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GENERALIZED EULER POWER SERIES†

MIN-SOO KIM

Abstract. This work is a continuation of our investigations for p-adic

analogue of the alternating form Dirichlet L-functions

LE(s, χ) =
∞∑
n=1

(−1)nχ(n)

ns
, Re(s) > 0.

Let Lp,E(s, t;χ) be the p-adic Euler L-function of two variables. In
this paper, for any α ∈ Cp, |α|p ≤ 1, we give a power series expansion of

Lp,E(s, t;χ) in terms of the variable t. From this, we derive a power series

expansion of the generalized Euler polynomials with negative index, that
is, we prove that

E−n,χ(t) =

∞∑
m=0

(−n
m

)
E−(m+n),χt

m, n ∈ N,

where t ∈ Cp with |t|p < 1. Some further properties for Lp,E(s, t;χ) has

also been shown.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80.
Key words and phrases : Euler polynomials of negative index, p-adic Euler

L-function.

1. Introduction

For a fixed primitive Dirichlet character χ with odd conductor fχ, the gener-
alized Euler polynomials En,χ(t) ∈ Q(χ(1), χ(2), . . . , t) are defined by the gen-
erating function

fχ∑
a=1

2(−1)aχ(a)e(a+t)x

efχx + 1
=

∞∑
n=0

En,χ(t)
xn

n!
(1)

(see [3, 5, 9, 10]). The corresponding generalized Euler numbers can be defined
by En,χ = En,χ(0). With this definition, the generalized Euler polynomials can
also be expressed in terms of the expansion En,χ(t) =

∑n
k=0

(
n
k

)
Ek,χt

n−k. This
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can also be derived from (1). Another property this kind of polynomial satisfying
is that for n ≥ 0,

(−1)m−1En,χ(t+mfχ) + En,χ(t) = 2

mfχ∑
a=1

(−1)aχ(a)(t+ a)n, (2)

where χ is the fixed primitive Dirichlet character with odd conductor fχ and
m ≥ 1 (see [6, p. 376, (10)]). This can be derived from (1). Note that letting
χ = 1, the trivial character, and letting t = 0, (2) becomes to

1

2
((−1)m−1En,1(m) + En,1(0)) =

m∑
a=1

(−1)aan. (3)

The ordinary Euler polynomials En(t) ∈ Q(t) is defined by the generating
function

2etx

ex + 1
=

∞∑
n=0

En(t)
xn

n!
. (4)

Here are some important properties of Euler polynomials

En(t+ 1) + En(t) = 2tn,

En(1− t) = (−1)nEn(t),
(5)

where n ≥ 0. Each of these results can be derived from the generating function
(4) above. Similar to (2) for the generalized Euler polynomials, whenever m ≥ 1
and n ≥ 0,

1

2
((−1)m−1En(m) + En(0)) =

m−1∑
a=0

(−1)aan, (6)

where we take 00 to be 1 in the case of a = 0 and n = 0. Note that this can be
derived from the first identity of (5) since

(−1)m−1En(m) + En(0) =

m−1∑
a=0

(−1)a(En(a+ 1) + En(a)). (7)

From (1), we may conclude that the numbers En(0) are related to the generalized
Euler polynomials, that is letting χ = 1 we have

− 2ex

ex + 1
=

∞∑
n=0

En,1(0)
xn

n!
(8)

and since

− 2ex

ex + 1
= −2 +

2

ex + 1
, (9)

we see that

En,1(0) = En(0) for all n 6= 0 and E0,1(0) = −E0(0) = −1 (10)

and this can be written as En,1(0) = (−1)n−1En(0) for n ≥ 0, and for the
polynomials, En,1(t) = (−1)n−1En(−t) for n ≥ 0.
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The main interest of these numbers is that they give the values at negative
integers of Euler L-functions: An alternating form of Dirichlet L-function

LE(s, χ) =

∞∑
n=1

(−1)nχ(n)

ns
, Re(s) > 0, (11)

is called Euler L-function (see [6, 7]). We see that LE(s, χ) is indeed the following
Dirichlet eta function with a character

η(s) =

∞∑
n=1

(−1)n−1

ns
, (12)

where Re(s) > 0. The Dirichlet eta function η(s) is a particular case of Witten’s
zeta functions in mathematical physics and it has been used by Euler to obtain
a functional equation of Riemann zeta function ζ(s) (see [4]). In particular,
Kim and Hu [7] derived the p-adic Euler L-function Lp,E(s, χ) by using the p-
adic Huriwitz-type Euler zeta functions as building blocks. The p-adic function
Lp,E(s, χ) may be served as a p-adic counterpart of LE(s, χ) (11), the alternating
form of Dirichlet L-functions.

The two variable p-adic L-functions have been studied by Fox [1], Simsek [10]
and Young [11]. These functions interpolate the generalized Bernoulli polyno-
mials at nonpositive integers. By using these functions, Kummer’s congruences
for generalized Bernoulli polynomials are established. In [6] Kim proved the ex-
istence of p-adic Euler L-function of two variables Lp,E(s, t;χ) (see (17) below),
considered several properties of Lp,E(s, t;χ).

In this paper, we give a power series expansion of Lp,E(s, t;χ) in the variable
t about any α ∈ Cp, |α|p ≤ 1 (see Theorem 2.6 below). Furthermore, we prove
that

E−n,χ(t) =

∞∑
m=0

(
−n
m

)
E−(m+n),χt

m, n ∈ N,

where t ∈ Cp with |t|p < 1. We also obtain some properties of these functions.

2. Properties of p-adic Euler L-function with two variables

Let p be an odd prime number. Let Qp be the topological completion of Q
with respect to the metric topology induced by | · |p. Let Cp be the field of p-
adic completion of algebraic closure of Qp. Let vp denote the p-adic exponential
valuation on Cp, normalized so that vp(p) = 1.

Note that there exist φ(p) distinct solutions, modulo p, to the equation xφ(p)−
1 = 0, and each solution must be congruent to one of the values a ∈ Z, where 1 ≤
a ≤ p, (a, p) = 1. Thus, by Hensel’s Lemma, given a ∈ Z with (a, p) = 1, there
exists a unique ω(a) ∈ Zp, where ω(a)φ(p) = 1, such that ω(a) ≡ a (mod pZp).
Letting ω(a) = 0 for a ∈ Z such that (a, p) 6= 1, it can be seen that ω is actually
a Dirichlet character having conductor fω = p, called the Teichmüller character.
Let

〈a〉 = ω−1(a)a. (13)
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Then 〈a〉 ≡ 1 (mod pZp). If t ∈ Cp such that |t|p ≤ 1, then for any a ∈ Z, a+pt ≡
a (mod pZp[t]). Thus, we define ω(a+ pt) = ω(a) for these values of t. We also
define

〈a+ pt〉 = ω−1(a)(a+ pt) (14)

for such t. Therefore, 〈a+pt〉 = 〈a〉+pω−1(a)t, so that 〈a+pt〉 ≡ 1 (mod pZp[t]).
We also define a particular subring of Cp by

D =

{
s ∈ Cp : vp(s) > −1 +

1

p− 1

}
. (15)

Since 1 ∈ D and any point of a p-adic disc is its center, D is the same as the set
D = {s ∈ Cp : vp(1− s) > −1 + 1

p−1}.
Let Qp(χ) denote the field generated over Qp by χ(a), a ∈ Z in an algebraic

closure of Qp. Qp(χ) is a locally compact topological field containing Q(χ) as a
dense subfield. Let t ∈ Cp, |t|p ≤ 1, and let Qp(χ, t), the field generated over Qp
by adjoining t and the values χ(a), a ∈ Z. For n ∈ N, we define χn to be the
primitive character associated with the character χn : (Z/l.c.m.(fχ, p)Z)× → C×
defined by χn(a) = χ(a)ω−n(a). We define a sequence of elements εn,χ(t), n ≥ 0,
in Qp(χ, t) by

εn,χ(t) = En,χn(pt)− χn(p)pnEn,χn(t), (16)

where En,χn(t) is the generalized Euler polynomial and n ≥ 0. Note that χn(a)
is in Qp(χ) for any n ≥ 0 and a ∈ Z.

Now we consider a p-adic Euler L-function of two variables and a power series
expansion has been given in [6].

Define

Lp,E(s, t;χ) = lim
N→∞

fχp
N∑

a=1
(a,p)=1

(−1)aχ(a)〈a+ pt〉1−s, (17)

which is analytic for s ∈ D and t ∈ Cp such that |t|p ≤ 1 (see [5, 8, 10, 11]).
In the more generalized form, the p-adic Euler L-functions of two variables

Lp,E(s, t;χ) must satisfy Lp,E(s, 0;χ) = Lp,E(s, χ), and so Lp,E(s, 0;χ) vanishes
for all s ∈ D when χ(−1) = 1, but this property does not hold for all t for any
given χ (see [6, p. 376, Theorem 3.3]).

We have the following theorem.

Theorem 2.1 ([6, p. 375]). Let χ be a Dirichlet character with odd conductor
fχ. For each t ∈ Cp, with |t|p ≤ 1, there exists a unique p-adic analytic function
with following properties:

(1) Lp,E(s, t;χ) has a series expansion

Lp,E(s, t;χ) =

∞∑
n=0

(−1)nan(t)(s− 1)n, an(t) ∈ Qp(χ, t),

where the power series converges in the domain D.
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(2) For all positive integer n,

Lp,E(1− n, t;χ) = εn,χ(t),

where εn,χ(t) is defined in (16).

Remark 2.1. Putting t = 0 in Theorem 2.1(2), we find that

Lp,E(1− n, χ) = (1− χn(p)pn)En,χn , n ∈ N.

From this, we conclude that the definition of Lp,E(1 − n, χ) is equivalent to
the definition in [7] following Kubota-Leopoldt’s approach (cf. [7, p. 3007,
Proposition 5.9(2)]).

In the case χ = ωn, Theorem 2.1(2) gives the following.

Corollary 2.2. For all positive integer n, we obtain

Lp,E(1− n, t;ωn) = En,1(pt)− pnEn,1(t).

In particular, we have

Lp,E(1− n, ωn) = (1− pn)En,1(0) = (1− pn)En(0)

for all n ≥ 1.

Theorem 2.3. Let t ∈ Cp, |t|p ≤ 1, and s ∈ D. Then

Lp,E(s, t;χ) =

∞∑
n=0

(
1− s
n

)
pntnLp,E(s+ n, χn).

Proof. From (13) and (14), it is easy to see that for t ∈ Cp, |t|p ≤ 1, and a ∈ Z×p ,

〈a+ pt〉1−s = 〈a〉1−s
(
a+ pt

a

)1−s

= 〈a〉1−s
∞∑
n=0

(
1− s
n

)(
pt

a

)n
=

∞∑
n=0

(
1− s
n

)
pntnω−n(a)〈a〉1−s−n.

(18)
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Combining (17) with (18), we obtain

Lp,E(s, t;χ) = lim
N→∞

fχp
N∑

a=1
(a,p)=1

(−1)aχ(a)〈a+ pt〉1−s

=

∞∑
n=0

(
1− s
n

)
pntn lim

N→∞

fχp
N∑

a=1
(a,p)=1

(−1)aχ(a)ω−n(a)〈a〉1−s−n

=

∞∑
n=0

(
1− s
n

)
pntn lim

N→∞

fχp
N∑

a=1
(a,p)=1

(−1)aχn(a)〈a〉1−(s+n)

=

∞∑
n=0

(
1− s
n

)
pntnLp,E(s+ n, χn),

(19)

which completes the proof. �

Since we can now express Lp,E(s, t;χ) in terms of a power series in t, we can
take a derivative of this function with respect to t.

Lemma 2.4. Let t ∈ Cp, |t|p ≤ 1, and s ∈ D. Then

∂n

∂tn
Lp,E(s, t;χ) = n!pn

(
1− s
n

)
Lp,E(s+ n, t;χn),

where n ∈ Z, n ≥ 0.

Proof. The proof proceeds by induction. The case n = 0 is clear. First we
consider n = 1. By Theorem 2.3 and

m

(
1− s
m

)
= (1− s)

(
−s

m− 1

)
, (20)

we have

∂

∂t
Lp,E(s, t;χ) =

∞∑
m=1

m

(
1− s
m

)
pmtm−1Lp,E(s+m,χm)

=

∞∑
m=1

(1− s)
(
−s

m− 1

)
pmtm−1Lp,E(s+m,χm)

= p(1− s)
∞∑
m=0

(
−s
m

)
pmtmLp,E(s+m+ 1, χm+1)

= p(1− s)Lp,E(s+ 1, t;χ1).

(21)

Suppose that

∂n

∂tn
Lp,E(s, t;χ) = n!pn

(
1− s
n

)
Lp,E(s+ n, t;χn)
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for n ∈ N. Then, by (21),

∂n+1

∂tn+1
Lp,E(s, t;χ) =

∂

∂t

(
∂n

∂tn
Lp,E(s, t;χ)

)
= n!pn

(
1− s
n

)
∂

∂t
Lp,E(s+ n, t;χn)

= n!pn
(

1− s
n

)
p(−s− n+ 1)Lp,E(s+ n+ 1, t;χn+1)

= (n+ 1)!pn+1

(
1− s
n+ 1

)
Lp,E(s+ n+ 1, t;χn+1),

(22)

which completes the proof. �

Lemma 2.5 ([1, Proposition 2.6] and [2, p. 107]). Let f(X) =
∑∞
n=0 anX

n be a
power series, and suppose f(x) converges. If f(x) =

∑∞
n=0 an(x−α)n converges

on some closed ball B in Cp. Then for each x ∈ B, the k-th derivative f (k)(x)
exists, and is given by

f (k)(x) = k!

∞∑
n=k

(
n

k

)
an(x− α)n−k,

in particular, we have

ak =
f (k)(α)

k!
.

From Lemma 2.4 and Lemma 2.5, we can derive a more general power series
expansion of Lp,E(s, t;χ) in the variable t about any α ∈ Cp, |α|p ≤ 1.

Theorem 2.6. Let t ∈ Cp, |t|p ≤ 1, and s ∈ D. Then

Lp,E(s, t;χ) =

∞∑
n=0

(
1− s
n

)
pn(t− α)nLp,E(s+ n, α;χn),

where α ∈ Cp, |α|p ≤ 1,

Remark 2.2. We remark that Theorem 2.6 is equivalent to Theorem 2.3 when
α = 0.

Proof of Theorem 2.6. Using Lemma 2.5, we can write Lp,E(s, t;χ) in the form

Lp,E(s, t;χ) =

∞∑
n=0

an(t− α)n,

where

an =
1

n!

∂n

∂tn
Lp,E(s, t;χ)

∣∣∣∣
t=α

.

By Lemma 2.4, we obtain

1

n!

∂n

∂tn
Lp,E(s, t;χ) = pn

(
1− s
n

)
Lp,E(s+ n, t;χn),



598 Min-Soo Kim

and so

an = pn
(

1− s
n

)
Lp,E(s+ n, α;χn),

completing the proof. �

3. Generalized Euler polynomials of negative index

For n ∈ N, and for t ∈ Cp, |t|p ≤ |p|p, we define the generalized Euler polyno-
mials of negative index by (cf. [7, p. 3012, Definition 5.14])

E−n,χ(t) = lim
k→∞

Eφ(pk)−n,χ(t), (23)

where φ is the Euler-phi function and the limit here is taken p-adically. Since
Eφ(pk)−n,1(0) = Eφ(pk)−n(0) for n, k ∈ Z, with n ≥ 1 and k sufficiently large, we
obtain E−n,1(0) = E−n(0) for all such n.

Denote χn = χω−n. Using (23), we can show that, since

ωφ(p
k) = ωp

k−1(p−1) = 1 and χφ(pk)−n = χωn−φ(p
k) = χωn (24)

for all characters χ and for all n ∈ N,

E−n,χ(pt) = lim
k→∞

(
Eφ(pk)−n,χ

φ(pk)
(pt)− χφ(pk)(p)pφ(p

k)−nEφ(pk)−n,χ
φ(pk)

(t)
)

= lim
k→∞

Lp,E
(
1− (φ(pk)− n), t;χn

)
= Lp,E (n+ 1, t;χn) .

(25)
Since Lp,E (n+ 1, t;χn) exists for each n ∈ N and t ∈ Cp, |t|p ≤ 1, we see that
E−n,χ(pt) must also exist for such t. Thus E−n,χ(t) exists for t ∈ Cp, |t|p ≤ |p|p.

Theorem 3.1. Let χ be a primitive character modulo fχ and φ be the Euler-phi
function. Then for all n ∈ N, we obtain

Lp,E(n+ 1, t;χ) = lim
k→∞

Eφ(pk)−n,χωn(pt).

In particular, we have limk→∞Eφ(pk)−n,1(0) = Lp,E(n+ 1, ω−n).

Proof. Since Lp,E(s, t;χ) is a continuous function of s, for all n ∈ Z, we have

Lp,E(n+ 1, t;χ) = lim
k→∞

Lp,E(n+ 1− φ(pk), t;χ)

= lim
k→∞

Lp,E(1− (φ(pk)− n), t;χ)

= lim
k→∞

(
Eφ(pk)−n,χ

φ(pk)−n
(pt)

−χφ(pk)−n(p)pφ(p
k)−nEφ(pk)−n,χ

φ(pk)−n
(t)
)

using Theorem 2.1(2). From (24), we obtain

Lp,E(n+ 1, t;χ) = lim
k→∞

Eφ(pk)−n,χωn(pt).

This completes the proof. �
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Theorem 3.2. (1) For all n ∈ N and t ∈ Cp, |t|p < 1, we have

E−n,χ(t) =

∞∑
m=0

(
−n
m

)
E−(m+n),χt

m.

(2) For all m,n ∈ N with p | mfχ, we have

1

2

(
(−1)m−1E−n,χ(mfχ) + E−n,χ

)
=

mfχ∑
a=1

(a,p)=1

(−1)aχ(a)a−n.

Proof. (1) Put t = 0 in (25). Then

E−n,χ = E−n,χ(0) = Lp,E (n+ 1, χn) , n ∈ N.

Thus using (25) and Theorem 2.3, we have

E−n,χ(pt) = Lp,E (n+ 1, t;χn)

=

∞∑
m=0

(
−n
m

)
pmtmLp,E(m+ n+ 1, χm+n)

=

∞∑
m=0

(
−n
m

)
E−(m+n),χ(pt)m,

this converges for |pt|p < 1, since |E−(m+n),χ|p ≤ max
{
|p|−1p , |fχ|−1p

}
and(

−n
m

)
= (−1)m

(
n+m− 1

m

)
.

(2) If we put t = 0 in (2) and use definition (23), since |mfχ|p ≤ |p|p, we get

(−1)m−1E−n,χ(mfχ) + E−n,χ

= lim
k→∞

(
(−1)m−1Eφ(pk)−n,χ(mfχ) + Eφ(pk)−n,χ

)
= 2 lim

k→∞

mfχ∑
a=1

(−1)aχ(a)aφ(p
k)−n

= 2

mfχ∑
a=1

(a,p)=1

(−1)aχ(a)a−n.

We therefore obtain the theorem. �
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