J. Appl. Math. & Informatics Vol. **38**(2020), No. 5 - 6, pp. 591 - 600 https://doi.org/10.14317/jami.2020.591

GENERALIZED EULER POWER SERIES[†]

MIN-SOO KIM

ABSTRACT. This work is a continuation of our investigations for p-adic analogue of the alternating form Dirichlet L-functions

$$L_E(s,\chi) = \sum_{n=1}^{\infty} \frac{(-1)^n \chi(n)}{n^s}, \quad \text{Re}(s) > 0.$$

Let $L_{p,E}(s,t;\chi)$ be the *p*-adic Euler *L*-function of two variables. In this paper, for any $\alpha \in \mathbb{C}_p$, $|\alpha|_p \leq 1$, we give a power series expansion of $L_{p,E}(s,t;\chi)$ in terms of the variable *t*. From this, we derive a power series expansion of the generalized Euler polynomials with negative index, that is, we prove that

$$E_{-n,\chi}(t) = \sum_{m=0}^{\infty} {\binom{-n}{m}} E_{-(m+n),\chi} t^m, \quad n \in \mathbb{N},$$

where $t \in \mathbb{C}_p$ with $|t|_p < 1$. Some further properties for $L_{p,E}(s,t;\chi)$ has also been shown.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80. Key words and phrases : Euler polynomials of negative index, p-adic Euler L-function.

1. Introduction

For a fixed primitive Dirichlet character χ with odd conductor f_{χ} , the generalized Euler polynomials $E_{n,\chi}(t) \in \mathbb{Q}(\chi(1),\chi(2),\ldots,t)$ are defined by the generating function

$$\sum_{a=1}^{f_{\chi}} \frac{2(-1)^a \chi(a) e^{(a+t)x}}{e^{f_{\chi}x} + 1} = \sum_{n=0}^{\infty} E_{n,\chi}(t) \frac{x^n}{n!} \tag{1}$$

(see [3, 5, 9, 10]). The corresponding generalized Euler numbers can be defined by $E_{n,\chi} = E_{n,\chi}(0)$. With this definition, the generalized Euler polynomials can also be expressed in terms of the expansion $E_{n,\chi}(t) = \sum_{k=0}^{n} {n \choose k} E_{k,\chi} t^{n-k}$. This

Received August 2, 202. Revised August 27, 2020. Accepted September 8, 2020.

 $^{^{\}dagger}\mathrm{This}$ work was supported by the Kyungnam University Foundation Grant, 2019.

^{© 2020} KSCAM.

can also be derived from (1). Another property this kind of polynomial satisfying is that for $n \ge 0$,

$$(-1)^{m-1}E_{n,\chi}(t+mf_{\chi}) + E_{n,\chi}(t) = 2\sum_{a=1}^{mf_{\chi}} (-1)^a \chi(a)(t+a)^n,$$
(2)

where χ is the fixed primitive Dirichlet character with odd conductor f_{χ} and $m \geq 1$ (see [6, p. 376, (10)]). This can be derived from (1). Note that letting $\chi = 1$, the trivial character, and letting t = 0, (2) becomes to

$$\frac{1}{2}((-1)^{m-1}E_{n,1}(m) + E_{n,1}(0)) = \sum_{a=1}^{m} (-1)^a a^a.$$
(3)

The ordinary Euler polynomials $E_n(t) \in \mathbb{Q}(t)$ is defined by the generating function

$$\frac{2e^{tx}}{e^x + 1} = \sum_{n=0}^{\infty} E_n(t) \frac{x^n}{n!}.$$
(4)

Here are some important properties of Euler polynomials

$$E_n(t+1) + E_n(t) = 2t^n,$$

$$E_n(1-t) = (-1)^n E_n(t),$$
(5)

where $n \ge 0$. Each of these results can be derived from the generating function (4) above. Similar to (2) for the generalized Euler polynomials, whenever $m \ge 1$ and $n \ge 0$,

$$\frac{1}{2}((-1)^{m-1}E_n(m) + E_n(0)) = \sum_{a=0}^{m-1} (-1)^a a^n,$$
(6)

where we take 0^0 to be 1 in the case of a = 0 and n = 0. Note that this can be derived from the first identity of (5) since

$$(-1)^{m-1}E_n(m) + E_n(0) = \sum_{a=0}^{m-1} (-1)^a (E_n(a+1) + E_n(a)).$$
(7)

From (1), we may conclude that the numbers $E_n(0)$ are related to the generalized Euler polynomials, that is letting $\chi = 1$ we have

$$-\frac{2e^x}{e^x+1} = \sum_{n=0}^{\infty} E_{n,1}(0) \frac{x^n}{n!}$$
(8)

and since

$$-\frac{2e^x}{e^x+1} = -2 + \frac{2}{e^x+1},\tag{9}$$

we see that

$$E_{n,1}(0) = E_n(0)$$
 for all $n \neq 0$ and $E_{0,1}(0) = -E_0(0) = -1$ (10)

and this can be written as $E_{n,1}(0) = (-1)^{n-1}E_n(0)$ for $n \ge 0$, and for the polynomials, $E_{n,1}(t) = (-1)^{n-1}E_n(-t)$ for $n \ge 0$.

The main interest of these numbers is that they give the values at negative integers of Euler L-functions: An alternating form of Dirichlet L-function

$$L_E(s,\chi) = \sum_{n=1}^{\infty} \frac{(-1)^n \chi(n)}{n^s}, \quad \text{Re}(s) > 0,$$
(11)

is called Euler *L*-function (see [6, 7]). We see that $L_E(s, \chi)$ is indeed the following Dirichlet eta function with a character

$$\eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s},\tag{12}$$

where $\operatorname{Re}(s) > 0$. The Dirichlet eta function $\eta(s)$ is a particular case of Witten's zeta functions in mathematical physics and it has been used by Euler to obtain a functional equation of Riemann zeta function $\zeta(s)$ (see [4]). In particular, Kim and Hu [7] derived the *p*-adic Euler *L*-function $L_{p,E}(s,\chi)$ by using the *p*-adic Huriwitz-type Euler zeta functions as building blocks. The *p*-adic function $L_{p,E}(s,\chi)$ may be served as a *p*-adic counterpart of $L_E(s,\chi)$ (11), the alternating form of Dirichlet *L*-functions.

The two variable *p*-adic *L*-functions have been studied by Fox [1], Simsek [10] and Young [11]. These functions interpolate the generalized Bernoulli polynomials at nonpositive integers. By using these functions, Kummer's congruences for generalized Bernoulli polynomials are established. In [6] Kim proved the existence of *p*-adic Euler *L*-function of two variables $L_{p,E}(s,t;\chi)$ (see (17) below), considered several properties of $L_{p,E}(s,t;\chi)$.

In this paper, we give a power series expansion of $L_{p,E}(s,t;\chi)$ in the variable t about any $\alpha \in \mathbb{C}_p, |\alpha|_p \leq 1$ (see Theorem 2.6 below). Furthermore, we prove that

$$E_{-n,\chi}(t) = \sum_{m=0}^{\infty} {\binom{-n}{m}} E_{-(m+n),\chi} t^m, \quad n \in \mathbb{N},$$

where $t \in \mathbb{C}_p$ with $|t|_p < 1$. We also obtain some properties of these functions.

2. Properties of *p*-adic Euler *L*-function with two variables

Let p be an odd prime number. Let \mathbb{Q}_p be the topological completion of \mathbb{Q} with respect to the metric topology induced by $|\cdot|_p$. Let \mathbb{C}_p be the field of padic completion of algebraic closure of \mathbb{Q}_p . Let v_p denote the p-adic exponential valuation on \mathbb{C}_p , normalized so that $v_p(p) = 1$.

Note that there exist $\phi(p)$ distinct solutions, modulo p, to the equation $x^{\phi(p)} - 1 = 0$, and each solution must be congruent to one of the values $a \in \mathbb{Z}$, where $1 \leq a \leq p$, (a, p) = 1. Thus, by Hensel's Lemma, given $a \in \mathbb{Z}$ with (a, p) = 1, there exists a unique $\omega(a) \in \mathbb{Z}_p$, where $\omega(a)^{\phi(p)} = 1$, such that $\omega(a) \equiv a \pmod{p\mathbb{Z}_p}$. Letting $\omega(a) = 0$ for $a \in \mathbb{Z}$ such that $(a, p) \neq 1$, it can be seen that ω is actually a Dirichlet character having conductor $f_{\omega} = p$, called the Teichmüller character. Let

$$\langle a \rangle = \omega^{-1}(a)a. \tag{13}$$

Then $\langle a \rangle \equiv 1 \pmod{p\mathbb{Z}_p}$. If $t \in \mathbb{C}_p$ such that $|t|_p \leq 1$, then for any $a \in \mathbb{Z}$, $a+pt \equiv a \pmod{p\mathbb{Z}_p[t]}$. Thus, we define $\omega(a+pt) = \omega(a)$ for these values of t. We also define

$$\langle a + pt \rangle = \omega^{-1}(a)(a + pt) \tag{14}$$

for such t. Therefore, $\langle a+pt \rangle = \langle a \rangle + p\omega^{-1}(a)t$, so that $\langle a+pt \rangle \equiv 1 \pmod{p\mathbb{Z}_p[t]}$. We also define a particular subring of \mathbb{C}_p by

$$D = \left\{ s \in \mathbb{C}_p : v_p(s) > -1 + \frac{1}{p-1} \right\}.$$
 (15)

Since $1 \in D$ and any point of a *p*-adic disc is its center, *D* is the same as the set $D = \{s \in \mathbb{C}_p : v_p(1-s) > -1 + \frac{1}{p-1}\}.$

Let $\mathbb{Q}_p(\chi)$ denote the field generated over \mathbb{Q}_p by $\chi(a), a \in \mathbb{Z}$ in an algebraic closure of \mathbb{Q}_p . $\mathbb{Q}_p(\chi)$ is a locally compact topological field containing $\mathbb{Q}(\chi)$ as a dense subfield. Let $t \in \mathbb{C}_p, |t|_p \leq 1$, and let $\mathbb{Q}_p(\chi, t)$, the field generated over \mathbb{Q}_p by adjoining t and the values $\chi(a), a \in \mathbb{Z}$. For $n \in \mathbb{N}$, we define χ_n to be the primitive character associated with the character $\chi_n : (\mathbb{Z}/\text{l.c.m.}(f_{\chi}, p)\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ defined by $\chi_n(a) = \chi(a)\omega^{-n}(a)$. We define a sequence of elements $\epsilon_{n,\chi}(t), n \geq 0$, in $\mathbb{Q}_p(\chi, t)$ by

$$\epsilon_{n,\chi}(t) = E_{n,\chi_n}(pt) - \chi_n(p)p^n E_{n,\chi_n}(t), \qquad (16)$$

where $E_{n,\chi_n}(t)$ is the generalized Euler polynomial and $n \ge 0$. Note that $\chi_n(a)$ is in $\mathbb{Q}_p(\chi)$ for any $n \ge 0$ and $a \in \mathbb{Z}$.

Now we consider a p-adic Euler L-function of two variables and a power series expansion has been given in [6].

Define

$$L_{p,E}(s,t;\chi) = \lim_{N \to \infty} \sum_{\substack{a=1\\(a,p)=1}}^{f_{\chi}p^{N}} (-1)^{a} \chi(a) \langle a+pt \rangle^{1-s},$$
(17)

which is analytic for $s \in D$ and $t \in \mathbb{C}_p$ such that $|t|_p \leq 1$ (see [5, 8, 10, 11]).

In the more generalized form, the *p*-adic Euler *L*-functions of two variables $L_{p,E}(s,t;\chi)$ must satisfy $L_{p,E}(s,0;\chi) = L_{p,E}(s,\chi)$, and so $L_{p,E}(s,0;\chi)$ vanishes for all $s \in D$ when $\chi(-1) = 1$, but this property does not hold for all *t* for any given χ (see [6, p. 376, Theorem 3.3]).

We have the following theorem.

Theorem 2.1 ([6, p. 375]). Let χ be a Dirichlet character with odd conductor f_{χ} . For each $t \in \mathbb{C}_p$, with $|t|_p \leq 1$, there exists a unique p-adic analytic function with following properties:

(1) $L_{p,E}(s,t;\chi)$ has a series expansion

$$L_{p,E}(s,t;\chi) = \sum_{n=0}^{\infty} (-1)^n a_n(t)(s-1)^n, \quad a_n(t) \in \mathbb{Q}_p(\chi,t),$$

where the power series converges in the domain D.

(2) For all positive integer n,

$$L_{p,E}(1-n,t;\chi) = \epsilon_{n,\chi}(t),$$

where $\epsilon_{n,\chi}(t)$ is defined in (16).

Remark 2.1. Putting t = 0 in Theorem 2.1(2), we find that

$$L_{p,E}(1-n,\chi) = (1-\chi_n(p)p^n)E_{n,\chi_n}, \quad n \in \mathbb{N}.$$

From this, we conclude that the definition of $L_{p,E}(1-n,\chi)$ is equivalent to the definition in [7] following Kubota-Leopoldt's approach (cf. [7, p. 3007, Proposition 5.9(2)]).

In the case $\chi = \omega^n$, Theorem 2.1(2) gives the following.

Corollary 2.2. For all positive integer n, we obtain

$$L_{p,E}(1-n,t;\omega^{n}) = E_{n,1}(pt) - p^{n}E_{n,1}(t)$$

In particular, we have

$$L_{p,E}(1-n,\omega^n) = (1-p^n)E_{n,1}(0) = (1-p^n)E_n(0)$$

for all $n \geq 1$.

Theorem 2.3. Let $t \in \mathbb{C}_p, |t|_p \leq 1$, and $s \in D$. Then

$$L_{p,E}(s,t;\chi) = \sum_{n=0}^{\infty} {\binom{1-s}{n}} p^n t^n L_{p,E}(s+n,\chi_n).$$

Proof. From (13) and (14), it is easy to see that for $t \in \mathbb{C}_p, |t|_p \leq 1$, and $a \in \mathbb{Z}_p^{\times}$,

$$\langle a + pt \rangle^{1-s} = \langle a \rangle^{1-s} \left(\frac{a + pt}{a} \right)^{1-s}$$

$$= \langle a \rangle^{1-s} \sum_{n=0}^{\infty} {\binom{1-s}{n}} \left(\frac{pt}{a} \right)^n$$

$$= \sum_{n=0}^{\infty} {\binom{1-s}{n}} p^n t^n \omega^{-n} \langle a \rangle^{1-s-n}.$$

$$(18)$$

Combining (17) with (18), we obtain

$$\begin{split} L_{p,E}(s,t;\chi) &= \lim_{N \to \infty} \sum_{\substack{a=1 \\ (a,p)=1}}^{f_{\chi}p^{N}} (-1)^{a} \chi(a) \langle a + pt \rangle^{1-s} \\ &= \sum_{n=0}^{\infty} \binom{1-s}{n} p^{n} t^{n} \lim_{N \to \infty} \sum_{\substack{a=1 \\ (a,p)=1}}^{s-1} (-1)^{a} \chi(a) \omega^{-n}(a) \langle a \rangle^{1-s-n} \\ &= \sum_{n=0}^{\infty} \binom{1-s}{n} p^{n} t^{n} \lim_{N \to \infty} \sum_{\substack{a=1 \\ (a,p)=1}}^{s-1} (-1)^{a} \chi_{n}(a) \langle a \rangle^{1-(s+n)} \\ &= \sum_{n=0}^{\infty} \binom{1-s}{n} p^{n} t^{n} L_{p,E}(s+n,\chi_{n}), \end{split}$$
 (19)

which completes the proof.

Since we can now express $L_{p,E}(s,t;\chi)$ in terms of a power series in t, we can take a derivative of this function with respect to t.

Lemma 2.4. Let $t \in \mathbb{C}_p, |t|_p \leq 1$, and $s \in D$. Then

$$\frac{\partial^n}{\partial t^n} L_{p,E}(s,t;\chi) = n! p^n \binom{1-s}{n} L_{p,E}(s+n,t;\chi_n),$$

where $n \in \mathbb{Z}, n \geq 0$.

Proof. The proof proceeds by induction. The case n = 0 is clear. First we consider n = 1. By Theorem 2.3 and

$$m\binom{1-s}{m} = (1-s)\binom{-s}{m-1},\tag{20}$$

we have

$$\frac{\partial}{\partial t} L_{p,E}(s,t;\chi) = \sum_{m=1}^{\infty} m \binom{1-s}{m} p^m t^{m-1} L_{p,E}(s+m,\chi_m)
= \sum_{m=1}^{\infty} (1-s) \binom{-s}{m-1} p^m t^{m-1} L_{p,E}(s+m,\chi_m)
= p(1-s) \sum_{m=0}^{\infty} \binom{-s}{m} p^m t^m L_{p,E}(s+m+1,\chi_{m+1})
= p(1-s) L_{p,E}(s+1,t;\chi_1).$$
(21)

Suppose that

$$\frac{\partial^n}{\partial t^n} L_{p,E}(s,t;\chi) = n! p^n \binom{1-s}{n} L_{p,E}(s+n,t;\chi_n)$$

for $n \in \mathbb{N}$. Then, by (21),

$$\frac{\partial^{n+1}}{\partial t^{n+1}} L_{p,E}(s,t;\chi) = \frac{\partial}{\partial t} \left(\frac{\partial^n}{\partial t^n} L_{p,E}(s,t;\chi) \right)
= n! p^n {\binom{1-s}{n}} \frac{\partial}{\partial t} L_{p,E}(s+n,t;\chi_n)
= n! p^n {\binom{1-s}{n}} p(-s-n+1) L_{p,E}(s+n+1,t;\chi_{n+1})
= (n+1)! p^{n+1} {\binom{1-s}{n+1}} L_{p,E}(s+n+1,t;\chi_{n+1}),$$
(22)

which completes the proof.

Lemma 2.5 ([1, Proposition 2.6] and [2, p. 107]). Let $f(X) = \sum_{n=0}^{\infty} a_n X^n$ be a power series, and suppose f(x) converges. If $f(x) = \sum_{n=0}^{\infty} a_n (x-\alpha)^n$ converges on some closed ball B in \mathbb{C}_p . Then for each $x \in B$, the k-th derivative $f^{(k)}(x)$ exists, and is given by

$$f^{(k)}(x) = k! \sum_{n=k}^{\infty} \binom{n}{k} a_n (x-\alpha)^{n-k},$$

in particular, we have

$$a_k = \frac{f^{(k)}(\alpha)}{k!}.$$

From Lemma 2.4 and Lemma 2.5, we can derive a more general power series expansion of $L_{p,E}(s,t;\chi)$ in the variable t about any $\alpha \in \mathbb{C}_p, |\alpha|_p \leq 1$.

Theorem 2.6. Let $t \in \mathbb{C}_p, |t|_p \leq 1$, and $s \in D$. Then

$$L_{p,E}(s,t;\chi) = \sum_{n=0}^{\infty} {\binom{1-s}{n}} p^n (t-\alpha)^n L_{p,E}(s+n,\alpha;\chi_n)$$

where $\alpha \in \mathbb{C}_p, |\alpha|_p \leq 1$,

Remark 2.2. We remark that Theorem 2.6 is equivalent to Theorem 2.3 when $\alpha = 0$.

Proof of Theorem 2.6. Using Lemma 2.5, we can write $L_{p,E}(s,t;\chi)$ in the form

$$L_{p,E}(s,t;\chi) = \sum_{n=0}^{\infty} a_n (t-\alpha)^n,$$

where

$$a_n = \left. \frac{1}{n!} \frac{\partial^n}{\partial t^n} L_{p,E}(s,t;\chi) \right|_{t=\alpha}.$$

By Lemma 2.4, we obtain

$$\frac{1}{n!}\frac{\partial^n}{\partial t^n}L_{p,E}(s,t;\chi) = p^n \binom{1-s}{n}L_{p,E}(s+n,t;\chi_n),$$

and so

$$a_n = p^n \binom{1-s}{n} L_{p,E}(s+n,\alpha;\chi_n)$$

completing the proof.

3. Generalized Euler polynomials of negative index

For $n \in \mathbb{N}$, and for $t \in \mathbb{C}_p$, $|t|_p \leq |p|_p$, we define the generalized Euler polynomials of negative index by (cf. [7, p. 3012, Definition 5.14])

$$E_{-n,\chi}(t) = \lim_{k \to \infty} E_{\phi(p^k) - n,\chi}(t), \qquad (23)$$

where ϕ is the Euler-phi function and the limit here is taken *p*-adically. Since $E_{\phi(p^k)-n,1}(0) = E_{\phi(p^k)-n}(0)$ for $n, k \in \mathbb{Z}$, with $n \ge 1$ and k sufficiently large, we obtain $E_{-n,1}(0) = E_{-n}(0)$ for all such n.

Denote $\chi_n = \chi \omega^{-n}$. Using (23), we can show that, since

$$\omega^{\phi(p^k)} = \omega^{p^{k-1}(p-1)} = 1 \quad \text{and} \quad \chi_{\phi(p^k)-n} = \chi \omega^{n-\phi(p^k)} = \chi \omega^n \tag{24}$$

for all characters χ and for all $n \in \mathbb{N}$,

$$E_{-n,\chi}(pt) = \lim_{k \to \infty} \left(E_{\phi(p^k) - n, \chi_{\phi(p^k)}}(pt) - \chi_{\phi(p^k)}(p) p^{\phi(p^k) - n} E_{\phi(p^k) - n, \chi_{\phi(p^k)}}(t) \right)$$

=
$$\lim_{k \to \infty} L_{p,E} \left(1 - (\phi(p^k) - n), t; \chi_n \right)$$

=
$$L_{p,E} \left(n + 1, t; \chi_n \right).$$
 (25)

Since $L_{p,E}(n+1,t;\chi_n)$ exists for each $n \in \mathbb{N}$ and $t \in \mathbb{C}_p, |t|_p \leq 1$, we see that $E_{-n,\chi}(pt)$ must also exist for such t. Thus $E_{-n,\chi}(t)$ exists for $t \in \mathbb{C}_p, |t|_p \leq |p|_p$.

Theorem 3.1. Let χ be a primitive character modulo f_{χ} and ϕ be the Euler-phi function. Then for all $n \in \mathbb{N}$, we obtain

$$L_{p,E}(n+1,t;\chi) = \lim_{k \to \infty} E_{\phi(p^k) - n,\chi\omega^n}(pt).$$

In particular, we have $\lim_{k\to\infty} E_{\phi(p^k)-n,1}(0) = L_{p,E}(n+1,\omega^{-n}).$

Proof. Since $L_{p,E}(s,t;\chi)$ is a continuous function of s, for all $n \in \mathbb{Z}$, we have

$$L_{p,E}(n+1,t;\chi) = \lim_{k \to \infty} L_{p,E}(n+1-\phi(p^k),t;\chi)$$

=
$$\lim_{k \to \infty} L_{p,E}(1-(\phi(p^k)-n),t;\chi)$$

=
$$\lim_{k \to \infty} \left(E_{\phi(p^k)-n,\chi_{\phi(p^k)-n}}(pt) -\chi_{\phi(p^k)-n}(p)p^{\phi(p^k)-n}E_{\phi(p^k)-n,\chi_{\phi(p^k)-n}}(t) \right)$$

using Theorem 2.1(2). From (24), we obtain

$$L_{p,E}(n+1,t;\chi) = \lim_{k \to \infty} E_{\phi(p^k) - n, \chi \omega^n}(pt).$$

This completes the proof.

Theorem 3.2. (1) For all $n \in \mathbb{N}$ and $t \in \mathbb{C}_p$, $|t|_p < 1$, we have

$$E_{-n,\chi}(t) = \sum_{m=0}^{\infty} \binom{-n}{m} E_{-(m+n),\chi} t^m.$$

(2) For all $m, n \in \mathbb{N}$ with $p \mid mf_{\chi}$, we have

$$\frac{1}{2}\left((-1)^{m-1}E_{-n,\chi}(mf_{\chi}) + E_{-n,\chi}\right) = \sum_{\substack{a=1\\(a,p)=1}}^{mf_{\chi}} (-1)^a \chi(a) a^{-n}.$$

Proof. (1) Put t = 0 in (25). Then

$$E_{-n,\chi} = E_{-n,\chi}(0) = L_{p,E}(n+1,\chi_n), \quad n \in \mathbb{N}$$

Thus using (25) and Theorem 2.3, we have

$$E_{-n,\chi}(pt) = L_{p,E} (n+1,t;\chi_n)$$

= $\sum_{m=0}^{\infty} {\binom{-n}{m}} p^m t^m L_{p,E}(m+n+1,\chi_{m+n})$
= $\sum_{m=0}^{\infty} {\binom{-n}{m}} E_{-(m+n),\chi}(pt)^m,$

this converges for $|pt|_p<1,$ since $|E_{-(m+n),\chi}|_p\leq \max\left\{|p|_p^{-1},|f_\chi|_p^{-1}\right\}$ and

$$\binom{-n}{m} = (-1)^m \binom{n+m-1}{m}.$$

(2) If we put t = 0 in (2) and use definition (23), since $|mf_{\chi}|_p \leq |p|_p$, we get

$$(-1)^{m-1}E_{-n,\chi}(mf_{\chi}) + E_{-n,\chi}$$

= $\lim_{k \to \infty} \left((-1)^{m-1}E_{\phi(p^k)-n,\chi}(mf_{\chi}) + E_{\phi(p^k)-n,\chi} \right)$
= $2\lim_{k \to \infty} \sum_{a=1}^{mf_{\chi}} (-1)^a \chi(a) a^{\phi(p^k)-n}$
= $2\sum_{\substack{a=1\\(a,p)=1}}^{mf_{\chi}} (-1)^a \chi(a) a^{-n}.$

We therefore obtain the theorem.

Acknowledgement

We are grateful to the anonymous referees for carefully reading our manuscript and also for his/her valuable comments.

References

- 1. G.J. Fox, A p-adic L-function of two variables, Enseign. Math., II. Ser. 46 (2000), 225-278.
- F.Q. Gouvêa, p-adic numbers, An introduction, Universitext, Springer-Verlag, Berlin, 1993.
- K. Iwasawa, Lectures on p-adic L-functions, Ann. Math. Studies 74, Princeton, New Jersey, 1972.
- J. Min, Zeros and special values of Witten zeta functions and Witten L-functions, J. Number Theory 134 (2014), 240-257.
- T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on Z_p at q = −1, J. Math. Anal. Appl. **331** (2007), 779-792.
- M.-S. Kim, On p-adic Euler L-function of two variables, J. Appl. Math. Inform. 36 (2018), 369-379.
- M.-S. Kim and S. Hu, On p-adic Hurwitz-type Euler zeta functions, J. Number Theory 132 (2012), 2977-3015.
- C.S. Ryoo, On degenerate q-tangent polynomials of higher order, J. Appl. Math. Inform. 35 (2017), 113-120.
- C.S. Ryoo, T. Kim and L.C. Jang, A note on generalized Euler numbers and polynomials, Int. J. Comput. Math. 84 (2007), 1099-1111.
- Y. Simsek, On twisted q-Hurwitz zeta function and q-two-variable L-function, Appl. Math. Comput. 187 (2007), 466-473.
- P. Young, On the behavior of some two-variable p-adic L-functions, J. Number Theory 98 (2003), 67-88.

Min-Soo Kim received Ph.D. degree from Kyungnam University. His main research area is analytic number theory. Recently, his main interests focus on *p*-adic analysis and zeta functions, Bernoulli and Euler numbers and polynomials.

Department of Mathematics Education, Kyungnam University, Changwon, Gyeongnam 51767, Republic of Korea.

e-mail: mskim@kyungnam.ac.kr