Browse > Article
http://dx.doi.org/10.14317/jami.2020.133

SOME PROPERTIES OF GENERALIZED q-POLY-EULER NUMBERS AND POLYNOMIALS WITH VARIABLE a  

KIM, A HYUN (Department of Mathematics, Hannam University)
Publication Information
Journal of applied mathematics & informatics / v.38, no.1_2, 2020 , pp. 133-144 More about this Journal
Abstract
In this paper, we discuss generalized q-poly-Euler numbers and polynomials. To do so, we define generalized q-poly-Euler polynomials with variable a and investigate its identities. We also represent generalized q-poly-Euler polynomials E(k)n,q(x; a) using Stirling numbers of the second kind. So we explore the relation between generalized q-poly-Euler polynomials and Stirling numbers of the second kind through it. At the end, we provide symmetric properties related to generalized q-poly-Euler polynomials using alternating power sum.
Keywords
Euler numbers and polynomials; q-poly-Euler numbers and polynomials; Stirling numbers of the second kind; alternating power sum;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Bayad and Y. Hamahata, Polylogarithms and poly-Bernoulli polynomials, Kyushu J. Math. 65 (2011), 15-24.   DOI
2 U. Duran, M. Acikgoz, and S. Araci, On (q, r, w)-Stirling Numbers of the Second Kind, Preprints (2017), doi: 10.20944/preprints201712.0115.v1.
3 M. Griths and Istvan Mezo, A Generalization of Stirling Numbers of the Second Kind via a Special Multiset, Journal of Integer Sequences 13 (2010), 23 pages.
4 Y. Hamahata, Poly-Euler polynomials and Arakawa-Kaneko type zeta functions, Functiones et Approximatio 51.1 (2014), 7-22.   DOI
5 K.W. Hwang, B.R. Nam, and N.S. Jung, A note on q-analogue of poly-Bernoulli numbers and polynomials, J. Appl. Math. & Informatics 35 (2017), 611-621.   DOI
6 N.S. Jung and C.S. Ryoo, A research on the generalized poly-Bernoulli polynomials with variable a, J. Appl. Math. & Informatics 36 (2018), 475-489.   DOI
7 A.H. Kim, C.K. An, Y.R. Oh, J.M. Lee, and S.L. Han, On the generalized poly-Euler numbers and polynomials with variable a, J. Appl. & Pure Math. 1 (2019), 307-318.
8 H.Y. Lee, N.S. Jung, and C.S. Ryoo, Generalized w-Euler Numbers and Polynomials, International Scholarly Research Network 2012 (2012), 14 pages.
9 T. Mansour, Identities for sums of a q-analogue of polylogarithm functions, Letters in Mathematical Physics 87 (2009), 1-18.   DOI
10 B.C. Rennie and A.J. Dobson, On Stirling Numbers of the Second Kind, Journal of Combinatorial Theory 7 (1969), 116-121.   DOI
11 S.L. Yang and Z.K. Qiao, Some Symmetry Identities for the Euler Polynomials, Journal of Mathematical Research & Exposition 30 (2010), 457-464.
12 J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc., 1958.
13 C.S. Ryoo and R.P. Agarwal, Some identities involving q-poly-tangent numbers and polynomials and distribution of their zeros, Advances in Difference Equations 213 (2017), doi: 10.1186/s13662-017-1275-2.
14 N.J.A. Sloane, The On-Line encyclopedia of integer sequences, A008277, https://oeis.org/A008277.