Browse > Article
http://dx.doi.org/10.4134/JKMS.2005.42.6.1287

KEY EXCHANGE PROTOCOL USING MATRIX ALGEBRAS AND ITS ANALYSIS  

CHO SOOJIN (Department of Mathematics Ajou University)
HA KIL-CHAN (Department of Applied Mathematics Sejong University)
KIM YOUNG-ONE (Department of Mathematics Seoul National University)
MOON DONGHO (Department of Applied Mathematics Sejong University)
Publication Information
Journal of the Korean Mathematical Society / v.42, no.6, 2005 , pp. 1287-1309 More about this Journal
Abstract
A key exchange protocol using commutative subalge-bras of a full matrix algebra is considered. The security of the protocol depends on the difficulty of solving matrix equations XRY = T, with given matrices R and T. We give a polynomial time algorithm to solve XRY = T for the choice of certain types of subalgebras. We also compare the efficiency of the protocol with the Diffie-Hellman key exchange protocol on the key computation time and the key size.
Keywords
key exchange protocol; matrix algebra; Diffie-Hellman key exchange;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform Theory 22 (1976), 644-654   DOI
2 J.-C. Faugere, A new efficient algorithm for computing grobner bases ($F_4$), J. Pure Appl. Algebra 139 (1999), 61-88   DOI   ScienceOn
3 J.-C. Faugere, A new efficient algorithm for computing grobner bases without reduction to zero ($F_5$), In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation
4 F. Gantmacher, The Theory of Matrices Vol. 1, A.M.S. Chelsea publishing, 1977
5 V. Varadharajan, R. W. K. Odoni, and P. W. Sanders, Public key distribution in matrix rings, Electronic Letters, 20 (1974), no. 9, 386-387
6 J. A. Buchmann, R. Scheidler, and H. C. Williams, A key-exchange protocol using real quadratic fields, J. Cryptology 7 (1994), 171-199   DOI   ScienceOn
7 HongzengWei and Xingfen Zheng, The number of solutions to the bilinear matrix equation over a finite field, J. Statist. Plann. Inference 94 (2001), 359-369   DOI   ScienceOn
8 Wan Zhe-xian and Li Gen-dao, The two theorems of Schur on commutative matrices, Chinese Math. 5 (1964), 156-164
9 J. Barria and P. R. Halmos, Vector bases for two commuting matrices, Linear Multilinear Algebra 27 (1990), 147-157   DOI   ScienceOn
10 M. A. Cherepnev, Schemes of public distribution of keys based on a non- commutative group, Discrete Math. Appl. 13 (2003), no. 3, 265-269   DOI   ScienceOn
11 M. A. Cherepnev, V. M. Sidelnikov, and V. V. Yashchenko, Systems of open distribution of keys on the basis of noncommutative semigroups, Russian Acad. Sci. Dokl. Math. 48 (1994), no. 2, 384-386
12 J. A. Green, The character of finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447   DOI   ScienceOn
13 T. Laffey and S. Lazarus, Two-generated commutative matrix subalgebras, Linear Algebra Appl. 147 (1991), 249-273   DOI   ScienceOn
14 J. H. Hodges, A bilinear matrix equations over a finite field, Duke Math. J. 31 (1964), 661-666   DOI
15 J. H. Hodges, Representation by bilinear forms in a finite field, Duke Math. J. 22 (1955), 497-510   DOI
16 N. Jacobson, Schur's theormes on commutative matrices, Bull. Amer. Math. Soc. 50 (1944), 431-436   DOI
17 S. M. Mollevi, C. Pardo, I. Gracia, and P. Morillo, Linear key predistribution schemes, Des. Codes Cryptogr. 25 (2002), 281-298   DOI   ScienceOn
18 M. Neubauer and D. Saltman, Two-generated commutative subalgebras of $M_n$(f), J. Algebra 164 (1994), 545-562   DOI   ScienceOn
19 P. C. van Oorschot, A. J. Menezes, and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997
20 N. Strauss, Algorithm and implementation for computation of Jordan form over A$[x_1,...,x_m]$, In Computers and mathematics, Springer, 1989, 21-26.
21 M. Qu, J. Solinas, L. Law, A. Menezes, and S. Vanstone, An efficient protocol for authenticated key agreement, Des. Codes Cryptogr. 28 (2003), no. 2, 119-134   DOI   ScienceOn