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SOME SYMMETRY IDENTITIES FOR GENERALIZED
TWISTED BERNOULLI POLYNOMIALS TWISTED BY
UNRAMIFIED ROOTS OF UNITY

DAE SAN Kim

ABSTRACT. We derive three identities of symmetry in two variables and
eight in three variables related to generalized twisted Bernoulli polyno-
mials and generalized twisted power sums, both of which are twisted by
unramified roots of unity. The case of ramified roots of unity was treated
previously. The derivations of identities are based on the p-adic integral
expression, with respect to a measure introduced by Koblitz, of the gen-
erating function for the generalized twisted Bernoulli polynomials and
the quotient of p-adic integrals that can be expressed as the exponential
generating function for the generalized twisted power sums.

1. Introduction and preliminaries

Let p be a fixed prime. Throughout this paper, Z,, Q,, C, will respectively
denote the ring of p-adic integers, the field of p-adic rational numbers and the
completion of the algebraic closure of Q,. Assume that | - |, is the normalized
absolute value of C,, such that |p|, = %. The group I' of all roots of unity of
C, is the direct product of its subgroups I',, (the subgroup of unramified roots
of unity) and T', (the subgroup of ramified roots of unity). Namely,

r=r,-r,, r,nr,={1},
where
I, ={¢e€C,| & =1 for some r € Zo with (r,p) =1},
[, ={£€C,yl & =1 for some s € Zsg}.
Let d be a fixed positive integer. Then we let
X=X4= li%nZ/deZ = U5 (a + dpZy),
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with
a+dpNZ, ={x € X| 2 =a (mod dp™)},
and let 7 : X — Z, be the map given by the inverse limit of the natural maps
Z)dpN7 — 7./pN 7.

If g is a function on Z,, we will use the same notation to denote the function
gom. Let x: (Z/dZ)* — Q* be a (primitive) Dirichlet character of conductor
d. Then it will be pulled back to X via the natural map X — Z/dZ. Here we
fix, once and for all, an imbedding Q — C,, so that x is regarded as a map of
X to C,,.

Let z € C,, be such that P # 1 for all N. Then we define

Z(l

N —
(1) pz(a+dp~ Zy) = SN _ 1

Observe that (1) is —1 times of the corresponding one in [18]. Then it is
known (cf. [18]) that u, extends to a measure on X if and only if z € {x €
Cp | |x—1], > 1}. So for any such a z, and any continuous C,-valued function
fon X,

dpN -1

[ f@dua(o) = i > f@plo+ i)
@) e
:Ngnoo SdpN _ 1 Z f(a’)za

Throughout this paper, we let £ # 1 be any fixed r-th root of 1, with
(r,pd) =1 (and hence £ € T',), and let

(3) E={teC,| |, <p 7).

Then wu¢ is a measure on X, and, for a positive integer w, pew is a measure
provided that w is not divisible by r. For each fixed ¢t € E the function e*! is
analytic on Z, and hence considered as a function on X. Using the definition
(2), we get the p-adic integral expression of the generating function for the
generalized twisted Bernoulli numbers B, , ¢ attached to x and &;

(4) ' /X X dne(2) = g Zx Jeaeot

— ;Bn,xéa (t € E).

So we have the following p-adic integral expression of the generating function
for the generalized twisted Bernoulli polynomials B,, , ¢(z) attached to x and
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&
:nt

(5) t/XX(Z)e(”Z)tdug( gd —— ZX a at

= Z Bn%g(x)m (tc E,x €Z,).

Also, from (2) we have the p-adic integral expression of the generating func-
tion for the twisted Bernoulli numbers B, ¢:

(6) t/x e*dug(z) = 5@75%1

o0 tn
= ZBn,ga (teE).
n=0

Thus we obtain the p-adic integral expression of the generating function for the
twisted Bernoulli polynomials B, ¢(x):

temt > tn
(z+2)t _ _
t/Xe due(z) = f 1 —nEZOBmg(x)—n! (te E,xeZy).

Let Si(n;x,&) denote the k-th generalized twisted power sum of the first
n + 1 nonnegative integers attached to x and &, namely

(1) Sk(msx, &) =Y x(@)€"a" = x(0)€°0% + x ()" 1 + -+ + x(n)¢™n*.
a=0

From (4), (6), and (7), one easily derives the following identities: for w €
Z~q, with w not divisible by r,

Jx x(@)e™tdpe(z)  ghvedwt — o at
(8) fX edwytdufdw (y) - é‘d dt __ Z X 6
dw—1
(9) = > x(a)g*e”
a=0

e k
> Skldw 13, )% (1€ B).

(10)

In what follows, we will always assume that the p-adic integrals of the var-
ious (twisted) exponential functions on X are defined for ¢t € E (cf. (3)), and
therefore it will not be mentioned.

One may refer to [1], [2], [3], [11], [12], [14], [15], [16], [17], [19], [20], and
[21] for some of the previous works on identities of symmetry in two variables
involving Bernoulli polynomials and power sums, and for some related results.
For the brief history, one is referred to those papers. For the first time, the
idea of [11] was extended in [10] to the case of three variables so as to yield
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many new identities with abundant symmetry. This added some new identities
of symmetry even to the existing ones in two variables as well. Also, see [4],
[5], [7], [8], and [9] for some other extensions of the idea of [11] to the case of
three variables.

On the other hand, in [13] the author obtained identities of symmetry in two
variables involving generalized twisted Bernoulli polynomials and generalized
twisted power sums, both of which are twisted by ramified roots of unity (i.e.,
p-power roots of unity). In [6], this was also extended to the case of three
variables. In these ramified cases, p-adic Volkenborn-type integrals are used in
both [6] and [13].

In this paper, in order to treat the unramified roots of unity case (i.e., the
orders of the roots of unity are prime to p and the conductors of Dirichlet
characters), we will adopt the measure introduced by Koblitz (cf. [18]) instead
of Volkenborn measure, as stated in (1) and (2). It seems this idea has never
been exploited before. In the end, we will be able to derive three identities of
symmetry in two variables (cf. (44)-(46)) and eight in three variables related to
generalized twisted Bernoulli polynomials and generalized twisted power sums
(cf. (47)-(50), (53)-(56)).

The following is stated as Theorem 8 and an example of the full six symme-
tries in any positive integers w1, we, w3, with wywows not divisible by r.

n dwy—1
" w:
w? (k} Z X(a)&“w2w3Bk,X,§awlw3 (w2y1 —+ _2G)Sn7k(dw3 _ 1; X7£wlw2)wg‘7kw§
w1
k=0 a=0
7 n dwi—1 "
n AW W: 3 . L
=wj k Z x(a)&™? * Bl x,gv1w2 (wsyr + w—la)Sn,k(dw2 —1;x, ™ 3)w§” kwg
k=0 a=0

a=0

w '
Z X(@)€4 ™3 By, gwiwa (W3y1 + w—3a)Sn,k(dw1 —1; x, €920 YRk
2
a=0
dwsz—1

dws—1
n ; w w1 W -
) Z X(@)E¥ ™3 By, o gwaws (w1y1 + w—la)Sn,k(dwg — 15 x, £y Rk
2
awi wa ! . wiws n—k, k
) > xla) Br,x gwaws (wiy1 + w_a)Snfk(dU)Z = Lix, £ )wi ™ wy
3

a=0

n dws
n ‘ w 5y e
=wy < ) E X(a)§¥1 2 By, o\ gwiws (Wayr + w—za)Sn,k(dwl — 1;x, £92¥)wh ~Fwk.
k=0

a=0

The derivations of identities are based on the p-adic integral expression of the
generating function for the generalized twisted Bernoulli polynomials in (5) and
the quotient of integrals in (8)-(10) that can be expressed as the exponential
generating function for the generalized twisted power sums. These abundance
of symmetries would not be unearthed if such p-adic integral representations
had not been available. We indebted this idea to the paper [11].



IDENTITIES FOR GENERALIZED TWISTED BERNOULLI POLYNOMIALS 607

2. Several types of quotients of p-adic integrals in two variables

Here we will introduce several types of quotients of p-adic integrals on X
or X? from which some interesting identities follow owing to the built-in sym-
metries in wy, wy. In the following, wi,ws are positive integers with suitable
restrictions and the explicit expression of integral in (11) is obtained from the
identities in (4) and (6).

(o) Type I'* (for i = 0,1,2)

()
I(Fi)  Jxe x(z)x(x2)

{2ig(wimtwaretwiwy (250 ”f))tdus'vl (z1)dpgws (T2)

(fX edwlwzzxtdufdwlwz (.’Ls))l

(12)

t2—iew1 wa (Zf;i y;)t (gdwlwz edwlwgt _ 1)7 (Zz;(l) X(a)gawl ea,wlt ) (Zi;é X(a)éawz ea’u:gt)
(5(1701 edwlt _ 1)(6(11;}2 e(l’ll}gt _ 1) :

The above p-adic integral is invariant under the transposition of wi,ws as
one can see either from the p-adic integral representation in (11) or from its
explicit evaluation in (12).

3. Several types of quotients of p-adic integrals in three variables

Here we will introduce several types of quotients of p-adic integrals on X or
X3 from which some interesting identities follow due to the built-in symmetries
in wy,ws,ws. In the following, wi,ws,ws are positive integers with suitable
restrictions and all of the explicit expressions of integrals in (14), (16), (18),
and (20) are obtained from the identities in (4) and (6).

(a) Type Abs (for i =0,1,2,3)

(13)
fx3 X(ml)X(zQ)X(zg)ta’ie(qule+w1w322+w1w223+w1w2w3(z?;; yj))t
[( 53) _ Xdpgwaws (x1)dpgwiws (2)dpgwiws (23)

(fX edw1w2w3I4tdu5dw1w2ws (504))1

t37i€w1w2w3(zf;i yj)t(é-dwlwzwg edwiwawst _ 1)1

(é’dTUngedwgwgt _ 1)(€dw1wgedw1w3t _ 1)(§d1U11U26d1U11U2t _ 1)

d-1 d—1 d—1
(14) X <Z X(a)gawzwgeawgwgt> (Z X(a)gawlwg eaqugt) (Z X(a)fawlw2 eawlurzt) .
a=0 a=0 a=0
Here wows, wyws, wyws are not divisible by r, for ¢ = 0, and wjwsws is not
divisible by r, for : = 1,2, 3.
(b) Type A%, (for i =0,1,2,3)
Sxs X(Il)X(m)X(zg)tSﬂe(wlIl+w2$2+w3$3+w1w2w3(2?;i yf))td#gwl (z1)
i Xdpgws (z2)dpews (z3)
15 I 7 — £ _5
( ) ( 13) (fX 6dw1w2w3m4tdﬂgdw1w2w3 (564))1
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t3—iew1w2w3(2?;i Yyt (gdwlwgwg edw1w2w3t _ 1)1

(é‘dwledwlt _ ]_)(é'deedet _ 1)(§dwgedw3t _ 1)

d—1 d—1 d—1
(16) X (Z X(a)fawlea,wlt> (Z X(a)fawz euwgt) (Z X(a)fuw3eau73t)> .
a=0 a=0 a=0

Here wy, we, w3 are not divisible by r, for ¢ = 0, and wjwsws is not divisible
by r, for : = 1,2, 3.
(c-0) Type A9,

IA%) = [ x(n)x(aa)x(ag)detns s s vy )
X

(17) X dpign (21)dpiguz (22)dpgns (3)

(18) = felmmrmmeb v (5 g (@) ) (g (@)E™ ) (g x(a) ™)
(Edwredwit _ 1)(gdwzedwat _ 1)(£dwsedwst — 1) !

Here wy, wq, ws are not divisible by 7.
(c-1) Type Al,
(19)
I(AL) = - Jxs X(l’l)x(xz)X(ﬂb’S)e(“_“’”ﬁme’w”‘*)tdﬂﬁwl (@) dpges (22)dpges (3)
Ix eBw2s 2t gy (21) Jx edwrwsz2t e g, wy (22) jx edwrw2zat dpyeg,, wy (23)

(é‘dwgw:gedTUQIUgt _ 1)(§dw1w36dw1w3t _ 1)(€dw1wgedw1w2t _ 1)

= (gdwledwlt _ 1)(§dw2€dw2t _ 1)(§dw36dw3t _ 1)

d—1 d—1 d-1
(20) X <Z X(a)gawleaw1t> (Z X(a)gawz eaw2t> (Z X(a)éaw3 eaw;;t) .

a=0 a=0 a=0

Here wows, wiws, wiwse are not divisible by r.

All of the above p-adic integrals of various types are invariant under all
permutations of wy, wo, w3, as one can see either from p-adic integral represen-
tations in (13), (15), (17), and (19) or their explicit evaluations in (14), (16),
(18), and (20).

4. Identities for generalized twisted Bernoulli polynomials in two
variables

All of the following results can be easily obtained from (5) and (8)-(10).
(a-0)

I(FO>:/ X(xl)tewl(m1+w2y1)tdﬂgw1(1,1>/ X(z2>tew2(12+w1y2)td‘u£w2(:CQ)
X X

o0 wit)k — wat)” :
— (ZBk,X,EW1 (UJQ?Jl)( kf) ) <ZBZ*X’§W (wlyQ)( l!t) )

k=0 =0
() =) (Z (k) Biexgv1 (w2y1) B, x e (wlm)w’fwg_k) nl’
n=0 \k=0 ’

(a-1) Here we write I(I'!) in two different ways:
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(1)

(22)
eW2® t
X (x2)e2"2 dpigws (22)
I Fl :/ T tewl(z1+wzy1)td wy (T fX
1) XX( 1) prgwr (21) X fX edw1w2Z3th§dw1w2(x3)
- w t wot l
= <ZB kyx,§"1 (’LUQQl)( ! ) <ZSZ dw1 —1;x, sz)( 2 ) )
k=0 1=0
S ( (k) Broemt (w3y1) Sn—i(dws — 13 x, €%y k) ot
n=0 \k=0 !

(2) Invoking (9), (22) can also be written as

dwy,—1

I = 3 ()™ / Xy )te PR gy (1)
a=0 X
dwy—1 oo
aws wo wlt)"
= > o (ZBwewl wayn + - 2o >(—'>
a=0 n=0 w1 n
@ =3 (0 S @ B (o + 22 L
n=0 ' a=0 ~ W1 nl
(a-2)
I(r?) = Jx x(@)e™ ™ dpge (@1) - [y x(@a)e™ ™ dpges (a2)

fX €dw1w2z3tdugdw1w2 3 f edw1w213tdu£dw1w2 ($3)

)
)
_ - 1. w1 (wl k _ wa (th)
> Sk(dws — 15x,6") Zsldwl 1x, €2)

k=0 1=0
- - n w1y wo k. n—k "
=> 1> i ) Seldwz = 13, €%1)Sn—p(dwr — 13 x, € Jwiwy e
n=0 \k=0 ’

5. Identities for generalized twisted Bernoulli polynomials in three
variables

All of the following results can be easily obtained from (5) and (8)-(10).
First, let’s consider Type Ab,, for each i = 0, 1,2, 3.
(a-0)

I(Agg) — /); X(l‘l)tewzws(ml+wlyl)tdlj/g'wzwg (301) /;(X(I2)t6w1wg(:l;z+'wzyz)tdugwlw3 (1,2)

« / X(zg)tewlw2($3+w3y3)td‘u£w1w2 (:CB)
X

> B wawg (W > B wiwg (W
= (Z s k;ld( 1y1)(w2w3t)k> (Z — [ld( 2y_2)(w1w3t)l>

k=0 =0
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oo
<Z m,X, £w1w2 'LU3y3) (w1w2t)m>
m=0

ad n
:Z Z (k ! )Bk,xﬁfwzws(wlyl)Bz,xﬁswwz(W2y2)3m,x,swwz(wsys)

+l4+m

t’n
(25) X14fm Frt

where the inner sum is over all nonnegative integers k,l, m, with k4+1+m =n

and
n ~nl
E.lLm) kU ml

(a-1) Here we write I(Al;) in two different ways:

(1)
I(Aég) — / X(wl)tewgws(ac1+’w1’y1)tdu£w2w3 (11)/ X(wZ)tewlws(szrwzyz)tdufmlws (12)
X

X
L x(aa)enr =t duenin (ay)

26
( ) fX edw1w2w3z4td‘u£dwlw2w3 (564)
o
wgwgt ’LU1’LU3t
- (Z Bk7X1£w2w3 (wlyl)(T> (Z Bl7X gwiws (’LUQyQ)(li))
k=0 : 1—0 !
oo
(wlwgt)m
. wiwe\ \PV1W2L)
= Z( Z (k ;L )BkvXaf“QL”B (wlyl)Blﬁx,gwlﬂ‘:s (’Ujgyg)sm(dwg _ 1; X,{wlwz)
n=0 ktltm=n N0
n
(27) Mkt m k)

n!
(2) Invoking (9), (20) can also be written as

d’u]gfl

I(Ag) = ) X(a)E“m“”/Xx(fcl)t€w2”3(“+wlyl)tdu5wzws (1)
a=0

X/ X(xQ)tew1w3(lz+HI2y2+w3a) d,LL.gW1w3(SC2)
X

dws—1 o) (w w t)k
awiwsz 2 3
= Y x(a) (E Brejxgrama (wiyn) )

a=0 k=0

> w wywst)!
x <Z Bl x.gurws (way2 + w—za)(llif)>
1=0 ’

0o n dwz—1
=y (wy> <Z> B y.gwaws (wayn) Y x(a)g™?

n=0 k=0 a=0
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w9 k Kk "
(28) X Bk y,gv1ws (wayz + w—3@)w? wy) -

(a-2) Here we write I(A2;) in three different ways:

(1)
I(A%B):/ X(xl)tew2w3(11+w1y1)td'u£w2w3(xl)
X

-fX X $2) wlw‘jIth/,l/gwl wsg (.’L'Q) -fX X(mg wleI‘jtd/,l/gwl wo (.’L'3)
f edw1w2w3I4tdﬂ£dw1w2w3 4) f edwlwzw‘jz‘LtdﬂEdwlwgwd ($4)

t) A
- (Z B, x.gvaws (wiy1) ——3—— w2w3 ) <Z Si(dwy —1; x, §“’1ws)%>

k=0
- . ’u)1’u)2 (wlet)
« (zosmuwg 1oy gy 120"

- n wiw. . w1 w:
=20 2 (k l m)Bkﬁx,g«w(wlyl)sz(de—1;x,§ ) S (dg = 1, 67)

n=0 k+l+m=n

(29) X

t"
(30) x wh Tk Tk thy ;.

(2) Invoking (9), (29) can also be written as

dws—1

I(Agg): Z X(a>§aw1w3/XX(xl)tewzws(m1+w1y1+w2a) dﬂngwg.(l'l)
a=0

X fx x(@3)eW 123t dpuew, wy (23)
fX edwlwzwsw4tdu£dw1wzws (w4)

et awiws - w1 (w2w3t>k
- Z x(@)§ ZBk1X7§w2w3(w1y1+—2 )T

a=0 k=0

X (Z Si(dws — 1;X,§w1w2>(U}1l7U;2t>l>

=0

[e%e} n dws—1
n ’ w
= w5 (k) > X(@E" 0 By gnavs (wign + —a)

w2
n=0 k=0 a=0

(31)

tn
(32) X Sp—p(dws — 13 x, £ )wi™ kwlgf)n,

(3) Invoking (9) once again, (31) can be written as

dws—1 dws—1

2 awiws wi W wawz(T1+wiy1 ,w—la u—l
I(A33) = > x(a) > x(b)e’ /X X )tet 2 gD gy (21)

a=0 b=0

dws—1 dws—1 (U}Q’wgt)"
— Z X(a)é'awlw:{ Z é'bwl'LUZ ZB"X?‘)Z” w1y1+—a+—b)7

1
a=0 b=0 n=0 w3 n
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o) dw2 1dwz—1 "

~ = wg ) nl’
(a-3)
Jx X(@1)er= st dpeuus (21) [y x(@2)e 972 dpiguw ws (2)
S ez s Tt dp g wywy (24) [y €T0102WST A a1y g (24)

" fx X (23)e 1273 dppewy wy (23)
fX edwlw2w3I4tdu£dwlw2w3 (z4)

— = . Wa W (w2w3t wiw (wl’wgt)l
= (Zsk(dwll,x,s ) S Sl — 11, € N

k=0 1=0

X (Z S (dws — 1;X7§w1w2>(wl;un72!t)m>

m=0

I(A33) =

- n , -
= E ( E (k ; m)Sk(dm —1;x, &%) S (dwy — 1; x, £12)
n=0 .

k+l4+m=n

w1 we m m "
(34) X Sy (dws — 15 x, &1 )wl1+ w§+ w§+l)ﬁ.

(b) For Type Ai; (i = 0,1,2,3), we may consider the analogous things to the
ones in (a-0), (a-1), (a-2), and (a-3). However, each of those can be obtained
from the corresponding ones in (a-0), (a-1), (a-2), and (a-3). Indeed, if we
substitute wows, wiws, wiws respectively for wi,ws, w3 in ,Es 2;") (cf. (13)),
this amounts to replacing ¢ by wiwswst and & by £¥1%2¥s in I(Alf) (cf. (15)).
So, upon replacing wi, ws, ws respectively by wows, wiws, wiws, dividing by
(wiwews)™, and replacing £¥1%2¥s by £ in each of the expressions of (25),
(27), (28), (30), (32)-(34), we will get the corresponding symmetric identities
for Type Ai; (i=0,1,2,3).

(c-0)

I(A?Q):/ X(z1>tQWI(I1+W2y)td‘LLEW1(:Cl)/ X(SCQ) wz(erwBy)thng(zg)
X X
<[ Xt e, (a2)
X

S~ Broen (way : o~ By v (way S\ Buy.ews (w1 m
= (3 Pl ) (3 Bl ) (3 Bt

k=0 =0 m=0

n

o0
n m)t
(35) = Z ( Z (hl,m) B y,evr (W2y) Bl x, w2 (w3y) By y w3 (w1y)whwhwy > ok

n=0 \k+Il+m=n

(c-1)

[(Al ) = Jx x(@1)e”r # dpgn ( fXX x2)e"2 "2 dpgws ( fXX w3)e" " dpigws (3)
12 dwywz 23t ] dwawzzit ] dwzwi z2t ]
Jxe gdw s (z f e gdwyus (2 f e frgawyuy (22)
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<Z Sk dw2 o ]-aX é-wl)('wlt ) (Z Sl dw3 B ]-aX é-wg)('LUQt) )

(ZS (dwy — 1; X€w3)(w3t) )

m=0

=>0 > <k ?m)Sk(dwzl;x,E“)Sz(dws1;x,§”2)

n

t
(36) X S (dwy — 15 X,fwg)wlfwéwgn)ﬁ.

6. Main theorems

As we noted earlier, the various types of quotients of p-adic integrals in
Section 2 and Section 3 are respectively invariant under the transposition of
w1, we and any permutation of w1, ws, ws. So the corresponding expressions in
Section 4 and Section 5 are respectively also invariant under the transposition
of wy,ws and any permutation of wy, ws, ws. Thus our results about identities
of symmetry will be immediate consequences of this observation.

However, not all permutations of an expression in Section 5 yield distinct
ones. In fact, as these expressions are obtained by permuting wi,ws,ws in a
single one labeled by them, they can be viewed as a group in a natural manner
and hence it is isomorphic to a quotient of S3. In particular, the number of
possible distinct expressions are 1, 2, 3, or 6. (a-0), (a-1(1)), (a-1(2)), and (a-
2(2)) give the full six identities of symmetry, (a-2(1)) and (a-2(3)) yield three
identities of symmetry, and (c-0) and (c-1) give two identities of symmetry,
while the expression in (a-3) yields no identities of symmetry. Similarly, (a-
0), (a-1(1)), and (a-1(2)) give two identities of symmetry but (a-2) yields no
identity of symmetry.

Here we will just consider the cases of Theorems 7 and 11, leaving the others
as easy exercises for the reader. As for the case of Theorem 7, in addition to
(50)-(52), we get the following three ones:

(37)
n )1 Ws )W m c+m l
) (k ! m> By, evaws (w1y1) Si(dws — 15X, €72) Sy (dw — 15 x, € Jwi ™ wg T wy ™
k+l+m=n ’n
(38)
n p ).
(k I )Bkﬁxﬁsw (wayn) Su(dwy — 1; X, €7"*) Sy (duws — 13 x, £ ywh M wi Tk +,
k+l+m=n 6T
(39)
n S W: m, k+m
> (k ! >Bk,x,5w1wz (wayn) Sildws — 15 x, 81) S (dun — 15 x, € Y ™ wy T wp .
k+l+m=n 2

But, by interchanging I and m, we see that (37), (38), and (39) are respec-
tively equal to (50), (51), and (52). As to Theorem 11, in addition to (56) and
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(57), we have:

(40) (k m)sk dws = 1, €")Si(dws — 1 X, £) Sm(dwr — 15 x, €7 Ywiwhul,
k+l+m=n ’ 7

n w w w1 m

(1) X (1) Sk(du - 1€ — 161 (dun — 1o, bl
k+l4+m=n [
n

(42 % (1) Sk(du - 1S = 161 (o ~ 1o, uk b
k+l+m=n >

(43) X (1) Skl ~ 1€ — 1,61, (b — 1o, € bl
k+l+m=n ’ ’

However, (40) and (41) are equal to (56), as we can see by applying the
permutations k¥ — I, I — m, m — k for (40) and k — m, | — k, m — [
for (41). Similarly, we see that (42) and (43) are equal to (57), by applying
permutations k — I, I = m, m — k for (42) and k — m, | = k, m — [ for
(43).

Theorem 1. Let wy,ws be any positive integers, such that r does not divide
wy,ws. Then we have:

n n B
(44) > <k> Bix,ev1 (w2y1) Bpk g2 (w1y2)wiwy "
k=0
= n k, n—k
=2 (k)Bk,x,sw (w1y1) Br—k,x.e1 (way2)wywi ™"
k=0

Theorem 2. Let wy,ws be any positive integers, such that r does not divide
wiwsz. Then we have:

n

n
(45) > <k> Brx,ev1 (w2y1)Sn—k(dwi — 15 x, € ywiwy "
k=0

n _
=> (k:) Bix.ewz (w1y1) Sn—k(dws — 15 x, € Jwswi ™

k=0

Theorem 3. Let wy,ws be any positive integers, such that r does not divide
wiwsz. Then we have:

dwlfl
w:
(46) wi Y X (@) By y g (w2y1+w—2a)
1
a=0
d’u)z 1

= wy Z a)* By y ez (W1y1 + —2‘1)
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Theorem 4. Let wy,ws,ws be any positive integers, such that r does not divide
wows, wWiwWsz, wrws. Then we have:

(47)
n I+m, k+m, k+l
5 (it ) Brnerses (010 B ) Bk k™
k+l4+m=n T
_ n I+m, k+m, k+l
- Z <k l m)Bk*“”"’“(wlyl)Bl,xﬁ“’l“’?(wSyZ)Bm.,xyﬁwlw\*(w2y?’)w1 w3z Wy
k+l4+m=n T
n
= > (k ! m)B’%xﬁfWWs (w2y1) Bix g (w1y2) B,y g1 (s )wst ™ wh T g™
k+l4+m=n T
n
= > (k ! m> By eviws (Way1) Bl y, viwa (W3y2) B, x gwaws (wiys)wst ™ wh ™ wi
k+l+m=n [
o n +m, k+m,  k+l1
= X (k l m)Bk,x,fw<w3y1>Bz,x,swm<w1y2>Bm,x,wa<w2y3>w3 Wk
k+l+m=n [

2: n I+m, k+m, k+l
- </€ l m) Bk,xﬁ“’l“"z (wi’)yl)Bl,)oﬁ“’l“’3 (u)?y?)Bm,xﬁ“"z“’3 (w1y3)w3 Wy wy -
k+l+m=n T

Theorem 5. Let wy, w2, ws be any positive integers, such that r does not divide
wirwows. Then we have:

(48)
n . wiwsy l+m,_ k+m,  k+l1
Z k. l.m Bk,x{""?’"s (w1y1)Bl,X.£“’1w3 (w2y2)sm(dw3 - 11 X7§ )wl Wy W3
k+l+m=n Y
n -
= Z (k ; m) By gw2ws (01Y1) By y gwiwe (w3y2) S (dwa — 1; x, 010 )al Tk tmqph+
k+l+m=n i

n )
= E ( ; m> By gwrws (Way1) Biy gwaws (w1y2) S (dws — 1; X, £0102 Ja T Maghtmph+
k4+l4+m=n [

n ) .
= Z ( )BkYX’gwlwa (wa1) By x w1 w2 (W3Y2) S (dwy — 15 x, 9292 Y M apktm b+t

k,l,m
k+l+m=n
n _
= Z (k ; m) By go1wz (03y1) By y gwiws (way2) S (dwy — 1; X, €020 Jak Mgk tmq b+
k+l+m=n [
n 7.
= > (k l m> Bix.gviwa (wsy1) Bl gwaws (w192) S (dwa — 15 x, € Jwh ™ wpHws
k+l4+m=n v

Theorem 6. Let wy, w2, ws be any positive integers, such that r does not divide
wiwows. Then we have:

(49)

n dwi—1

n w2 —

a3 () Buemmon wam) 30 M@ By iz + 22yl
k=0 a=0

n dw;—1
n w3 _
= w’fZ( )Bk§ (wan) D2 X(@E™" Bk eorva (wsys + - a)wg ™~
a=0
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n dws—1
n w1 —
= 3 Y () Bnerses ) D (@ B g (w0 + )k
k=0 a=0
n n dws—1 w
3 —
= wiy <k> Brxguaus (wiyn) Y x(@)€" 0 By gy g (waya + w—za)w? Fwf
k=0 a=0
n n dwsz—1 w
D I L A B S S A
k=0 i=0 ws
n n dwsz—1 w
= wy <k> By ycvama(wign) Y x(@)€™ ™ By y g (ways + w_za)w?fsz;_
k=0 a=0

Theorem 7. Let wy, w2, ws be any positive integers, such that r does not divide
wiwows. Then we have the following three symmetries in wy, ws, w3:

(50)

n W1 w1 w 3
> <k L )B’mx‘ﬁ“‘wﬂ (w1y1)Si(dws — 13X, €1%) Sy (dws — 1; X, E°12 )i T wh Tkt
k+l+m=n D
(51)
n W1 Waw: 3
= > <k Ly )Bu (w2y1)Si(dws — 1; X, €°72) Sy (duwy — 13 x, €42y ™k ek
k+l+m=n D
(52)
n W2 W, W W,
= Z <k ! )Bkyx,gwuuz (w3y1)Si(dwy — 15 x,EY2"%) Sy, (dwy — 1; x, €1 3)wl;“mw)ermu)l;H.
k+l4+m=n b
Theorem 8. Let wy, ws, ws be any positive integers, such that r does not divide
wiwows. Then we have:

(53)
n n dwi—1 w
2 _
wy (k) X (@)E¥2"3 By, 5, gawrws (wayr + w—a)Sn,k(dwg — 1 x, &) wy kw’?f
k=0 a=0 1
n n dwi—1 w
n aw2w. '3 w1 w, —
=t Y (1) X M@ B i + )8, — 15, €
k=0 a=0
n n dws—1 w
= wy Z X(a)§¥1 3 By, o gwaws (w1y1 + —1a)Sn,k(dw3 — 1;X,§w1w2)w?7kw§
k W3
k=0 a=0
n n dwa—1 w3
= wj (k> X(@)E™ ™ By gorva (wayn + —=a) Snog(duwn = 1 x, 2w~ wy
k=0 a=0 2
n n dwsz—1 w
n awiw 1 w1 w, —
=g Y (1) X M@ B o + )8, — 15, €
k=0 a=0
n n dwsz—1 wy
=g Y (1) D A€ B + 22008, (o — L €

=~
I
<)
s}
Il
<
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Theorem 9. Let wy, ws, ws be any positive integers, such that r does not divide
wiwows. Then we have the following three symmetries in wy, wa, w3:

dwlfl dw27

w w
(54)  (wrwg2)" E E b)gws(awatbw) B oy (wayr + w—sa + w—gb)
a=0 b=0 1 2

dws—1 dwz—1

w1 (awsz+bdbws) ) ﬂ E
(waw3)™ (;) Z x(ab)¢ 3 B,y ewaws (W1y1 + w2a + s b)

dw3—1 dwy—1

w2 w2
= w3w1 Z Z ab ng(alerbwg)Bn’Xygwle (w2y1 + w—ga + w—lb)

Theorem 10. Let wy,ws, w3 be any positive integers, such that r does not
divide wy,ws,ws. Then we have the following two symmetries in symmetries
m Wi, Wa, W3:

n m
(55) > <k I m) B yevs (013)) By w1 (W2y) By, ews (wsy)wh wwh
k+l4+m=n o

n
= Z (k 1 m) Bk,va“@ (wly)Bl,X7£w1 (w3y)Bm7X,§w3 (w2y)wl2€wl1wg’b
k+l+m=n »

Theorem 11. Let wy, w2, w3 be any positive integers, such that r does not
divide wows, wiws,wiws. Then we have the following two symmetries in wq,
Wa, W3:

(56)

n
> <k ; m) Sk(dwr — 15 x,6°)Si(dws — 15X, €1) S (dws — 1; x, €2 Jwiwh wy'
k+l+m=n [

(57)

n
= 5 () Sl = L €S — Lo €Sl ~ Tix €t
k+l+m=n T
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