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SOME PROPERTIES OF GENERALIZED q-POLY-EULER

NUMBERS AND POLYNOMIALS WITH VARIABLE a

A HYUN KIM

Abstract. In this paper, we discuss generalized q-poly-Euler numbers and

polynomials. To do so, we define generalized q-poly-Euler polynomials with

variable a and investigate its identities. We also represent generalized q-

poly-Euler polynomials E
(k)
n,q(x; a) using Stirling numbers of the second

kind. So we explore the relation between generalized q-poly-Euler polyno-

mials and Stirling numbers of the second kind through it. At the end, we
provide symmetric properties related to generalized q-poly-Euler polyno-

mials using alternating power sum.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80.

Key words and phrases : Euler numbers and polynomials, q-poly-Euler
numbers and polynomials, Stirling numbers of the second kind, alternating

power sum.

1. Introduction

A number of mathematicians have studied Euler numbers and polynomials,
Bernoulli numbers and polynomials, tangent numbers and polynomials, poly-
Euler numbers and polynomials, and poly-tanent numbers and polynomials(see
[1-14]). Mathematicians also used polylogarithm function to redefine Euler num-
bers and polynomials. This paper is also one of the studies of poly-Euler numbers
and polynomials using polylogarithm function.

In this paper, we use the following notations: N = {1, 2, 3, · · · } denotes the
set of natural numbers, Z denotes the set of integers, R denotes the set of real
numbers, and C denotes the set of complex numbers. The q-number is defined
as follows:

[n]q =
1− qn

1− q
,

where n ∈ C and 0 < q < 1. For any n, we note that lim
q→1

[n]q = n.
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The classical Euler polynomials En(x) are defined by the following generating
function:

2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
(|t| < π).

In [8], we know that generating function of generalized Euler polynomials
En(x; a) are defined by:

2

eat + 1
ext =

∞∑
n=0

En(x; a)
tn

n!
.

En(a) = En(0; a) is generalized Euler numbers. If we put a = 1, then gener-
alized Euler polynomials reduced to classical Euler polynomials.

For k ∈ Z, polylogarithm function Lik(x) [1,4,5,6] is defined by

Lik(x) =

∞∑
n=1

xn

nk
.

For k ≤ 1, the polylogarithm functions are given

Li1(x) = − log(1− x), Li0(x) =
x

1− x
, Li−1(x) =

x

(1− x)2
,

Li−2(x) =
x2 + x

(1− x)3
, Li−3(x) =

x3 + 4x2 + x

(1− x)4
, · · · .

Poly-Euler polynomials are defined by Hamahata [4], as follows:

2Lik(1− e−t)
t(et + 1)

ext =

∞∑
n=0

E(k)
n (x)

tn

n!
.

In [7], generalized poly-Euler polynomials are defined as the following gener-
ating function:

2Lik(1− e−t)
t(eat + 1)

ext =

∞∑
n=0

E(k)
n (x; a)

tn

n!
.

This polynomial is generalized through poly-Euler polynomials defined by Hamata
[4]. For k ∈ Z, k-th q-analogue of polylogarithm function Lik,q(x) [5,9] is defined
as follows:

Lik,q(t) =

∞∑
n=1

tn

[n]kq
.
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The k-th q-analogue of polylogarithm functions are given for a nonnegative
integer k:

Lik,0 =
x

1− x
,

Lik,−1 =
x

(1− x)(1− xq)
,

Lik,−2 =
x(1 + xq)

(1− x)(1− xq)(1− xq2)
,

Lik,−3 =
x(q + 2xq + 2xq2 + x2q3)

(1− x)(1− xq)(1− xq2)(1− xq3)(1− xq4)
, · · · .

For nonnegative integers k and n, the Stirling numbers of the second kind
[2,3,8,10] are defined as the following relation

xn =

n∑
k=0

S2(n, k)(x)k,

where (x)k = x(x− 1)(x− 2) · · · (x− k + 1) is falling factorial.
Generating function of the Stirling numbers S2(n, k) is also defined as follows:

(et − 1)k

k!
=

∞∑
n=k

S2(n, k)
tn

n!
.

The equations
∞∑

n=k

S2(n, k)
tn

n!
=

∞∑
n=0

S2(n, k)
tn

n!

and
∞∑

n=0

∞∑
k=0

S2(n, k)
tn

n!
=

∞∑
n=0

n∑
k=0

S2(n, k)
tn

n!

are satisfied for the reason that S2(n, k) = 0 when n < k. Recurrence relation
of Stirling numbers of the second kind is

S2(n, k) = kS2(n− 1, k) + S2(n− 1, k − 1),

where S2(0, 0) = 1, S2(n, 0) = 0 (n 6= 0) and S2(n, k) = 0 when n < k. By the
above relation, we express some values of Stirling numbers of the second kind
S2(n, k) in the table below(OEIS, sequence A008277, [13]):

n \ k 0 1 2 3 4 5
0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
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In this paper, we define generalized q-poly-Euler polynomials with variable a
through generalized poly-Euler polynomials defined by [7] and explore several
properties. To be specific, we get some identites from generalized q-poly-Euler
polynomials. Also, we utilize the generating function of Stirling numbers of the
second kind to describe the relation between generalized q-poly-Euler polynomi-
als and Stirling numbers of the second kind. At the end, we examine symmetric
properies of generalized q-poly-Euler polynomials by using alternating power
sum.

2. Generalized q-poly-Euler numbers and polynomials with variable a

In this section, we define generalized q-poly-Euler polynomials with variable a.
In addition, we derive some properties from expressing generalized q-poly-Euler

polynomials E
(k)
n,q(x; a) in several ways.

Definition 2.1. For k ∈ Z and 0 < q < 1, generalized q-poly-Euler polynomials
with variable a are defined as the following generating function

2Lik,q(1− e−t)
t(eat + 1)

ext =

∞∑
n=0

E(k)
n,q(x; a)

tn

n!
,

where Lik,q(t) =
∑∞

n=1
tn

[n]kq
is k-th q-analogue of polylogarithm function.

E
(k)
n,q(a) = E

(k)
n,q(0; a) are called generalized q-poly-Euler numbers with variable

a when x = 0. If we set a = 1, k = 1, and q → 1 in Definition 2.1, then the
generalized q-poly-Euler polynomials are reduced to classical Euler polynomials
because of lim

q→1
Li1,q(1− e−t) = t. That is,

lim
q→1

E(1)
n,q(x; 1) = En(x).

Theorem 2.2. For k ∈ Z and a nonnegative integer n and m, we get

E(k)
n,q(mx; a) =

n∑
l=0

(
n

l

)
E

(k)
l,q (a)mn−lxn−l.

Proof. From Definition 2.1, we have
∞∑

n=0

E(k)
n,q(mx; a)

tn

n!
=

2Lik,q(1− e−t)
t(eat + 1)

emxt

=

( ∞∑
n=0

E(k)
n,q(a)

tn

n!

)( ∞∑
n=0

(mx)n
tn

n!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
E

(k)
l,q (a)mn−lxn−l

)
tn

n!
.

(2.1)

Therefore, we finish the proof of Theorem 2.2 by comparing the coefficients of
tn

n! . �
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If m = 1 in Theorem 2.2, then we get the following corollary.

Corollary 2.3. For k ∈ Z and a nonnegative integer n, we have

E(k)
n,q(x; a) =

n∑
l=0

(
n

l

)
E

(k)
l,q (a)xn−l.

Theorem 2.4. For k ∈ Z and a nonnegative integer n and m, we obtain

E(k)
n,q(mx; a) =

n∑
l=0

(
n

l

)
E

(k)
l,q (x; a) (m− 1)n−lxn−l.

Proof. By utlizing Definition 2.1, we have
∞∑

n=0

E(k)
n,q(mx; a)

tn

n!
=

2Lik,q(1− e−t)
t(eat + 1)

exte(m−1)xt

=

( ∞∑
n=0

E(k)
n,q(x; a)

tn

n!

)( ∞∑
n=0

(m− 1)nxn
tn

n!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
E

(k)
l,q (x; a) (m− 1)n−lxn−l

)
tn

n!
.

(2.2)

Therefore, we end the proof by comparing the coefficients of tn

n! on both sides of
the above equation (2.2). �

As a result of Theorem 2.2 and Theorem 2.4, E
(k)
n,q(mx; a) can be presented

as generalized q-poly-Euler polynomials and generalized q-poly-Euler numbers,
respectively.

Theorem 2.5. For k ∈ Z and a nonnegative integer n, we get

E(k)
n,q(x+ y; a) =

n∑
l=0

(
n

l

)
E

(k)
l,q (x; a) yn−l.

Proof. Proof is omitted since it is a similar method of Theorem 2.2. �

Theorem 2.6. For k ∈ Z and n ∈ N, we have

E(k)
n,q(x+ 1; a)− E(k)

n,q(x; a) =

n−1∑
l=0

(
n

l

)
E

(k)
l,q (x; a).

Proof. By using Definition 2.1, we have
∞∑

n=0

E(k)
n,q(x+ 1; a)

tn

n!
−
∞∑

n=0

E(k)
n,q(x; a)

tn

n!

=
2Lik,q(1− e−t)
t(eat + 1)

ext
(
et − 1

)
=

∞∑
n=1

(
n−1∑
l=0

(
n

l

)
E

(k)
l,q (x; a)

)
tn

n!
.

(2.3)
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Then we compare the coefficients of tn

n! for n ≥ 1. The reason both sides of the

above equation (2.3) can be compared the coefficients is that E
(k)
0,q (x + 1; a) −

E
(k)
0,q (x; a) = 0. Thus, the proof is done. �

Theorem 2.7. For k ∈ Z and a nonnegative integer n, we get

nE
(k)
n−1,q(x; a) =

∞∑
l=0

l+1∑
m=0

(
l + 1

m

)
(−1)m

[l + 1]kq
En(x−m; a),

where En(x; a) is generalized Euler polynomials.

Proof. By using Definition 2.1, we have
∞∑

n=0

E(k)
n,q(x; a)

tn

n!

=
1

t

∞∑
l=0

(1− e−t)l+1

[l + 1]kq

2

eat + 1
ext

=
1

t

∞∑
n=0

( ∞∑
l=0

l+1∑
m=0

(
l + 1

m

)
(−1)m

[l + 1]k
En(x−m; a)

)
tn

n!
.

(2.4)

Because of the identity
∑∞

n=0E
(k)
n,q(x; a) tn+1

n! =
∑∞

n=0 nE
(k)
n−1,q(x; a) tn

n! , we mul-

tiply both sides of the above equation (2.4) by t and compare the coefficients of
tn

n! . Hence, we end the proof. �

Theorem 2.8. For k ∈ Z and n ∈ N, we obtain

nE
(k)
n−1,q(x; a) = 2

∞∑
l=0

l∑
m=0

m+1∑
r=0

(
m+ 1

r

)
(−1)l−m+r

[m+ 1]kq
(al − am− r + x)n.

Proof. From Definition 2.1, we have
∞∑

n=0

E(k)
n,q(x; a)

tn

n!

=
2

t

( ∞∑
l=0

(1− e−t)l+1

[l + 1]kq

)( ∞∑
m=0

(−1)me(am+x)t

)

=
2

t

∞∑
l=0

l∑
m=0

m+1∑
r=0

(
m+ 1

r

)
(−1)re−rt

[l + 1]kq
(−1)l−me(al−am+x)t

=
2

t

∞∑
n=0

( ∞∑
l=0

l∑
m=0

m+1∑
r=0

(
m+ 1

r

)
(−1)l−m+r

[l + 1]kq
(al − am− r + x)n

)
tn

n!
.

(2.5)

If we multiply both sides of the above equation (2.5) by t, then we can compare

the coefficients. The reason is that
∑∞

n=0E
(k)
n (x; a) tn+1

n! =
∑∞

n=0 nE
(k)
n−1(x; a) tn

n! .
Therefore, the proof is done. �
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3. Relation between generalized q-poly-Euler polynomials and
Stirling numbers of the second kind

In this section, we examine the relation of generalized q-poly-Euler polyno-
mials and Stirling numbers of the second kind.

Theorem 3.1. For k ∈ Z and a nonnegative integer n, we get

E(k)
n,q(x; a) =

n∑
l=0

l+1∑
m=1

(
n

l

)
(−1)l+m+1m!

[m]kq

S2(l + 1,m)

l + 1
En−l(x; a),

where En(x; a) is generalized Euler polynomials.

Proof. By utilizing Definition 2.1, we have

∞∑
n=0

E(k)
n,q(x; a)

tn

n!

=
1

t

∞∑
m=1

(1− e−t)m

[m]kq

2

eat + 1
ext

=
1

t

∞∑
n=1

n∑
m=1

(−1)n+mm!

[m]kq
S2(n,m)

tn

n!

2

eat + 1
ext

=

( ∞∑
n=0

n+1∑
m=1

(−1)n+m+1m!

[m]kq

S2(n+ 1,m)

n+ 1

tn

n!

)( ∞∑
n=0

En(x; a)
tn

n!

)

=

∞∑
n=0

(
n∑

l=0

l+1∑
m=1

(
n

l

)
(−1)l+m+1m!

[m]kq

S2(l + 1,m)

l + 1
En−l(x; a)

)
tn

n!
.

(3.1)

In (3.1), the reason equation

∞∑
n=0

∞∑
l=1

S2(n, l) =

∞∑
n=1

n∑
l=1

S2(n, l)

can be satisfied is that S2(n, l) = 0 when n < l. Thus, the proof is done by

comparing the coefficients of tn

n! . �

Theorem 3.2. For k ∈ Z and n ∈ N, we obtain

nE
(k)
n−1,q(x; a) =

n∑
l=0

l∑
m=0

(
n

l

)
(−1)l+m+1(m+ 1)!

[m+ 1]kq
S2(l,m+ 1)En−l(x; a),

where En(x; a) is generalized Euler polynomials.
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Proof. From Definition 2.1, we have

∞∑
n=0

E(k)
n,q(x; a)

tn

n!

=
1

t

∞∑
m=1

(−1)mm!

[m]kq

(e−t − 1)m

m!

2

eat + 1
ext

=
1

t

∞∑
n=0

∞∑
m=0

(−1)n+m+1(m+ 1)!

[m+ 1]kq
S2(n,m+ 1)

tn

n!

2

eat + 1
ext

=
1

t

∞∑
n=0

(
n∑

l=0

l∑
m=0

(
n

l

)
(−1)l+m+1(m+ 1)!

[m+ 1]kq
S2(l,m+ 1)En−l(x; a)

)
tn

n!
.

(3.2)

If we multiply both sides of the equation (3.2) by t, then we can compare the co-

efficients because of the identity
∑∞

n=0E
(k)
n,q(x; a) tn+1

n! =
∑∞

n=0 nE
(k)
n−1,q(x; a) tn

n! .
Consequently, the proof is complete. �

Theorem 3.3. For k ∈ Z and n ∈ N, we obtain

E(k)
n,q(x; a) =

n∑
l=0

l∑
m=0

(
n

l

)
(x)mS2(l,m)E

(k)
n−l,q(a),

where (x)m = x(x− 1) · · · (x−m+ 1) is falling factorial.

Proof. From Definition 2.1, we have

∞∑
n=0

E(k)
n,q(x; a)

tn

n!
=

2Lik,q(1− e−t)
t(eat + 1)

{
(et − 1) + 1

}x

=
2Lik,q(1− e−t)
t(eat + 1)

∞∑
m=0

(
x

m

)
(et − 1)m

=
2Lik,q(1− e−t)
t(eat + 1)

∞∑
m=0

(x)m
(et − 1)m

m!

=

∞∑
n=0

(
n∑

l=0

l∑
m=0

(
n

l

)
(x)mS2(l,m)E

(k)
n−l(a)

)
tn

n!
.

(3.3)

Thus, we finish the proof by comparing the coefficients of tn

n! . �

Theorem 3.4. For k ∈ Z and a nonnegative integer n, we obtain

nE
(k)
n−1,q(x+ a; a) + nE

(k)
n−1,q(x; a)

= 2

n∑
l=0

l∑
m=0

(
n

l

)
(−1)l+m+1(m+ 1)!

[m+ 1]kq
S2(l,m+ 1)xn−l.



Some properties of generalized q-poly-Euler numbers and polynomials with variable a 141

Proof. By using Definition 2.1, we have

∞∑
n=0

E(k)
n,q(x+ a; a)

tn

n!
+

∞∑
n=0

E(k)
n,q(x; a)

tn

n!

=
2Lik,q(1− e−t)
t(eat + 1)

ext
(
eat + 1

)
=

2

t

( ∞∑
n=0

∞∑
m=0

(−1)n+m+1 (m+ 1)!

[m+ 1]kq
S2(n,m+ 1)

tn

n!

)( ∞∑
n=0

xn
tn

n!

)

=
2

t

∞∑
n=0

(
n∑

l=0

l∑
m=0

(
n

l

)
(−1)l+m+1 (m+ 1)!

[m+ 1]kq
S2(l,m+ 1)xn−l

)
tn

n!
.

(3.4)

Let us multiply both sides of the above equation (3.4) by t. Then we can

compare the coefficients of tn

n! because of the identity
∑∞

n=0E
(k)
n (x+a; a) tn+1

n! +∑∞
n=0E

(k)
n (x; a) tn+1

n! =
∑∞

n=0 nE
(k)
n−1(x+ a; a) tn

n! +
∑∞

n=0 nE
(k)
n−1(x; a) tn

n! . Hence,
we end the proof. �

4. Symmtric properties of the generalized q-poly-Euler polynomials
using alternating power sum.

In this section, we first offer a well-known alternating power sum and uti-
lize it to provide symmetric identities of generalized q-poly-Euler polynomials.
Furthermore, we investigate the symmetric identity of generalized q-poly-Euler
polynomials.

Let w is an odd number. Then we can easily see

∞∑
n=0

Ãn(w)
tn

n!
=
ewt + 1

et + 1
, (4.1)

where Ãn(w) =
∑w−1

l=0 (−1)l ln is called alternating power sum(see [14]).

Theorem 4.1. Let w1 and w2 be an odd number and n be a nonnegative integer.
Then we get

Lik,q(1− e−w1t)

n∑
l=0

(
n

l

)
an−lwn−l

1 wl+1
2 E

(k)
l,q (w1x; a)Ãn−l(w2)

= Lik,q(1− e−w2t)

n∑
l=0

(
n

l

)
an−lwn−l

2 wl+1
1 E

(k)
l,q (w2x; a)Ãn−l(w1).

Proof. Let us show that symmetric property of generalized q-poly-Euler polyno-
mials by using alternating power sum. To do this we suppose that

F1(t) =
2Lik,q(1− e−w1t)Lik,q(1− e−w2t)(eaw1w2t + 1)

t(eaw1t + 1)(eaw2t + 1)
ew1w2xt. (4.2)
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Then we obtain

F1(t)

= Lik,q(1− e−w1t)
2Lik,q(1− e−w2t)

t(eaw2t + 1)
ew1w2xt

eaw1w2t + 1

eaw1t + 1

= Lik,q(1− e−w1t)

(
w2

∞∑
n=0

E(k)
n,q(w1x; a)

(w2t)
n

n!

)( ∞∑
n=0

Ãn(w2)
(aw1t)

n

n!

)

= Lik,q(1− e−w1t)

∞∑
n=0

n∑
l=0

(
n

l

)
an−lwn−l

1 wl+1
2 E

(k)
l,q (w1x; a)Ãn−l(w2)

tn

n!
.

(4.3)

From similar method of the equation (4.3), we get

F1(t)

= Lik,q(1− e−w2t)

∞∑
n=0

n∑
l=0

(
n

l

)
an−lwn−l

2 wl+1
1 E

(k)
l,q (w2x; a)Ãn−l(w1)

tn

n!
.

(4.4)

By comparing the coefficients of tn

n! on both sides of the equations (4.3) and
(4.4), we finish the proof. This theorem is symmetric property. �

Theorem 4.2. Let w1 and w2 be an odd number and n be a nonnegative integer.
Then we have

n∑
l=0

(
n

l

)
an+1wl+1

1 wn−l
2 El(w2x)Ãn−l(w1)

=

n∑
l=0

(
n

l

)
an+1wl+1

2 wn−l
1 El(w1x)Ãn−l(w2),

where En(x) is classical Euler polynomials.

Proof. First, let us assume that

F2(t) =
8Lik,q(1− e−w1t)Lik,q(1− e−w2t)(eaw1w2t + 1)

t2(eaw1t + 1)2(eaw2t + 1)2
eaw1w2xt. (4.5)

Then we calculate

F2(t) =
2Lik,q(1− e−w1t)

t(eaw1t + 1)

2Lik,q(1− e−w2t)

t(eaw2t + 1)

× 2

(eaw1t + 1)
eaw1w2xt

eaw1w2t + 1

eaw2t + 1

=

( ∞∑
n=0

wn+1
1 E(k)

n,q(a)
tn

n!

)( ∞∑
n=0

wn+1
2 E(k)

n,q(a)
tn

n!

)

×
∞∑

n=0

n∑
l=0

(
n

l

)
an+1wl+1

1 wn−l
2 El(w2x)Ãn−l(w1)

tn

n!
.

(4.6)
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In a similar way to the above equation (4.6), we get

F2(t) =

( ∞∑
n=0

wn+1
1 E(k)

n,q(a)
tn

n!

)( ∞∑
n=0

wn+1
2 E(k)

n,q(a)
tn

n!

)

×
∞∑

n=0

n∑
l=0

(
n

l

)
an+1wl+1

2 wn−l
1 El(w1x)Ãn−l(w2)

tn

n!
.

(4.7)

Hence, the proof is complete by comparing the coefficients of tn

n! on both sides
of the equations (4.6) and (4.7). �

Theorem 4.3. Let n be a nonnegative integer and w1, w2 > 0 (w1 6= w2). Then
we have

n∑
l=0

(
n

l

)
wl

1w
n−l
2 E

(k)
l,q (w2x; a)E

(k)
n−l,q(w1x; a)

=

n∑
l=0

(
n

l

)
wl

2w
n−l
1 E

(k)
l,q (w1x; a)E

(k)
n−l,q(w2x; a).

Proof. Let us consider the function

F3(t) =
4Lik,q(1− e−w1t)Lik,q(1− e−w2t)

t2(eaw1t + 1)(eaw2t + 1)
e2w1w2xt. (4.8)

Then we obtain

F3(t) =

(
2Lik,q(1− e−w1t)

t(eaw1t + 1)
ew1w2xt

)(
2Lik(1− e−w2t)

t(eaw2t + 1)
ew1w2xt

)
=

∞∑
n=0

(
n∑

l=0

(
n

l

)
wl+1

1 wn−l+1
2 E

(k)
l,q (w2x; a)E

(k)
n−l,q(w1x; a)

)
tn

n!
.

(4.9)

By calculating in the same way as the above equation (4.9), we can get

F3(t) =
∞∑

n=0

(
n∑

l=0

(
n

l

)
wl+1

2 wn−l+1
1 E

(k)
l,q (w1x; a)E

(k)
n−l,q(w2x; a)

)
tn

n!
. (4.10)

The proof is complete as a result of the equations (4.9) and (4.10). �
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