KEY EXCHANGE PROTOCOL USING MATRIX ALGEBRAS AND ITS ANALYSIS |
CHO SOOJIN
(Department of Mathematics Ajou University)
HA KIL-CHAN (Department of Applied Mathematics Sejong University) KIM YOUNG-ONE (Department of Mathematics Seoul National University) MOON DONGHO (Department of Applied Mathematics Sejong University) |
1 | W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform Theory 22 (1976), 644-654 DOI |
2 | J.-C. Faugere, A new efficient algorithm for computing grobner bases (), J. Pure Appl. Algebra 139 (1999), 61-88 DOI ScienceOn |
3 | J.-C. Faugere, A new efficient algorithm for computing grobner bases without reduction to zero (), In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation |
4 | F. Gantmacher, The Theory of Matrices Vol. 1, A.M.S. Chelsea publishing, 1977 |
5 | V. Varadharajan, R. W. K. Odoni, and P. W. Sanders, Public key distribution in matrix rings, Electronic Letters, 20 (1974), no. 9, 386-387 |
6 | J. A. Buchmann, R. Scheidler, and H. C. Williams, A key-exchange protocol using real quadratic fields, J. Cryptology 7 (1994), 171-199 DOI ScienceOn |
7 | HongzengWei and Xingfen Zheng, The number of solutions to the bilinear matrix equation over a finite field, J. Statist. Plann. Inference 94 (2001), 359-369 DOI ScienceOn |
8 | Wan Zhe-xian and Li Gen-dao, The two theorems of Schur on commutative matrices, Chinese Math. 5 (1964), 156-164 |
9 | J. Barria and P. R. Halmos, Vector bases for two commuting matrices, Linear Multilinear Algebra 27 (1990), 147-157 DOI ScienceOn |
10 | M. A. Cherepnev, Schemes of public distribution of keys based on a non- commutative group, Discrete Math. Appl. 13 (2003), no. 3, 265-269 DOI ScienceOn |
11 | M. A. Cherepnev, V. M. Sidelnikov, and V. V. Yashchenko, Systems of open distribution of keys on the basis of noncommutative semigroups, Russian Acad. Sci. Dokl. Math. 48 (1994), no. 2, 384-386 |
12 | J. A. Green, The character of finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447 DOI ScienceOn |
13 | T. Laffey and S. Lazarus, Two-generated commutative matrix subalgebras, Linear Algebra Appl. 147 (1991), 249-273 DOI ScienceOn |
14 | J. H. Hodges, A bilinear matrix equations over a finite field, Duke Math. J. 31 (1964), 661-666 DOI |
15 | J. H. Hodges, Representation by bilinear forms in a finite field, Duke Math. J. 22 (1955), 497-510 DOI |
16 | N. Jacobson, Schur's theormes on commutative matrices, Bull. Amer. Math. Soc. 50 (1944), 431-436 DOI |
17 | S. M. Mollevi, C. Pardo, I. Gracia, and P. Morillo, Linear key predistribution schemes, Des. Codes Cryptogr. 25 (2002), 281-298 DOI ScienceOn |
18 | M. Neubauer and D. Saltman, Two-generated commutative subalgebras of (f), J. Algebra 164 (1994), 545-562 DOI ScienceOn |
19 | P. C. van Oorschot, A. J. Menezes, and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997 |
20 | N. Strauss, Algorithm and implementation for computation of Jordan form over A, In Computers and mathematics, Springer, 1989, 21-26. |
21 | M. Qu, J. Solinas, L. Law, A. Menezes, and S. Vanstone, An efficient protocol for authenticated key agreement, Des. Codes Cryptogr. 28 (2003), no. 2, 119-134 DOI ScienceOn |