DOI QR코드

DOI QR Code

A RESEARCH ON THE GENERALIZED POLY-BERNOULLI POLYNOMIALS WITH VARIABLE a

  • Received : 2018.01.09
  • Accepted : 2018.08.05
  • Published : 2018.09.30

Abstract

In this paper, by using the polylogarithm function, we introduce a generalized poly-Bernoulli numbers and polynomials with variable a. We find several combinatorial identities and properties of the polynomials. We give some properties that is connected with the Stirling numbers of second kind. Symmetric properties can be proved by new configured special functions. We display the zeros of the generalized poly-Bernoulli polynomials with variable a and investigate their structure.

Keywords

References

  1. T. Arakawa and M. Kaneko, On Poly-Bernoulli numbers, Comment. Math. Univ. Sanct. Pauli 48-2 (1999), 159-167.
  2. A. Bayad and Y. Hamahata, Polylogarithms and poly-Bernoulli polynomials, Kyushu. J. Math. 65 (2011), 15-24. https://doi.org/10.2206/kyushujm.65.15
  3. C. Brewbaker, A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues Integers 8 (2008), A02.
  4. K.W. Hwang, B.R. Nam, N.S. Jung, A note on q-analogue of poly-Bernoulli numbers and polynomials, J. Appl. Math. & Informatics 35 (2017), 611-621. https://doi.org/10.14317/jami.2017.611
  5. Mehmet Cenkcia, Takao Komatsub, Poly-Bernoulli numbers and polynomials with a q parameter, Journal of Number Theory 152 (2015), 38-54. https://doi.org/10.1016/j.jnt.2014.12.004
  6. N.S. Jung, C.S. Ryoo, symmetric identities for degenerate q-poly-Bernoulli numbers and polynomials, J. Appl. Math. & Informatics 36 (2018), 29-38.
  7. M.Kaneko, Poly-Bernoulli numbers, Journal de thorie des nombres de Bordeaux 9(1997), 221-228.
  8. Burak Kurt, Some identities for the generalized poly-Genocchi polynomials with the parameters a, b, and c, Journal of mathematical Analysis 8 (2017), 156-163.
  9. C.S. Ryoo, On poly-tangent numbers and polynomials and distribution of their zeros, Global Journal of Pure and Applied Mathematics 12 (2016), 4411-4425.
  10. C.S. Ryoo, On degenerate q-tangent polynomials of higher order, J. Appl. Math. & Informatics 35 (2017), 113-120. https://doi.org/10.14317/jami.2017.113
  11. Paul Thomas Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their applications, Journal of Number Theory 128 (2008), 738-758. https://doi.org/10.1016/j.jnt.2007.02.007
  12. Y. Sasaki, On generalized poly-Bernoulli numbers and related L-functions, J. Number Theory 132 (2012), 156-170. https://doi.org/10.1016/j.jnt.2011.07.007

Cited by

  1. A NOTE ON THE GENERALIZED BERNOULLI POLYNOMIALS WITH (p, q)-POLYLOGARITHM FUNCTION vol.38, pp.1, 2020, https://doi.org/10.14317/jami.2020.145
  2. IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS vol.38, pp.5, 2018, https://doi.org/10.14317/jami.2020.601