .

Setting x = 0 in the degenerated Euler polynomials of the second kind, they
can be simplified as follows:

∞∑
n=0

Ẽn(0, λ)
tn

n!
=

∞∑
n=0

Ẽn(λ)
tn

n!
=

2

(1 + λt)
2
λ + 1

(1 + λt)
1
λ ,

where Ẽn(λ) is Euler numbers of the second kind. If λ → 0, then we can find
the classical Euler polynomials of the second kind as

lim
λ→0

∞∑
n=0

Ẽn(x, λ)
tn

n!
= lim
λ→0

2

(1 + λt)
2
λ + 1

(1 + λt)
1+x
λ =

2

et + e−t
etx =

∞∑
n=0

Ẽn(x)
tn

n!
.

Theorem 2.2. Let x be any complex numbers. Then we have

(i) Ẽn(x, λ) =

n∑
k=0

(
n

k

)
(x|λ)kẼn−k(λ)

(ii) Ẽn(x+ y, λ) =

n∑
k=0

(
n

k

)
(y|λ)kẼn−k(x, λ).
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Proof. (i) From the generating function of the degenerated Euler polynomials of
the second kind, we can find

∞∑
n=0

Ẽn(x, λ)
tn

n!
=

2

(1 + λt)
2
λ + 1

(1 + λt)
1+x
λ

=

∞∑
n=0

Ẽn(λ)
tn

n!

∞∑
n=0

(x|λ)n
tn

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
(x|λ)kẼn−k(λ)

)
tn

n!
,

which gives the required result.
(ii) We omit a proof of (ii) due to its similarity to (i). �

Theorem 2.3. For x, λ ∈ C, the following holds

Ẽn(−x,−λ) = (−1)nẼn(x, λ).

Proof. Using the generating function of degenerated Euler polynomials of the
second kind, we find

∞∑
n=0

Ẽn(−x, λ)
tn

n!
=

2

(1− λt)− 2
λ + 1

(1− λt)
1−x
−λ

=

∞∑
n=0

Ẽn(x, λ)
(−t)n

n!
.

Now comparing the coefficients of tn, we find the result. �

Theorem 2.4. Let n, x, λ ∈ Z. Then we have

(x|λ)n =
1

2

(
Ẽn(x+ 1, λ) + Ẽn(x− 1, λ)

)
.

Proof. From the Definition 2.1, we can observe the following equation:

∞∑
n=0

(
Ẽn(x+ 2, λ) + Ẽn(x, λ)

) tn
n!

=
2

(1 + λt)
2
λ + 1

(1 + λt)
3+x
λ +

2

(1 + λt)
2
λ + 1

(1 + λt)
1+x
λ

= 2(1 + λt)
1+x
λ = 2

∞∑
n=0

(x+ 1|λ)n
tn

n!
.

Therefore, we find

(x+ 1|λ)n =
1

2

(
Ẽn(x+ 2, λ) + Ẽn(x, λ)

)
,

which immediately gives the required result. �
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Using Cauchy product on the above proof proccess, we can consider that

2(1 + λt)
1+x
λ = 2(1 + λt)

1
λ (1 + λt)

x
λ

= 2

∞∑
n=0

(
n∑
k=0

(
n

k

)
(1|λ)n−k(x|λ)k

)
tn

n!
.

Corollary 2.5. From Theorem 2.4 and the above equation, we have

n∑
k=0

(
n

k

)
(1|λ)n−k(x|λ)k =

1

2

(
Ẽn(x+ 2, λ) + Ẽn(x, λ)

)
.

Corollary 2.6. For λ→ 0, in Theorem 2.4, one holds

xn =
1

2

(
Ẽn(x+ 1) + Ẽn(x− 1)

)
,

where Ẽn(x) is the classical Euler polynomials of the second kind.

Theorem 2.7. For x, λ ∈ C, we have

(x|λ)n =
1

2

(
n∑
k=0

(
n

k

)
(2|λ)n−kẼk(x, λ) + Ẽn(x, λ)

)
.

Proof. Let (1+λt)
2
λ +1 6= 0. From the generating function of degenerated Euler

polynomials of the second kind, we can find(
(1 + λt)

2
λ + 1

) ∞∑
n=0

Ẽn(x, λ)
tn

n!
= 2(1 + λt)

1+x
λ .

or, equivalently,

2(1 + λt)
1+x
λ = 2

∞∑
n=0

(1 + x|λ)n
tn

n!

=

∞∑
n=0

( ∞∑
n=0

(2|λ)n
tn

n!
+ 1

)
Ẽn(x, λ)

tn

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
(2|λ)n−kẼk(x, λ) + Ẽn(x, λ)

)
tn

n!
.

Comparing the coefficients of tn

n! , the proof is complete. �

Corollary 2.8. In Theorem 2.4 and Theorem 2.7, we can see

Ẽn(x+ 1, λ) =

n∑
k=0

(
n

k

)
(2|λ)n−kẼk(x− 1, λ).



604 Jung Yoog Kang

We can use Theorem 2.2, to calculate some elements of Ẽn(x, λ). Here, we
employ Mathematica to compute degenerated Euler polynomials of the second
kind. The first few degenerated Euler polynomials of the second kind are

Ẽ1(x, 0.1) = x,

Ẽ2(x, 0.1) =
1

10
(−10− x+ 10x2),

Ẽ3(x, 0.1) =
1

50
(15− 149x− 15x2 + 50x2),

Ẽ4(x, 0.1) =
1

500
(2445 + 897x− 2945x2 − 300x3 + 500x4),

....

Using computer we investigate the zeros of Ẽn(x, λ). Here, our expectation

is that a plot of Ẽn(x, λ) will approach to a plot of Ẽn(x) when λ→ 0.

Figure 1. Zeros of Ẽn(x, 0.1) for n = 20, 30, 40, 50

In Figure 1, for n = 20, 30, 40, 50, λ = 0.1, we observe from top-left to the
bottom-right that the zeros shape is similar to zeros shape of the classical Euler
polynomials of the second kind(see [12]).

3. Some relations between degenerated Euler polynomials of the
second kind and degenerated alternative power sum

In this section, we define the degenerated alternative power sum. From this
power sum, we can find relation between this power sum and degenerated Euler
polynomials of the second kind. We can also observe some symmetric properties
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of the degenerated Euler polynomials of the second kind using the degenerated
alternative power sum.

Definition 3.1. Let m ∈ N. We then define a degenerated alternative power
sum as:

∞∑
n=0

P̃n(m− 1;λ)
tn

n!
=

2(−1)m−1(1 + λt)
2m+1
λ + 1

(1 + λt)
2
λ + 1

.

Theorem 3.2. For m ∈ N, we hold

P̃n(m− 1;λ) = 2

m−1∑
i=0

(−1)i(1 + 2i|λ)n.

Proof. From Definition 3.1, we find

∞∑
n=0

P̃n(m− 1;λ)
tn

n!
=

2(−1)m−1(1 + λt)
2m+1
λ + 1

(1 + λt)
2
λ + 1

= 2(1 + λt)
1
λ

m−1∑
i=0

(−1)i(1 + λt)
2
λ i

=

∞∑
n=0

2

m−1∑
i=0

(−1)i(1 + 2i|λ)n
tn

n!
.

The required relation now follows immediately. �

From Definition 3.1, we can note that

lim
λ→0

∞∑
n=0

P̃n(m− 1;λ)
tn

n!
= lim
λ→0

2(−1)m−1(1 + λt)
2m+1
λ + 1

(1 + λt)
2
λ + 1

= 2et
(−1)m−1e2mt + 1

e2t + 1
= 2

m−1∑
i=0

(−1)ie(2i+1)t

=

∞∑
n=0

2

m−1∑
i=0

(−1)i(2i+ 1)n
tn

n!
,

where 2
∑m−1
i=0 (−1)i(2i + 1)n is the classical alternative power sum which is

related to the classical Euler polynomials of the second kind.

Theorem 3.3. For λ ∈ C, the following relation holds:

P̃n(m− 1;λ) = Ẽn(λ) + (−1)m−1Ẽn(2m,λ),

where Ẽn(λ) is the degenerated Euler numbers of the second kind.
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Proof. To obtain the relation between degenerated alternative power sum and
Euler polynomials of the second kind, we can make

∞∑
n=0

P̃n(m− 1;λ)
tn

n!
=

∞∑
n=0

2

m−1∑
i=0

(−1)i(2i+ 1|λ)n
tn

n!

= 2(1 + λt)
1
λ

m−1∑
i=0

(
−(1 + λt)

2
λ

)i
= 2(1 + λt)

1
λ

(
(−1)m−1(1 + λt)

2m
λ + 1

(1 + λt)
2
λ + 1

)

=

∞∑
n=0

(
(−1)m−1Ẽn(2m,λ) + Ẽn(λ)

) tn
n!
,

which, on comparing the coefficients, the required relation at once. �

Theorem 3.4. Let a, b be non-negative integers. We then have
n∑
k=0

(
n

k

)
an−kbkẼn−k

(
bx,

λ

a

)
Ẽk

(
ay,

λ

b

)

=

n∑
k=0

(
n

k

)
bn−kakẼn−k

(
ax,

λ

b

)
Ẽk

(
by,

λ

a

)
.

Proof. Cosider that

A(t) =
4(1 + λt)

a+b+ab(x+y)
λ(

(1 + λt)
2a
λ + 1

)(
(1 + λt)

2b
λ + 1

) .
The form A can turn to

A(t) =
2

(1 + λ)
2a
λ + 1

(1 + λt)
a(1+bx)

λ
2

(1 + λt)
2b
λ + 1

(1 + λt)
b(1+ay)

λ

=

∞∑
n=0

Ẽn

(
bx,

λ

a

)
(at)n

n!

∞∑
n=0

Ẽn

(
ay,

λ

b

)
(bt)n

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
an−kbkẼn−k

(
bx,

λ

a

)
Ẽk

(
ay,

λ

b

))
tn

n!
,

(3.1)

or, equivalently,

A(t) =
2

(1 + λ)
2b
λ + 1

(1 + λt)
b(1+ax)

λ
2

(1 + λt)
2a
λ + 1

(1 + λt)
a(1+by)

λ

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
bn−kakẼn−k

(
ax,

λ

b

)
Ẽk

(
by,

λ

a

))
tn

n!
,

(3.2)

and the theorem is proved in (3.1) and (3.2). �
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Corollary 3.5. Setting a = 1 in Theorem 3.4, we can get

n∑
k=0

(
n

k

)
bkẼn−k(bx, λ)Ẽk

(
y,
λ

b

)
=

n∑
k=0

(
n

k

)
bn−kẼn−k

(
x,
λ

b

)
Ẽk(by, λ).

Theorem 3.6. Let a, b be odd non-negative integers. We then have

n∑
k=0

(
n

k

)
an−kbkẼn−k

(
bx,

λ

a

)
P̃k

(
a− 1;

λ

b

)

=

n∑
k=0

(
n

k

)
bn−kakẼn−k

(
ax,

λ

b

)
P̃k

(
b− 1;

λ

a

)
.

Proof. Suppose that

B(t) =
4(1 + λt)

a+b+abx
λ

(
(−1)a−1(1 + λt)

2ab
λ + 1

)
(

(1 + λt)
2a
λ + 1

)(
(1 + λt)

2b
λ + 1

) .

Because a is odd integer, the form B can turn to

B(t) =
2(1 + λt)

a(1+bx)
λ

(1 + λ)
2a
λ + 1

(
(−1)a−1(1 + λt)

2ab
λ + 1

(1 + λt)
2b
λ + 1

)
2(1 + λt)

b
λ

=

∞∑
n=0

Ẽn

(
bx,

λ

a

)
(at)n

n!
2

a−1∑
i=0

(−1)i (1 + λt)
b(2i+1)

λ .

In here, we can note that

2

a−1∑
i=0

(−1)i (1 + λt)
b(2i+1)

λ =

∞∑
n=0

2

a−1∑
i=0

(−1)i (b(1 + 2i)|λ)n
tn

n!

=

∞∑
n=0

2

a−1∑
i=0

(−1)i
(

1 + 2i|λ
b

)
n

(bt)n

n!

=

∞∑
n=0

P̃n

(
a− 1;

λ

b

)
(bt)n

n!
.

Therefore, we have the following form B:

B(t) =

∞∑
n=0

Ẽn

(
bx,

λ

a

)
(at)n

n!

∞∑
n=0

P̃n

(
a− 1;

λ

b

)
(bt)n

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
an−kbkẼn−k

(
bx,

λ

a

)
P̃k

(
a− 1;

λ

b

))
tn

n!
.

(3.3)
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Now following the same procedure when b is odd integer, we find the following
other form B:

B(t) =
2(1 + λt)

b(1+ax)
λ

(1 + λ)
2b
λ + 1

(
(−1)b−1(1 + λt)

2ab
λ + 1

(1 + λt)
2a
λ + 1

)
2(1 + λt)

a
λ

=

∞∑
n=0

Ẽn

(
ax,

λ

b

)
(bt)n

n!

∞∑
n=0

P̃n

(
b− 1;

λ

a

)
(at)n

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
bn−kakẼn−k

(
ax,

λ

b

)
P̃k

(
b− 1;

λ

a

))
tn

n!

(3.4)

Comparing (3.3) and (3.4), we can complete the proof at once. �

Corollary 3.7. Putting a = 1 in Theorem 3.6, we see

n∑
k=0

(
n

k

)
(b|λ)kẼn−k (bx, λ) =

1

2

n∑
k=0

(
n

k

)
bn−kẼn−k

(
x,
λ

b

)
P̃k (b− 1;λ) .
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