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GENERALIZED EULER POWER SERIES

MIN-SOO KIM

ABSTRACT. This work is a continuation of our investigations for p-adic
analogue of the alternating form Dirichlet L-functions

oo
—1)"x(n
Los0 = > CUXO - peg) 5o,

n=1
Let Ly g(s,t;x) be the p-adic Euler L-function of two variables. In
this paper, for any a € Cp, |a|p < 1, we give a power series expansion of
Ly, (s, t;x) in terms of the variable ¢t. From this, we derive a power series
expansion of the generalized Euler polynomials with negative index, that

is, we prove that

Eepy(t) = i (:)E,(mmmtm, neN,

where t € Cp, with |t|, < 1. Some further properties for L, g(s,t;x) has
also been shown.
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1. Introduction

For a fixed primitive Dirichlet character x with odd conductor f,, the gener-
alized Euler polynomials E, (t) € Q(x(1),x(2),...,t) are defined by the gen-
erating function

fx oo

2(=1)*x(a)el* 0 "
> . =Y B, 1
pot efxx + 1 ot :X( )n' ( )

(see [3, 5,9, 10]). The corresponding generalized Euler numbers can be defined
by E, = E,(0). With this definition, the generalized Euler polynomials can
also be expressed in terms of the expansion E, () = >._, (2) Ej ,t"~F. This
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can also be derived from (1). Another property this kind of polynomial satisfying
is that for n > 0,

mfy

(=)™~ 1Enx(t+mfx)+Enx —22 a)(t+a)", (2)

where x is the fixed primitive Dirichlet charactcr with odd conductor f, and
m > 1 (see [6, p. 376, (10)]). This can be derived from (1). Note that letting
X = 1, the trivial character, and letting ¢ = 0, (2) becomes to

1((_1)m71En71(m) + En,l(o)) — Z(_l)aan' 3)

2 a=1

The ordinary Euler polynomials F,(t) € Q(¢) is defined by the generating

function
oo

ef+1 Z @

Here are some important properties of Euler polynomials
E.(t+ 1)+ E,(t) = 2t",
En(l - t) = (_1)nEn(t)a

where n > 0. Each of these results can be derived from the generating function

(4) above. Similar to (2) for the generalized Euler polynomials, whenever m > 1
and n > 0,

()

1 . —

S (1" B (m) Z (6)
where we take 0° to be 1 in the case of @ = 0 and n = 0. Note that this can be
derived from the first identity of (5) since

m—1
(—1)" " En(m) + En(0) = Y (=1)*(En(a+ 1) + En(a)). (7)
a=0

From (1), we may conclude that the numbers E,, (0) are related to the generalized
Euler polynomials, that is letting x = 1 we have

ac
=N E,.(0)=
ez +1 Z 1 n! (8)
and since ) 5
efL‘
et +1 + et +1’ ©)

we see that
E,1(0)=E,(0) foralln#0 and FEp:1(0)=—Ex0)=-1 (10)

and this can be written as E, 1(0) = (=1)""'E,(0) for n > 0, and for the
polynomials, E, 1(t) = (—1)""'E,(—t) for n > 0.
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The main interest of these numbers is that they give the values at negative
integers of Euler L-functions: An alternating form of Dirichlet L-function

Lg(s,x) = i %, Re(s) > 0, (11)
n=1

is called Euler L-function (see [6, 7]). We see that Lg(s, x) is indeed the following
Dirichlet eta function with a character

a(s) =3 E (12)

where Re(s) > 0. The Dirichlet eta function 7(s) is a particular case of Witten’s
zeta functions in mathematical physics and it has been used by Euler to obtain
a functional equation of Riemann zeta function ¢(s) (see [4]). In particular,
Kim and Hu [7] derived the p-adic Euler L-function L, g(s, x) by using the p-
adic Huriwitz-type Euler zeta functions as building blocks. The p-adic function
L, (s, x) may be served as a p-adic counterpart of Lg(s, x) (11), the alternating
form of Dirichlet L-functions.

The two variable p-adic L-functions have been studied by Fox [1], Simsek [10]
and Young [11]. These functions interpolate the generalized Bernoulli polyno-
mials at nonpositive integers. By using these functions, Kummer’s congruences
for generalized Bernoulli polynomials are established. In [6] Kim proved the ex-
istence of p-adic Euler L-function of two variables L, g(s,t;x) (see (17) below),
considered several properties of L, g(s,t; X).

In this paper, we give a power series expansion of L, g(s,t;x) in the variable
t about any a € Cp, |a, < 1 (see Theorem 2.6 below). Furthermore, we prove

that
. i
En,x<t>=2( )E-<m+n>,xt, nen,

m
m=0
where t € C,, with [t|, < 1. We also obtain some properties of these functions.

2. Properties of p-adic Euler L-function with two variables

Let p be an odd prime number. Let @Q, be the topological completion of Q
with respect to the metric topology induced by |- |,. Let C, be the field of p-
adic completion of algebraic closure of Q. Let v, denote the p-adic exponential
valuation on Cp, normalized so that v,(p) = 1.

Note that there exist ¢(p) distinct solutions, modulo p, to the equation zo®) —
1 = 0, and each solution must be congruent to one of the values a € Z, where 1 <
a < p,(a,p) = 1. Thus, by Hensel’s Lemma, given a € Z with (a,p) = 1, there
exists a unique w(a) € Z,, where w(a)*® = 1, such that w(a) = a (mod pZ,).
Letting w(a) = 0 for a € Z such that (a,p) # 1, it can be seen that w is actually
a Dirichlet character having conductor f,, = p, called the Teichmiiller character.
Let

(a) = w (a)a. (13)
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Then (a) =1 (mod pZ,). If t € C,, such that |¢|, < 1, then for any a € Z, a+pt =
a (mod pZy[t]). Thus, we define w(a + pt) = w(a) for these values of t. We also
define

(a+pt) =w™(a)(a+pt) (14)
for such t. Therefore, (a+pt) = (a)+pw~!(a)t, so that (a+pt) = 1 (mod pZy,|[t]).
We also define a particular subring of C, by

D:{secp:vp(s)>—1+pll}. (15)
Since 1 € D and any point of a p-adic disc is its center, D is the same as the set
D={seC,: vp(l—s)>—1—|—p%1 .

Let Q,(x) denote the field generated over Q, by x(a),a € Z in an algebraic
closure of Q,. Q,(x) is a locally compact topological field containing Q(x) as a
dense subfield. Let t € C,, |t|, < 1, and let Q,(x,t), the field generated over Q,
by adjoining ¢ and the values x(a),a € Z. For n € N, we define x,, to be the
primitive character associated with the character x,, : (Z/l.c.m.(fy,p)Z)* — C*

defined by xn(a) = x(a)w™"(a). We define a sequence of elements €, ,(t),n > 0,
in Qp(x,t) by
€nx(t) = En x,. (pt) = Xn(P)P" En ., (1), (16)
where E,, . (t) is the generalized Euler polynomial and n > 0. Note that x,(a)
is in Q,(x) for any n > 0 and a € Z.
Now we consider a p-adic Euler L-function of two variables and a power series
expansion has been given in [6].

Define
fxp
Lyp(s,t;x) = lim > - (=1)"x(a){a +pt)" ", (17)
a=1
(a,p)=1

which is analytic for s € D and ¢t € C,, such that ||, <1 (see [5, 8, 10, 11]).

In the more generalized form, the p-adic Euler L-functions of two variables
L, g(s,t; x) must satisfy L, g(s,0;x) = Lp,e(s,x), and so L, g(s,0; x) vanishes
for all s € D when x(—1) = 1, but this property does not hold for all ¢ for any
given x (see [6, p. 376, Theorem 3.3]).

We have the following theorem.

Theorem 2.1 ([6, p. 375]). Let x be a Dirichlet character with odd conductor
fx- For each t € Cp, with |t|, <1, there exists a unique p-adic analytic function
with following properties:

(1) L, e(s,t;x) has a series expansion

(oo}

Lp,E(Sat; X) = Z(_l)nan(t)(s - 1)n, an(t) S Qp(X;t)a

n=0

where the power series converges in the domain D.
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(2) For all positive integer n,

Lp,E(l -n, ta X) = e‘rL,X(t)v
where €, (t) is defined in (16).

Remark 2.1. Putting ¢ = 0 in Theorem 2.1(2), we find that

LIJ,E(I -n, X) = (1 - Xn(p)pn)En,xna n € N.

595

From this, we conclude that the definition of L, g(1 — n,x) is equivalent to

the definition in [7] following Kubota-Leopoldt’s approach (cf.
Proposition 5.9(2)]).

In the case x = w™, Theorem 2.1(2) gives the following.

Corollary 2.2. For all positive integer n, we obtain
L, g(1—n,t;w") =E,1(pt) —p"Ena(t).
In particular, we have
Ly p(l=n,w") = (1=p")En1(0) = (1 - p")En(0)
for alln > 1.

Theorem 2.3. Lett € Cp,|t|, <1, and s € D. Then

o0

1-s
Lot =3 (1) Lyt )

n=0

7, p. 3007,

Proof. From (13) and (14), it is easy to see that for ¢ € C,, [t|, < 1, and a € Z)5,

a —I—pt 1—s
a

(a7 = (o)

(18)
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Combining (17) with (18), we obtain

prN

Lps(st;x) = lim 37 (=1)%x(a)(a+pt)'~*
(=1

(a,p)=1 (19)

which completes the proof. O

Since we can now express L, g(s,t;x) in terms of a power series in ¢, we can
take a derivative of this function with respect to t.

Lemma 2.4. Lett € Cy, |t|, <1, and s € D. Then

o" nfl1—3s
%Lp,E(‘% t; X) = n'p n Lp,E(S +n,t; Xn)7

where n € Z,n > 0.

Proof. The proof proceeds by induction. The case n = 0 is clear. First we
consider n = 1. By Theorem 2.3 and

()-0a()

we have
0 = 1—5\ ,me
ailr (s tix) = Zm< m )p " Ly g (s +m, Xm)
m=1
= -5
= 1-—s ML e (s 4 My Xom
mZ::l( )(ml)p pE( Xm) o)
= [—s
= p(l - 5) Z (m>pmtmLp,E(5 +m+ 1aXm+l)
m=0

=p(1 = 8)Lp,p(s+ 1.t x1).
Suppose that

n

7] nfl—s
%LP,E(S,t;X):n!p < " >Lp,E(5+n,t;xn)
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for n € N. Then, by (21),
on+t o (o
WLP,E(S71§;X) =5 (atan,E(svt?X>>

1—s\0
(22)

1-s
(1 Joles =0 Dl bt 1)

1—s
— 1!n+1
(n+ 1w <n+1

which completes the proof. U

Lemma 2.5 ([1, Proposition 2.6] and [2, p. 107]). Let f(X) =>,~,a, X" be a
power series, and suppose f(xz) converges. If f(z) = > " an(x—a)™ converges
on some closed ball B in C,. Then for each x € B, the k-th derivative ) (x)
exists, and is given by

f®(2) = k! i (Z) an(z — )",

n==k

)Lp,E(S +n+ 1,8 Xnt1),

in particular, we have
f®(a)
K

From Lemma 2.4 and Lemma 2.5, we can derive a more general power series
expansion of L, g(s,t; x) in the variable ¢ about any a € Cp, |a|, < 1.

Theorem 2.6. Lett € Cp,|t|, <1, and s € D. Then

ap =

oo

1-s5\ , n
Lp,E<s7t;x>=Z( - )p (t— )" Ly (s + . 0 xa),
n=0

where o € Cp, |a, <1,

Remark 2.2. We remark that Theorem 2.6 is equivalent to Theorem 2.3 when
a=0.

Proof of Theorem 2.6. Using Lemma 2.5, we can write Ly, g(s,t; x) in the form

Lp,E(Svt; X) = Z an(t - a)na
n=0

where
1 0™

T o

Lp,E(Sa t; X)

t=a
By Lemma 2.4, we obtain

1o n(l—s
E%LILE(SJ; )=p ( n >LP7E(5+n7t;X")’
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and so

1—s
an —p"< " >Lp,E(S +n,a;Xn),

completing the proof. O

3. Generalized Euler polynomials of negative index

For n € N, and for t € C,, |t|, < |p|p, we define the generalized Euler polyno-
mials of negative index by (cf. [7, p. 3012, Definition 5.14])

E—n,x(t) = kh_{go Eaﬁ(p’“)—n,x(t)v (23)

where ¢ is the Euler-phi function and the limit here is taken p-adically. Since
Eg(pr)—n,1(0) = Eg(pr)—n(0) for n, k € Z, with n > 1 and k sufficiently large, we
obtain E_,, 1(0) = E_,(0) for all such n.

Denote x, = xw™". Using (23), we can show that, since

W) — P 1 and Xo(ph)—n = Xwn—¢>(pk) = Yw" (24)

for all characters y and for all n € N,

. ky_n
Eonx(pt) = lim (E¢<pk>fn,x¢<pk>(pt) = Xo(h) ()" E¢(pk>fn,x¢(,,k)(t))

= lim L, p (1= (6(0") = n). t:xn)

=Ly (n+ 1, xn).
(25)
Since Ly g (n+1,t; x,,) exists for each n € N and t € Cp, [t|, < 1, we see that
E_, «(pt) must also exist for such ¢. Thus E_,, , (t) exists for t € Cp, |t], < |plp.

Theorem 3.1. Let x be a primitive character modulo f, and ¢ be the Euler-phi
function. Then for all n € N, we obtain

L,e(n+1,t;x) = klir& Egph)—n,xwn (P)-
In particular, we have limy,_, o Egpry—yy 1(0) = Lp p(n + 1L,w™").
Proof. Since Ly, g(s,t; x) is a continuous function of s, for all n € Z, we have
Lpp(n+1,t;x) = lim L, p(n+1—¢(p"),tx)
k—o0
= lim L;D,E(1 - (¢(pk) - n)7 ta X)
k— o0

= hm <E¢(pk)—n7x¢(pk),n (pt)

k—o0
Ry,
~Xo(p)—n (PP nE¢(p’”‘)*n7x¢(pk),n(t))
using Theorem 2.1(2). From (24), we obtain
L,e(n+1,t;x) = khﬁr{.lo Eg(ph)—n,xwn (P)-

This completes the proof. O
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Theorem 3.2. (1) Foralln € N andt € C,,|t|, < 1, we have
= -n m
E_ny(t)=> o ) Bemen) ™
m=0
(2) For all m,n € N with p | mf,, we have

mfy
((*1)m71E—n,x(mfx)+E—n7x) = Z (=1)*x(a)a™™.

a=1
(a,p)=1

1
2

Proof. (1) Put t =0 in (25). Then
E .y=E ,,0=L,g(n+1,x,), neN
Thus using (25) and Theorem 2.3, we have
Enx(pt) = Lpp (n+1,xn)

oo
—nNn
> ( o )p’”tmLp,E(m +n+ 1, Xmgn)
=0

> /-n
E_ )™
mz (m) (m+n)7x(P) s

this converges for |pt[, < 1, since |E_(y4n),xlp < max {|p[;,]fy], '} and

()=o)

(2) If we put t = 0 in (2) and use definition (23), since |mfy|p < |p|p, we get
(_1)m_1E—n,x(mfx) + Eonx
= khjgo ()™ By gty —n (mfx) + Eppry—n,x)
mfy X
=2 lim (—=1)%x(a)a®®) ="

k—o0
a=1

mfy

=2 > (-1)*x(a)a™".
a=1
(a,p):]

‘We therefore obtain the theorem. O
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