• Title/Summary/Keyword: polynomial algebra

Search Result 55, Processing Time 0.023 seconds

The fraction of simplex-centroid mixture designs (심플렉스 중심배열법의 일부실시에 관한 연구)

  • Kim, Hyoung Soon;Park, Dong Kwon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1295-1303
    • /
    • 2015
  • In a mixture experiment, one may be interested in estimating not only main effects but also some interactions. Main effects and interactions may be estimated through appropriate designs such as simplex-centroid designs. However, the estimability problems, implied by the sum to one functional relationship among the factors, have strong consequences on the confounding and identifiability of models for such designs. To handle these problems, we address homogeneous polynomial model based on the computational commutative algebra (CCA) instead of using $Scheff{\acute{e}}s$ canonical model which is typically used. The problem posed here is to give how to choose estimable main effects and also some low-degree interactions. The theory is tested using a fraction of simplex-centroid designs aided by a modern computational algebra package CoCoA.

MODULAR INVARIANTS UNDER THE ACTIONS OF SOME REFLECTION GROUPS RELATED TO WEYL GROUPS

  • Ishiguro, Kenshi;Koba, Takahiro;Miyauchi, Toshiyuki;Takigawa, Erika
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.207-218
    • /
    • 2020
  • Some modular representations of reflection groups related to Weyl groups are considered. The rational cohomology of the classifying space of a compact connected Lie group G with a maximal torus T is expressed as the ring of invariants, H*(BG; ℚ) ≅ H*(BT; ℚ)W(G), which is a polynomial ring. If such Lie groups are locally isomorphic, the rational representations of their Weyl groups are equivalent. However, the integral representations need not be equivalent. Under the mod p reductions, we consider the structure of the rings, particularly for the Weyl group of symplectic groups Sp(n) and for the alternating groups An as the subgroup of W(SU(n)). We will ask if such rings of invariants are polynomial rings, and if each of them can be realized as the mod p cohomology of a space. For n = 3, 4, the rings under a conjugate of W(Sp(n)) are shown to be polynomial, and for n = 6, 8, they are non-polynomial. The structures of H*(BTn-1; 𝔽p)An will be also discussed for n = 3, 4.

ON PETERSON'S OPEN PROBLEM AND REPRESENTATIONS OF THE GENERAL LINEAR GROUPS

  • Phuc, Dang Vo
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.643-702
    • /
    • 2021
  • Fix ℤ/2 is the prime field of two elements and write 𝒜2 for the mod 2 Steenrod algebra. Denote by GLd := GL(d, ℤ/2) the general linear group of rank d over ℤ/2 and by ${\mathfrak{P}}_d$ the polynomial algebra ℤ/2[x1, x2, …, xd] as a connected unstable 𝒜2-module on d generators of degree one. We study the Peterson "hit problem" of finding the minimal set of 𝒜2-generators for ${\mathfrak{P}}_d$. Equivalently, we need to determine a basis for the ℤ/2-vector space $$Q{\mathfrak{P}}_d:={\mathbb{Z}}/2{\otimes}_{\mathcal{A}_2}\;{\mathfrak{P}}_d{\sim_=}{\mathfrak{P}}_d/{\mathcal{A}}^+_2{\mathfrak{P}}_d$$ in each degree n ≥ 1. Note that this space is a representation of GLd over ℤ/2. The problem for d = 5 is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree n = r(2t - 1) + 2ts with r = d = 5, s = 8 and t an arbitrary non-negative integer. An application of this study to the cases t = 0 and t = 1 shows that the Singer algebraic transfer of rank 5 is an isomorphism in the bidegrees (5, 5 + (13.20 - 5)) and (5, 5 + (13.21 - 5)). Moreover, the result when t ≥ 2 was also discussed. Here, the Singer transfer of rank d is a ℤ/2-algebra homomorphism from GLd-coinvariants of certain subspaces of $Q{\mathfrak{P}}_d$ to the cohomology groups of the Steenrod algebra, $Ext^{d,d+*}_{\mathcal{A}_2}$ (ℤ/2, ℤ/2). It is one of the useful tools for studying these mysterious Ext groups.

KEY EXCHANGE PROTOCOL USING MATRIX ALGEBRAS AND ITS ANALYSIS

  • CHO SOOJIN;HA KIL-CHAN;KIM YOUNG-ONE;MOON DONGHO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1287-1309
    • /
    • 2005
  • A key exchange protocol using commutative subalge-bras of a full matrix algebra is considered. The security of the protocol depends on the difficulty of solving matrix equations XRY = T, with given matrices R and T. We give a polynomial time algorithm to solve XRY = T for the choice of certain types of subalgebras. We also compare the efficiency of the protocol with the Diffie-Hellman key exchange protocol on the key computation time and the key size.

INVARIANTS OF THE SYMMETRIC GROUP

  • Lee, Hyang-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.293-300
    • /
    • 1995
  • Let $R = k[y_1,\cdots,y_n] \otimes E[x_1, \cdots, x_n]$ with characteristic $k = p > 2$ (odd prime), where $$\mid$y_i$\mid$ = 2, $\mid$x_i$\mid$ = 1$ and $y_i = \betax_i, \beta$ is the Bockstein homomorphism. Topologically, $R = H^*(B(Z/p)^n,k)$. For a symmetric group $\sum_n, R^{\sum_n} = k[\sigma_1,\cdots,\sigma_n] \otimes E[d\sigma_1, \cdots, d\sigma_n]$ where d is the derivation satisfying $d(y_i) = x_i$ and $d(x_iy_i) = x_iy_i + x_jy_i, 1 \leq i, j \leq n$. We give a direct proof of this theorem by using induction.

  • PDF

A NATURAL MAP ON AN ORE EXTENSION

  • Cho, Eun-Hee;Oh, Sei-Qwon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • Let ${\delta}$ be a derivation in a noetherian integral domain A. It is shown that a natural map induces a homeomorphism between the spectrum of $A[z;{\delta}]$ and the Poisson spectrum of $A[z;{\delta}]_p$ such that its restriction to the primitive spectrum of $A[z;{\delta}]$ is also a homeomorphism onto the Poisson primitive spectrum of $A[z;{\delta}]_p$.

JORDAN 𝒢n-DERIVATIONS ON PATH ALGEBRAS

  • Adrabi, Abderrahim;Bennis, Driss;Fahid, Brahim
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.957-967
    • /
    • 2022
  • Recently, Brešar's Jordan {g, h}-derivations have been investigated on triangular algebras. As a first aim of this paper, we extend this study to an interesting general context. Namely, we introduce the notion of Jordan 𝒢n-derivations, with n ≥ 2, which is a natural generalization of Jordan {g, h}-derivations. Then, we study this notion on path algebras. We prove that, when n > 2, every Jordan 𝒢n-derivation on a path algebra is a {g, h}-derivation. However, when n = 2, we give an example showing that this implication does not hold true in general. So, we characterize when it holds. As a second aim, we give a positive answer to a variant of Lvov-Kaplansky conjecture on path algebras. Namely, we show that the set of values of a multi-linear polynomial on a path algebra KE is either {0}, KE or the space spanned by paths of a length greater than or equal to 1.

A ONE-SIDED VERSION OF POSNER'S SECOND THEOREM ON MULTILINEAR POLYNOMIALS

  • FILIPPIS VINCENZO DE
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.679-690
    • /
    • 2005
  • Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2, d a non-zero derivation of R, I a non-zero right ideal of R, f($x_1,{\cdots},\;x_n$) a multilinear polynomial in n non-commuting variables over K, a $\in$ R. Supppose that, for any $x_1,{\cdots},\;x_n\;\in\;I,\;a[d(f(x_1,{\cdots},\;x_n)),\;f(x_1,{\cdots},\;x_n)]$ = 0. If $[f(x_1,{\cdots},\;x_n),\;x_{n+1}]x_{n+2}$ is not an identity for I and $$S_4(I,\;I,\;I,\;I)\;I\;\neq\;0$$, then aI = ad(I) = 0.

EFFICINET GENERATION OF MAXIMAL IDEALS IN POLYNOMIAL RINGS

  • Kim, Sunah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.137-143
    • /
    • 1992
  • The purpose of this paper is to provide the affirmative solution of the following conjecture due to Davis and Geramita. Conjecture; Let A=R[T] be a polynomial ring in one variable, where R is a regular local ring of dimension d. Then maximal ideals in A are complete intersection. Geramita has proved that the conjecture is true when R is a regular local ring of dimension 2. Whatwadekar has rpoved that conjecture is true when R is a formal power series ring over a field and also when R is a localization of an affine algebra over an infinite perfect field. Nashier also proved that conjecture is true when R is a local ring of D[ $X_{1}$,.., $X_{d-1}$] at the maximal ideal (.pi., $X_{1}$,.., $X_{d-1}$) where (D,(.pi.)) is a discrete valuation ring with infinite residue field. The methods to establish our results are following from Nashier's method. We divide this paper into three sections. In section 1 we state Theorems without proofs which are used in section 2 and 3. In section 2 we prove some lemmas and propositions which are used in proving our results. In section 3 we prove our main theorem.eorem.rem.

  • PDF