GENERALIZED EULER POWER SERIES ${ }^{\dagger}$

MIN-SOO KIM

Abstract. This work is a continuation of our investigations for p-adic analogue of the alternating form Dirichlet L-functions

$$
L_{E}(s, \chi)=\sum_{n=1}^{\infty} \frac{(-1)^{n} \chi(n)}{n^{s}}, \quad \operatorname{Re}(s)>0
$$

Let $L_{p, E}(s, t ; \chi)$ be the p-adic Euler L-function of two variables. In this paper, for any $\alpha \in \mathbb{C}_{p},|\alpha|_{p} \leq 1$, we give a power series expansion of $L_{p, E}(s, t ; \chi)$ in terms of the variable t. From this, we derive a power series expansion of the generalized Euler polynomials with negative index, that is, we prove that

$$
E_{-n, \chi}(t)=\sum_{m=0}^{\infty}\binom{-n}{m} E_{-(m+n), \chi} t^{m}, \quad n \in \mathbb{N}
$$

where $t \in \mathbb{C}_{p}$ with $|t|_{p}<1$. Some further properties for $L_{p, E}(s, t ; \chi)$ has also been shown.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80.
Key words and phrases : Euler polynomials of negative index, p-adic Euler L-function.

1. Introduction

For a fixed primitive Dirichlet character χ with odd conductor f_{χ}, the generalized Euler polynomials $E_{n, \chi}(t) \in \mathbb{Q}(\chi(1), \chi(2), \ldots, t)$ are defined by the generating function

$$
\begin{equation*}
\sum_{a=1}^{f_{\chi}} \frac{2(-1)^{a} \chi(a) e^{(a+t) x}}{e^{f_{\chi} x}+1}=\sum_{n=0}^{\infty} E_{n, \chi}(t) \frac{x^{n}}{n!} \tag{1}
\end{equation*}
$$

(see $[3,5,9,10]$). The corresponding generalized Euler numbers can be defined by $E_{n, \chi}=E_{n, \chi}(0)$. With this definition, the generalized Euler polynomials can also be expressed in terms of the expansion $E_{n, \chi}(t)=\sum_{k=0}^{n}\binom{n}{k} E_{k, \chi} t^{n-k}$. This

[^0]can also be derived from (1). Another property this kind of polynomial satisfying is that for $n \geq 0$,
\[

$$
\begin{equation*}
(-1)^{m-1} E_{n, \chi}\left(t+m f_{\chi}\right)+E_{n, \chi}(t)=2 \sum_{a=1}^{m f_{\chi}}(-1)^{a} \chi(a)(t+a)^{n} \tag{2}
\end{equation*}
$$

\]

where χ is the fixed primitive Dirichlet character with odd conductor f_{χ} and $m \geq 1$ (see $[6$, p. $376,(10)])$. This can be derived from (1). Note that letting $\chi=1$, the trivial character, and letting $t=0,(2)$ becomes to

$$
\begin{equation*}
\frac{1}{2}\left((-1)^{m-1} E_{n, 1}(m)+E_{n, 1}(0)\right)=\sum_{a=1}^{m}(-1)^{a} a^{n} \tag{3}
\end{equation*}
$$

The ordinary Euler polynomials $E_{n}(t) \in \mathbb{Q}(t)$ is defined by the generating function

$$
\begin{equation*}
\frac{2 e^{t x}}{e^{x}+1}=\sum_{n=0}^{\infty} E_{n}(t) \frac{x^{n}}{n!} \tag{4}
\end{equation*}
$$

Here are some important properties of Euler polynomials

$$
\begin{align*}
& E_{n}(t+1)+E_{n}(t)=2 t^{n} \\
& E_{n}(1-t)=(-1)^{n} E_{n}(t) \tag{5}
\end{align*}
$$

where $n \geq 0$. Each of these results can be derived from the generating function (4) above. Similar to (2) for the generalized Euler polynomials, whenever $m \geq 1$ and $n \geq 0$,

$$
\begin{equation*}
\frac{1}{2}\left((-1)^{m-1} E_{n}(m)+E_{n}(0)\right)=\sum_{a=0}^{m-1}(-1)^{a} a^{n} \tag{6}
\end{equation*}
$$

where we take 0^{0} to be 1 in the case of $a=0$ and $n=0$. Note that this can be derived from the first identity of (5) since

$$
\begin{equation*}
(-1)^{m-1} E_{n}(m)+E_{n}(0)=\sum_{a=0}^{m-1}(-1)^{a}\left(E_{n}(a+1)+E_{n}(a)\right) \tag{7}
\end{equation*}
$$

From (1), we may conclude that the numbers $E_{n}(0)$ are related to the generalized Euler polynomials, that is letting $\chi=1$ we have

$$
\begin{equation*}
-\frac{2 e^{x}}{e^{x}+1}=\sum_{n=0}^{\infty} E_{n, 1}(0) \frac{x^{n}}{n!} \tag{8}
\end{equation*}
$$

and since

$$
\begin{equation*}
-\frac{2 e^{x}}{e^{x}+1}=-2+\frac{2}{e^{x}+1} \tag{9}
\end{equation*}
$$

we see that

$$
\begin{equation*}
E_{n, 1}(0)=E_{n}(0) \text { for all } n \neq 0 \quad \text { and } \quad E_{0,1}(0)=-E_{0}(0)=-1 \tag{10}
\end{equation*}
$$

and this can be written as $E_{n, 1}(0)=(-1)^{n-1} E_{n}(0)$ for $n \geq 0$, and for the polynomials, $E_{n, 1}(t)=(-1)^{n-1} E_{n}(-t)$ for $n \geq 0$.

The main interest of these numbers is that they give the values at negative integers of Euler L-functions: An alternating form of Dirichlet L-function

$$
\begin{equation*}
L_{E}(s, \chi)=\sum_{n=1}^{\infty} \frac{(-1)^{n} \chi(n)}{n^{s}}, \quad \operatorname{Re}(s)>0 \tag{11}
\end{equation*}
$$

is called Euler L-function (see $[6,7]$). We see that $L_{E}(s, \chi)$ is indeed the following Dirichlet eta function with a character

$$
\begin{equation*}
\eta(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}} \tag{12}
\end{equation*}
$$

where $\operatorname{Re}(s)>0$. The Dirichlet eta function $\eta(s)$ is a particular case of Witten's zeta functions in mathematical physics and it has been used by Euler to obtain a functional equation of Riemann zeta function $\zeta(s)$ (see [4]). In particular, Kim and $\mathrm{Hu}[7]$ derived the p-adic Euler L-function $L_{p, E}(s, \chi)$ by using the p adic Huriwitz-type Euler zeta functions as building blocks. The p-adic function $L_{p, E}(s, \chi)$ may be served as a p-adic counterpart of $L_{E}(s, \chi)(11)$, the alternating form of Dirichlet L-functions.

The two variable p-adic L-functions have been studied by Fox [1], Simsek [10] and Young [11]. These functions interpolate the generalized Bernoulli polynomials at nonpositive integers. By using these functions, Kummer's congruences for generalized Bernoulli polynomials are established. In [6] Kim proved the existence of p-adic Euler L-function of two variables $L_{p, E}(s, t ; \chi)$ (see (17) below), considered several properties of $L_{p, E}(s, t ; \chi)$.

In this paper, we give a power series expansion of $L_{p, E}(s, t ; \chi)$ in the variable t about any $\alpha \in \mathbb{C}_{p},|\alpha|_{p} \leq 1$ (see Theorem 2.6 below). Furthermore, we prove that

$$
E_{-n, \chi}(t)=\sum_{m=0}^{\infty}\binom{-n}{m} E_{-(m+n), \chi} t^{m}, \quad n \in \mathbb{N}
$$

where $t \in \mathbb{C}_{p}$ with $|t|_{p}<1$. We also obtain some properties of these functions.

2. Properties of p-adic Euler L-function with two variables

Let p be an odd prime number. Let \mathbb{Q}_{p} be the topological completion of \mathbb{Q} with respect to the metric topology induced by $|\cdot|_{p}$. Let \mathbb{C}_{p} be the field of p adic completion of algebraic closure of \mathbb{Q}_{p}. Let v_{p} denote the p-adic exponential valuation on \mathbb{C}_{p}, normalized so that $v_{p}(p)=1$.

Note that there exist $\phi(p)$ distinct solutions, modulo p, to the equation $x^{\phi(p)}-$ $1=0$, and each solution must be congruent to one of the values $a \in \mathbb{Z}$, where $1 \leq$ $a \leq p,(a, p)=1$. Thus, by Hensel's Lemma, given $a \in \mathbb{Z}$ with $(a, p)=1$, there exists a unique $\omega(a) \in \mathbb{Z}_{p}$, where $\omega(a)^{\phi(p)}=1$, such that $\omega(a) \equiv a\left(\bmod p \mathbb{Z}_{p}\right)$. Letting $\omega(a)=0$ for $a \in \mathbb{Z}$ such that $(a, p) \neq 1$, it can be seen that ω is actually a Dirichlet character having conductor $f_{\omega}=p$, called the Teichmüller character. Let

$$
\begin{equation*}
\langle a\rangle=\omega^{-1}(a) a \tag{13}
\end{equation*}
$$

Then $\langle a\rangle \equiv 1\left(\bmod p \mathbb{Z}_{p}\right)$. If $t \in \mathbb{C}_{p}$ such that $|t|_{p} \leq 1$, then for any $a \in \mathbb{Z}, a+p t \equiv$ $a\left(\bmod p \mathbb{Z}_{p}[t]\right)$. Thus, we define $\omega(a+p t)=\omega(a)$ for these values of t. We also define

$$
\begin{equation*}
\langle a+p t\rangle=\omega^{-1}(a)(a+p t) \tag{14}
\end{equation*}
$$

for such t. Therefore, $\langle a+p t\rangle=\langle a\rangle+p \omega^{-1}(a) t$, so that $\langle a+p t\rangle \equiv 1\left(\bmod p \mathbb{Z}_{p}[t]\right)$.
We also define a particular subring of \mathbb{C}_{p} by

$$
\begin{equation*}
D=\left\{s \in \mathbb{C}_{p}: v_{p}(s)>-1+\frac{1}{p-1}\right\} \tag{15}
\end{equation*}
$$

Since $1 \in D$ and any point of a p-adic disc is its center, D is the same as the set $D=\left\{s \in \mathbb{C}_{p}: v_{p}(1-s)>-1+\frac{1}{p-1}\right\}$.

Let $\mathbb{Q}_{p}(\chi)$ denote the field generated over \mathbb{Q}_{p} by $\chi(a), a \in \mathbb{Z}$ in an algebraic closure of $\mathbb{Q}_{p} \cdot \mathbb{Q}_{p}(\chi)$ is a locally compact topological field containing $\mathbb{Q}(\chi)$ as a dense subfield. Let $t \in \mathbb{C}_{p},|t|_{p} \leq 1$, and let $\mathbb{Q}_{p}(\chi, t)$, the field generated over \mathbb{Q}_{p} by adjoining t and the values $\chi(a), a \in \mathbb{Z}$. For $n \in \mathbb{N}$, we define χ_{n} to be the primitive character associated with the character $\chi_{n}:\left(\mathbb{Z} / \text { l.c.m. }\left(f_{\chi}, p\right) \mathbb{Z}\right)^{\times} \rightarrow \mathbb{C}^{\times}$ defined by $\chi_{n}(a)=\chi(a) \omega^{-n}(a)$. We define a sequence of elements $\epsilon_{n, \chi}(t), n \geq 0$, in $\mathbb{Q}_{p}(\chi, t)$ by

$$
\begin{equation*}
\epsilon_{n, \chi}(t)=E_{n, \chi_{n}}(p t)-\chi_{n}(p) p^{n} E_{n, \chi_{n}}(t) \tag{16}
\end{equation*}
$$

where $E_{n, \chi_{n}}(t)$ is the generalized Euler polynomial and $n \geq 0$. Note that $\chi_{n}(a)$ is in $\mathbb{Q}_{p}(\chi)$ for any $n \geq 0$ and $a \in \mathbb{Z}$.

Now we consider a p-adic Euler L-function of two variables and a power series expansion has been given in [6].

Define

$$
\begin{equation*}
L_{p, E}(s, t ; \chi)=\lim _{N \rightarrow \infty} \sum_{\substack{a=1 \\(a, p)=1}}^{f_{\chi} p^{N}}(-1)^{a} \chi(a)\langle a+p t\rangle^{1-s}, \tag{17}
\end{equation*}
$$

which is analytic for $s \in D$ and $t \in \mathbb{C}_{p}$ such that $|t|_{p} \leq 1$ (see $[5,8,10,11]$).
In the more generalized form, the p-adic Euler L-functions of two variables $L_{p, E}(s, t ; \chi)$ must satisfy $L_{p, E}(s, 0 ; \chi)=L_{p, E}(s, \chi)$, and so $L_{p, E}(s, 0 ; \chi)$ vanishes for all $s \in D$ when $\chi(-1)=1$, but this property does not hold for all t for any given χ (see [6, p. 376, Theorem 3.3]).

We have the following theorem.
Theorem 2.1 ([6, p. 375]). Let χ be a Dirichlet character with odd conductor f_{χ}. For each $t \in \mathbb{C}_{p}$, with $|t|_{p} \leq 1$, there exists a unique p-adic analytic function with following properties:
(1) $L_{p, E}(s, t ; \chi)$ has a series expansion

$$
L_{p, E}(s, t ; \chi)=\sum_{n=0}^{\infty}(-1)^{n} a_{n}(t)(s-1)^{n}, \quad a_{n}(t) \in \mathbb{Q}_{p}(\chi, t),
$$

where the power series converges in the domain D.
(2) For all positive integer n,

$$
L_{p, E}(1-n, t ; \chi)=\epsilon_{n, \chi}(t)
$$

where $\epsilon_{n, \chi}(t)$ is defined in (16).
Remark 2.1. Putting $t=0$ in Theorem 2.1(2), we find that

$$
L_{p, E}(1-n, \chi)=\left(1-\chi_{n}(p) p^{n}\right) E_{n, \chi_{n}}, \quad n \in \mathbb{N}
$$

From this, we conclude that the definition of $L_{p, E}(1-n, \chi)$ is equivalent to the definition in [7] following Kubota-Leopoldt's approach (cf. [7, p. 3007, Proposition 5.9(2)]).

In the case $\chi=\omega^{n}$, Theorem 2.1(2) gives the following.
Corollary 2.2. For all positive integer n, we obtain

$$
L_{p, E}\left(1-n, t ; \omega^{n}\right)=E_{n, 1}(p t)-p^{n} E_{n, 1}(t)
$$

In particular, we have

$$
L_{p, E}\left(1-n, \omega^{n}\right)=\left(1-p^{n}\right) E_{n, 1}(0)=\left(1-p^{n}\right) E_{n}(0)
$$

for all $n \geq 1$.
Theorem 2.3. Let $t \in \mathbb{C}_{p},|t|_{p} \leq 1$, and $s \in D$. Then

$$
L_{p, E}(s, t ; \chi)=\sum_{n=0}^{\infty}\binom{1-s}{n} p^{n} t^{n} L_{p, E}\left(s+n, \chi_{n}\right)
$$

Proof. From (13) and (14), it is easy to see that for $t \in \mathbb{C}_{p},|t|_{p} \leq 1$, and $a \in \mathbb{Z}_{p}^{\times}$,

$$
\begin{align*}
\langle a+p t\rangle^{1-s} & =\langle a\rangle^{1-s}\left(\frac{a+p t}{a}\right)^{1-s} \\
& =\langle a\rangle^{1-s} \sum_{n=0}^{\infty}\binom{1-s}{n}\left(\frac{p t}{a}\right)^{n} \tag{18}\\
& =\sum_{n=0}^{\infty}\binom{1-s}{n} p^{n} t^{n} \omega^{-n}(a)\langle a\rangle^{1-s-n}
\end{align*}
$$

Combining (17) with (18), we obtain

$$
\begin{align*}
L_{p, E}(s, t ; \chi) & =\lim _{N \rightarrow \infty} \sum_{\substack{a=1 \\
(a, p)=1}}^{f_{\chi} p^{N}}(-1)^{a} \chi(a)\langle a+p t\rangle^{1-s} \\
& =\sum_{n=0}^{\infty}\binom{1-s}{n} p^{n} t^{n} \lim _{N \rightarrow \infty} \sum_{\substack{a=1 \\
(a, p)=1}}^{f_{\chi} p^{N}}(-1)^{a} \chi(a) \omega^{-n}(a)\langle a\rangle^{1-s-n} \tag{19}\\
& =\sum_{n=0}^{\infty}\binom{1-s}{n} p^{n} t^{n} \lim _{N \rightarrow \infty} \sum_{\substack{a=1 \\
(a, p)=1}}^{f_{\chi} p^{N}}(-1)^{a} \chi_{n}(a)\langle a\rangle^{1-(s+n)} \\
& =\sum_{n=0}^{\infty}\binom{1-s}{n} p^{n} t^{n} L_{p, E}\left(s+n, \chi_{n}\right)
\end{align*}
$$

which completes the proof.
Since we can now express $L_{p, E}(s, t ; \chi)$ in terms of a power series in t, we can take a derivative of this function with respect to t.

Lemma 2.4. Let $t \in \mathbb{C}_{p},|t|_{p} \leq 1$, and $s \in D$. Then

$$
\frac{\partial^{n}}{\partial t^{n}} L_{p, E}(s, t ; \chi)=n!p^{n}\binom{1-s}{n} L_{p, E}\left(s+n, t ; \chi_{n}\right)
$$

where $n \in \mathbb{Z}, n \geq 0$.
Proof. The proof proceeds by induction. The case $n=0$ is clear. First we consider $n=1$. By Theorem 2.3 and

$$
\begin{equation*}
m\binom{1-s}{m}=(1-s)\binom{-s}{m-1} \tag{20}
\end{equation*}
$$

we have

$$
\begin{align*}
\frac{\partial}{\partial t} L_{p, E}(s, t ; \chi) & =\sum_{m=1}^{\infty} m\binom{1-s}{m} p^{m} t^{m-1} L_{p, E}\left(s+m, \chi_{m}\right) \\
& =\sum_{m=1}^{\infty}(1-s)\binom{-s}{m-1} p^{m} t^{m-1} L_{p, E}\left(s+m, \chi_{m}\right) \tag{21}\\
& =p(1-s) \sum_{m=0}^{\infty}\binom{-s}{m} p^{m} t^{m} L_{p, E}\left(s+m+1, \chi_{m+1}\right) \\
& =p(1-s) L_{p, E}\left(s+1, t ; \chi_{1}\right)
\end{align*}
$$

Suppose that

$$
\frac{\partial^{n}}{\partial t^{n}} L_{p, E}(s, t ; \chi)=n!p^{n}\binom{1-s}{n} L_{p, E}\left(s+n, t ; \chi_{n}\right)
$$

for $n \in \mathbb{N}$. Then, by (21),

$$
\begin{align*}
\frac{\partial^{n+1}}{\partial t^{n+1}} L_{p, E}(s, t ; \chi) & =\frac{\partial}{\partial t}\left(\frac{\partial^{n}}{\partial t^{n}} L_{p, E}(s, t ; \chi)\right) \\
& =n!p^{n}\binom{1-s}{n} \frac{\partial}{\partial t} L_{p, E}\left(s+n, t ; \chi_{n}\right) \tag{22}\\
& =n!p^{n}\binom{1-s}{n} p(-s-n+1) L_{p, E}\left(s+n+1, t ; \chi_{n+1}\right) \\
& =(n+1)!p^{n+1}\binom{1-s}{n+1} L_{p, E}\left(s+n+1, t ; \chi_{n+1}\right)
\end{align*}
$$

which completes the proof.
Lemma 2.5 ([1, Proposition 2.6] and [2, p. 107]). Let $f(X)=\sum_{n=0}^{\infty} a_{n} X^{n}$ be a power series, and suppose $f(x)$ converges. If $f(x)=\sum_{n=0}^{\infty} a_{n}(x-\alpha)^{n}$ converges on some closed ball B in \mathbb{C}_{p}. Then for each $x \in B$, the k-th derivative $f^{(k)}(x)$ exists, and is given by

$$
f^{(k)}(x)=k!\sum_{n=k}^{\infty}\binom{n}{k} a_{n}(x-\alpha)^{n-k}
$$

in particular, we have

$$
a_{k}=\frac{f^{(k)}(\alpha)}{k!}
$$

From Lemma 2.4 and Lemma 2.5, we can derive a more general power series expansion of $L_{p, E}(s, t ; \chi)$ in the variable t about any $\alpha \in \mathbb{C}_{p},|\alpha|_{p} \leq 1$.

Theorem 2.6. Let $t \in \mathbb{C}_{p},|t|_{p} \leq 1$, and $s \in D$. Then

$$
L_{p, E}(s, t ; \chi)=\sum_{n=0}^{\infty}\binom{1-s}{n} p^{n}(t-\alpha)^{n} L_{p, E}\left(s+n, \alpha ; \chi_{n}\right)
$$

where $\alpha \in \mathbb{C}_{p},|\alpha|_{p} \leq 1$,
Remark 2.2. We remark that Theorem 2.6 is equivalent to Theorem 2.3 when $\alpha=0$.
Proof of Theorem 2.6. Using Lemma 2.5, we can write $L_{p, E}(s, t ; \chi)$ in the form

$$
L_{p, E}(s, t ; \chi)=\sum_{n=0}^{\infty} a_{n}(t-\alpha)^{n}
$$

where

$$
a_{n}=\left.\frac{1}{n!} \frac{\partial^{n}}{\partial t^{n}} L_{p, E}(s, t ; \chi)\right|_{t=\alpha}
$$

By Lemma 2.4, we obtain

$$
\frac{1}{n!} \frac{\partial^{n}}{\partial t^{n}} L_{p, E}(s, t ; \chi)=p^{n}\binom{1-s}{n} L_{p, E}\left(s+n, t ; \chi_{n}\right)
$$

and so

$$
a_{n}=p^{n}\binom{1-s}{n} L_{p, E}\left(s+n, \alpha ; \chi_{n}\right)
$$

completing the proof.

3. Generalized Euler polynomials of negative index

For $n \in \mathbb{N}$, and for $t \in \mathbb{C}_{p},|t|_{p} \leq|p|_{p}$, we define the generalized Euler polynomials of negative index by (cf. [7, p. 3012, Definition 5.14])

$$
\begin{equation*}
E_{-n, \chi}(t)=\lim _{k \rightarrow \infty} E_{\phi\left(p^{k}\right)-n, \chi}(t) \tag{23}
\end{equation*}
$$

where ϕ is the Euler-phi function and the limit here is taken p-adically. Since $E_{\phi\left(p^{k}\right)-n, 1}(0)=E_{\phi\left(p^{k}\right)-n}(0)$ for $n, k \in \mathbb{Z}$, with $n \geq 1$ and k sufficiently large, we obtain $E_{-n, 1}(0)=E_{-n}(0)$ for all such n.

Denote $\chi_{n}=\chi \omega^{-n}$. Using (23), we can show that, since

$$
\begin{equation*}
\omega^{\phi\left(p^{k}\right)}=\omega^{p^{k-1}(p-1)}=1 \quad \text { and } \quad \chi_{\phi\left(p^{k}\right)-n}=\chi \omega^{n-\phi\left(p^{k}\right)}=\chi \omega^{n} \tag{24}
\end{equation*}
$$

for all characters χ and for all $n \in \mathbb{N}$,

$$
\begin{align*}
E_{-n, \chi}(p t) & =\lim _{k \rightarrow \infty}\left(E_{\phi\left(p^{k}\right)-n, \chi_{\phi\left(p^{k}\right)}}(p t)-\chi_{\phi\left(p^{k}\right)}(p) p^{\phi\left(p^{k}\right)-n} E_{\phi\left(p^{k}\right)-n, \chi_{\phi\left(p^{k}\right)}}(t)\right) \\
& =\lim _{k \rightarrow \infty} L_{p, E}\left(1-\left(\phi\left(p^{k}\right)-n\right), t ; \chi_{n}\right) \\
& =L_{p, E}\left(n+1, t ; \chi_{n}\right) . \tag{25}
\end{align*}
$$

Since $L_{p, E}\left(n+1, t ; \chi_{n}\right)$ exists for each $n \in \mathbb{N}$ and $t \in \mathbb{C}_{p},|t|_{p} \leq 1$, we see that $E_{-n, \chi}(p t)$ must also exist for such t. Thus $E_{-n, \chi}(t)$ exists for $t \in \mathbb{C}_{p},|t|_{p} \leq|p|_{p}$.

Theorem 3.1. Let χ be a primitive character modulo f_{χ} and ϕ be the Euler-phi function. Then for all $n \in \mathbb{N}$, we obtain

$$
L_{p, E}(n+1, t ; \chi)=\lim _{k \rightarrow \infty} E_{\phi\left(p^{k}\right)-n, \chi \omega^{n}}(p t)
$$

In particular, we have $\lim _{k \rightarrow \infty} E_{\phi\left(p^{k}\right)-n, 1}(0)=L_{p, E}\left(n+1, \omega^{-n}\right)$.
Proof. Since $L_{p, E}(s, t ; \chi)$ is a continuous function of s, for all $n \in \mathbb{Z}$, we have

$$
\begin{aligned}
L_{p, E}(n+1, t ; \chi)= & \lim _{k \rightarrow \infty} L_{p, E}\left(n+1-\phi\left(p^{k}\right), t ; \chi\right) \\
= & \lim _{k \rightarrow \infty} L_{p, E}\left(1-\left(\phi\left(p^{k}\right)-n\right), t ; \chi\right) \\
= & \lim _{k \rightarrow \infty}\left(E_{\phi\left(p^{k}\right)-n, \chi_{\phi\left(p^{k}\right)-n}}(p t)\right. \\
& \left.\quad-\chi_{\phi\left(p^{k}\right)-n}(p) p^{\phi\left(p^{k}\right)-n} E_{\phi\left(p^{k}\right)-n, \chi_{\phi\left(p^{k}\right)-n}}(t)\right)
\end{aligned}
$$

using Theorem 2.1(2). From (24), we obtain

$$
L_{p, E}(n+1, t ; \chi)=\lim _{k \rightarrow \infty} E_{\phi\left(p^{k}\right)-n, \chi \omega^{n}}(p t)
$$

This completes the proof.

Theorem 3.2. (1) For all $n \in \mathbb{N}$ and $t \in \mathbb{C}_{p},|t|_{p}<1$, we have

$$
E_{-n, \chi}(t)=\sum_{m=0}^{\infty}\binom{-n}{m} E_{-(m+n), \chi} t^{m}
$$

(2) For all $m, n \in \mathbb{N}$ with $p \mid m f_{\chi}$, we have

$$
\frac{1}{2}\left((-1)^{m-1} E_{-n, \chi}\left(m f_{\chi}\right)+E_{-n, \chi}\right)=\sum_{\substack{a=1 \\(a, p)=1}}^{m f_{\chi}}(-1)^{a} \chi(a) a^{-n}
$$

Proof. (1) Put $t=0$ in (25). Then

$$
E_{-n, \chi}=E_{-n, \chi}(0)=L_{p, E}\left(n+1, \chi_{n}\right), \quad n \in \mathbb{N}
$$

Thus using (25) and Theorem 2.3, we have

$$
\begin{aligned}
E_{-n, \chi}(p t) & =L_{p, E}\left(n+1, t ; \chi_{n}\right) \\
& =\sum_{m=0}^{\infty}\binom{-n}{m} p^{m} t^{m} L_{p, E}\left(m+n+1, \chi_{m+n}\right) \\
& =\sum_{m=0}^{\infty}\binom{-n}{m} E_{-(m+n), \chi}(p t)^{m},
\end{aligned}
$$

this converges for $|p t|_{p}<1$, since $\left|E_{-(m+n), \chi}\right|_{p} \leq \max \left\{|p|_{p}^{-1},\left|f_{\chi}\right|_{p}^{-1}\right\}$ and

$$
\binom{-n}{m}=(-1)^{m}\binom{n+m-1}{m}
$$

(2) If we put $t=0$ in (2) and use definition (23), since $\left|m f_{\chi}\right|_{p} \leq|p|_{p}$, we get

$$
\begin{aligned}
& (-1)^{m-1} E_{-n, \chi}\left(m f_{\chi}\right)+E_{-n, \chi} \\
& \quad=\lim _{k \rightarrow \infty}\left((-1)^{m-1} E_{\phi\left(p^{k}\right)-n, \chi}\left(m f_{\chi}\right)+E_{\phi\left(p^{k}\right)-n, \chi}\right) \\
& =2 \lim _{k \rightarrow \infty} \sum_{a=1}^{m f_{\chi}}(-1)^{a} \chi(a) a^{\phi\left(p^{k}\right)-n} \\
& \quad=2 \sum_{\substack{a=1 \\
(a, p)=1}}^{m f_{\chi}}(-1)^{a} \chi(a) a^{-n} .
\end{aligned}
$$

We therefore obtain the theorem.

Acknowledgement

We are grateful to the anonymous referees for carefully reading our manuscript and also for his/her valuable comments.

References

1. G.J. Fox, A p-adic L-function of two variables, Enseign. Math., II. Ser. 46 (2000), 225-278.
2. F.Q. Gouvêa, p-adic numbers, An introduction, Universitext, Springer-Verlag, Berlin, 1993.
3. K. Iwasawa, Lectures on p-adic L-functions, Ann. Math. Studies 74, Princeton, New Jersey, 1972.
4. J. Min, Zeros and special values of Witten zeta functions and Witten L-functions, J. Number Theory 134 (2014), 240-257.
5. T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on \mathbb{Z}_{p} at $q=-1$, J. Math. Anal. Appl. 331 (2007), 779-792.
6. M.-S. Kim, On p-adic Euler L-function of two variables, J. Appl. Math. Inform. 36 (2018), 369-379.
7. M.-S. Kim and S. Hu, On p-adic Hurwitz-type Euler zeta functions, J. Number Theory 132 (2012), 2977-3015.
8. C.S. Ryoo, On degenerate q-tangent polynomials of higher order, J. Appl. Math. Inform. 35 (2017), 113-120.
9. C.S. Ryoo, T. Kim and L.C. Jang, A note on generalized Euler numbers and polynomials, Int. J. Comput. Math. 84 (2007), 1099-1111.
10. Y. Simsek, On twisted q-Hurwitz zeta function and q-two-variable L-function, Appl. Math. Comput. 187 (2007), 466-473.
11. P. Young, On the behavior of some two-variable p-adic L-functions, J. Number Theory 98 (2003), 67-88.

Min-Soo Kim received Ph.D. degree from Kyungnam University. His main research area is analytic number theory. Recently, his main interests focus on p-adic analysis and zeta functions, Bernoulli and Euler numbers and polynomials.
Department of Mathematics Education, Kyungnam University, Changwon, Gyeongnam 51767, Republic of Korea.
e-mail: mskim@kyungnam.ac.kr

[^0]: Received August 2, 202. Revised August 27, 2020. Accepted September 8, 2020.
 ${ }^{\dagger}$ This work was supported by the Kyungnam University Foundation Grant, 2019.
 (C) 2020 KSCAM.

