On the Construction of Polynomial β-algebras over a Field

Keum Sook So
Department of Mathematics, Hallym University, Chuncheon 24252, Korea
e-mail: ksso@hallym.ac.kr
Young Hee Kim*
Department of Mathematics, Chungbuk National University, Chongju 28644, Korea
e-mail: yhkim@chungbuk.ac.kr

Abstract. In this paper we construct quadratic β-algebras on a field, and we discuss both linear-quadratic β-algebras and quadratic-linear β-algebras in a field. Moreover, we discuss some relations of binary operations in β-algebras.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras $([3,4])$. We refer useful textbooks for $B C K / B C I$-algebra to [2, 7, 10]. J. Neggers and H. S. Kim([8]) introduced another class related to some of the previous ones, viz., B-algebras and studied some of its properties. They also introduced the notion of β-algebra([9]) where two operations are coupled in such a way as to reflect the natural coupling which exists between the usual group operation and its associated B-algebra which is naturally defined by it. P. J. Allen et al.([1]) gave another proof of the close relationship of B-algebras with groups using the observation that the zero adjoint mapping is surjective. H. S. Kim and H. G. Park $([5])$ showed that if X is a 0 -commutative B-algebra, then $(x * a) *(y * b)=$ $(b * a) *(y * x)$. Using this property they showed that the class of p-semisimple $B C I$-algebras is equivalent to the class of 0 -commutative B-algebras. Y. H. Kim and K. S. So ([6]) investigated some properties of β-algebras and further relations with B-algebras. Especially, they showed that if $(X,-,+, 0)$ is a B^{*}-algebra, then $(X,+)$ is a semigroup with identity 0 . They discussed some constructions of linear β-algebras in a field K.

[^0]In this paper we construct quadratic β-algebras on a field, and we discuss both linear-quadratic β-algebras and quadratic-linear β-algebras in a field. Moreover, we discuss some relations of binary operations in β-algebras.

2. Preliminaries

A β-algebra $([9])$ is a non-empty set X with a constant 0 and two binary operations" "" and " - " satisfying the following axioms: for any $x, y, z \in X$,
(I) $x-0=x$,
(II) $(0-x)+x=0$,
(III) $(x-y)-z=x-(z+y)$.

Example 2.1.([9]) Let $X:=\{0,1,2,3\}$ be a set with the following tables:

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

-	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

Then $(X,+,-, 0)$ is a β-algebra.
Given a β-algebra X, we denote $x^{*}:=0-x$ for any $x \in X$.
Theorem 2.2.([6]) Let $(K,+, \cdot, e)$ be a field (sufficiently large) and let $x, y \in K$. Then (K, \oplus, \ominus, e) is a β-algebra, where $x \oplus y=x+y-e$ and $x \ominus y=x-y+e$ for any $x, y \in K$.

We call such a β-algebra described in Theorem 2.2 a linear β-algebra.
If we let $\varphi: K \rightarrow K$ be a map defined by $\varphi(x)=e+b x$ for some $b \in K$. Then we have

$$
\begin{aligned}
\varphi(x+y) & =e+b(x+y) \\
& =(e+b x)+(e+b y)-e \\
& =\varphi(x) \oplus \varphi(y)
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi(x-y) & =e+b(x-y) \\
& =(e+b x)-(e+b y)+e \\
& =\varphi(x) \ominus \varphi(y)
\end{aligned}
$$

so that $\varphi(0)=e$ implies $\varphi:(K,-,+, 0) \rightarrow(K, \ominus, \oplus, e)$ is a homomorphism of β-algebras, where "-" is the usual subtraction in the field K. If $b \neq 0$, then
$\psi:(K, \ominus, \oplus, e) \rightarrow(K,-,+, 0)$ defined by $\psi(x):=(x-e) / b$ is a homomorphism of β-algebras and the inverse mapping of the mapping φ, so that (K, \ominus, \oplus, e) and $(K,-,+, 0)$ are isomorphic as β-algebras, i.e., there is only one isomorphism type in this case. We summarize:

Proposition 2.3.([6]) The β-algebra (K, \ominus, \oplus, e) discussed in Theorem 2.2 is unique up to isomorphism.

A $B C K / B C I$-algebra is an important class of logical algebras introduced by K. Iséki and was extensively investigated by several researchers.

An algebra $(X ; *, 0)$ of type $(2,0)$ is called a BCI-algebra $([3,4])$ if it satisfies the following conditions: for all $x, y, z \in X$,
(i) $(((x * y) *(x * z)) *(z * y)=0)$,
(ii) $((x *(x * y)) * y=0)$,
(iii) $(x * x=0)$,
(iv) $(x * y=0, y * x=0 \Rightarrow x=y)$.

If a $B C I$-algebra X satisfies the following identity: for all $x \in X$,
(v) $(0 * x=0)$,
then X is called a $B C K$-algebra $([3,4])$.

3. Constructions of Polynomial β-algebras

Let $(K,+, \cdot, e)$ be a field (sufficiently large) and let $x, y \in K$. First, we consider the case of quadratic-linear β-algebras, i.e., $x \oplus y$ is the polynomial of x, y with degree 2 , and $x \ominus y$ is the polynomial of x, y with degree 1 . Define two binary operations " \oplus, \ominus " on K as follows:

$$
\begin{aligned}
& x \oplus y:=A+B x+C y+D x^{2}+E x y+F y^{2} \\
& x \ominus y:=\alpha+\beta x+\gamma y
\end{aligned}
$$

where $\alpha, \beta, \gamma, A, B, C, D, E, F \in K$ (fixed). Assume that $(K, \oplus, \ominus, 0)$ is a β-algebra. It is necessary to find proper solutions for two equations. Since $x=x \ominus e=$ $\alpha+\beta x+\gamma e$, we obtain $(\beta-1) x+(\alpha+\gamma e)=0$, and hence $\beta=1$ and $\alpha=-\gamma e$. It follows that

$$
\begin{equation*}
x \ominus y=x+\gamma(y-e) \tag{3.1}
\end{equation*}
$$

From (3.1) we obtain $e \ominus x=e+\gamma(x-e)=(1-\gamma) e+\gamma x$. Since $(e \ominus x) \oplus x=e$,
we obtain

$$
\begin{aligned}
e= & (e \ominus x) \oplus x \\
= & {[(1-\gamma) e+\gamma x] \oplus x } \\
= & A+B[(1-\gamma) e+\gamma x]+C x+D[(1-\gamma) e+\gamma x]^{2} \\
& +E[(1-\gamma) e+\gamma x] x+F x^{2} \\
= & {\left[A+B(1-\gamma) e+D(1-\gamma)^{2} e^{2}\right]+[B \gamma+C+2 D \gamma(1-\gamma) e} \\
& +E(1-\gamma) e] x+\left[D \gamma^{2}+E \gamma+F\right] x^{2}
\end{aligned}
$$

If we assume that $|K| \geq 3$, then we obtain

$$
\begin{gather*}
D \gamma^{2}+E \gamma+F=0 \\
B \gamma+C+2 D \gamma(1-\gamma) e+E(1-\gamma) e=0 \tag{3.2}\\
A+B(1-\gamma) e+D(1-\gamma)^{2} e^{2}=0
\end{gather*}
$$

Case(i). $\gamma \neq 0$. By formula (3.1) we obtain

$$
\begin{aligned}
(x \ominus y) \ominus z & =x \ominus y+\gamma(z-e) \\
& =x+\gamma(y-e)+\gamma(z-e) \\
& =x+\gamma(y+z-2 e)
\end{aligned}
$$

and

$$
x \ominus(z \oplus y)=x+\gamma(z \oplus y-e)
$$

By (III), we obtain $x+\gamma(y+z-2 e)=x+\gamma(z \oplus y-e)$. Since $\gamma \neq 0$, we have $z \oplus y-e=z+y-2 e$. This shows that $x \oplus y=x+y-e$ for all $x, y \in K$. In this case, we obtain the linear case as described in Theorem 2.2.

Case (ii). $\gamma=0$. By (3.1), we obtain $x \ominus y=x$. Since $|K| \geq 3$, the formula (3.2) can be represented as

$$
F=0, C+E e=0, A+B e+D e^{2}=e
$$

It follows that $F=0, C=-E e, A=e-B e-D e^{2}$. This shows that

$$
\begin{aligned}
x \oplus y & =\left(e-B e-D e^{2}\right)+B x+(-E e) y+D x^{2}+E x y \\
& =e+B(x-e)+D\left(x^{2}-e^{2}\right)+E(x-e) y \\
& =e+[B+D(x+e)+E y](x-e)
\end{aligned}
$$

which means that $x \oplus y$ is of the form:

$$
x \oplus y=e+(a+b x+c y)(x-e)
$$

It is a quadratic form (not a linear form) and so (K, \oplus, \ominus, e) is a quadratic-linear β-algebra where $x \oplus y=e+(a+b x+c y)(x-e)$ and $x \ominus y=x$. We summarize:

Theorem 3.1. Let $(K,+, \cdot, e)$ be a field (sufficiently large). If we define two binary operations " \oplus, \ominus " on K by

$$
\begin{aligned}
& x \oplus y \quad:=e+(a+b x+c y)(x-e) \\
& x \ominus y:=x
\end{aligned}
$$

for all $x, y \in K$, then (K, \oplus, \ominus, e) is a quadratic-linear β-algebra.
Corollary 3.2. Let $(K,+, \cdot, 0)$ be a field (sufficiently large) and let $a, b, c \in K$. If we define two binary operations " \oplus, \ominus " on K by

$$
\begin{aligned}
x \oplus y & :=a x+b x^{2}+c x y \\
x \ominus y & :=x
\end{aligned}
$$

for all $x, y \in K$, then $(K, \oplus, \ominus, 0)$ is a quadratic-linear β-algebra.
Proof. It follows immediately from Theorem 3.1 by letting $e:=0$.
Example 3.3. Let \mathbf{R} be the set of all real numbers. If we define $x \oplus y:=x-x^{2}-2 x y$ and $x \ominus y:=x$ for all $x, y \in \mathbf{R}$, then $(\mathbf{R}, \oplus, \ominus, 0)$ is a quadratic-linear β-algebra.

Let $(K,+, \cdot, e)$ be a field (sufficiently large) and let $x, y \in K$. Next, we consider the case of linear-quadratic β-algebras, i.e., $x \oplus y$ is the polynomial of x, y with degree 1 , and $x \ominus y$ is the polynomial of x, y with degree 2 .
Theorem 3.4. There is no linear-quadratic β-algebras over a field $(K,+,-, e)$.
Proof. Let $(K,+, \cdot, e)$ be a field (sufficiently large). Define two binary operations " \oplus, \ominus " on K as follows:

$$
\begin{aligned}
& x \oplus y:=A+B x+C y \\
& x \ominus y:=\alpha+\beta x+\gamma y+\delta x^{2}+\varepsilon x y+\xi y^{2}
\end{aligned}
$$

where $A, B, C, \alpha, \beta, \gamma, \delta, \varepsilon, \xi \in K$ (fixed). Assume that (K, \oplus, \ominus, e) is a β-algebra and $|K| \geq 3$. Then

$$
\begin{aligned}
x & =x \ominus e \\
& =\alpha+\beta x+\gamma e+\delta x^{2}+\varepsilon e x+\xi e^{2} \\
& =\left[\alpha+\gamma e+\xi e^{2}\right]+[\beta+\varepsilon e] x+\delta x^{2}
\end{aligned}
$$

It follows that

$$
\begin{gather*}
\alpha+\gamma e+\xi e^{2}=0 \\
\beta+\varepsilon e=1 \tag{3.3}\\
\delta=0
\end{gather*}
$$

Case (i). $e=0$. By formula (3.3) we obtain $\alpha=0, \beta=1, \delta=0$. It follows that

$$
\begin{equation*}
x \ominus y=x+\gamma y+\varepsilon x y+\xi y^{2} \tag{3.4}
\end{equation*}
$$

It follows that $0 \ominus x=0+\gamma x+\varepsilon 0 x+\xi x^{2}=\gamma x+\xi x^{2}$ and hence

$$
\begin{aligned}
0 & =(0 \ominus x) \oplus x \\
& =\left(\gamma x+\xi x^{2}\right) \oplus x \\
& =A+B\left(\gamma x+\xi x^{2}\right)+C x \\
& =A+(B \gamma+C) x+B \xi x^{2}
\end{aligned}
$$

for all $x \in K$. This shows that $A=0, B \gamma+C=0, B \xi=0$.
Subcase (i-1). $B=0$. Since $C=-B \gamma$, we obtain $C=0$ and hence $x \oplus y=0$ for all $x, y \in K$. This shows that $(0 \ominus x) \oplus x=0$. Using formula (3.4) we obtain

$$
\begin{aligned}
(x \ominus y) \ominus z= & \left(x+\gamma y+\varepsilon x y+\xi y^{2}\right) \ominus z \\
= & \left(x+\gamma y+\varepsilon x y+\xi y^{2}\right)+\gamma z+ \\
& \varepsilon\left(x+\gamma y+\varepsilon x y+\xi y^{2}\right) z+\xi z^{2} \\
= & x+\gamma y+\gamma z+\varepsilon x y+\xi\left(y^{2}+z^{2}\right) \\
& +\varepsilon\left(x+\gamma y+\varepsilon x y+\xi y^{2}\right) z
\end{aligned}
$$

and

$$
x \ominus(z \oplus y)=x \ominus 0=x
$$

By (III), we obtain $\gamma=0, \varepsilon=0, \xi=0$, proving that $x \ominus y=x$. Hence $x \oplus y=0$ and $x \ominus y=x$ show that $(K, \oplus, \ominus, 0)$ is not a linear-quadratic β-algebra.
Subcase (i-2). $\xi=0$. We apply this condition to the formula (3.4), and obtain $x \ominus y=x+\gamma y+\varepsilon x y$. It follows that $0 \ominus x=\gamma x$ and hence $0=(0 \ominus x) \oplus x=$ $\gamma x \oplus x=A+B(\gamma x)+C x=A+(B \gamma+C) x$ for all $x \in K$. It follows that $A=0, B \gamma+C=0$. Hence $x \oplus y=B(x-\gamma y)$. It follows that

$$
\begin{aligned}
x \ominus(z \oplus y) & =x+\gamma(z \oplus y)+\varepsilon x(z \oplus y) \\
& =x+\gamma B(z-\gamma y)+\varepsilon B x(z-\gamma y) \\
& =x+\gamma B z-\gamma^{2} B y+\varepsilon B x z-\varepsilon B \gamma x y
\end{aligned}
$$

and

$$
\begin{aligned}
(x \ominus y) \ominus z & =(x+\gamma y+\varepsilon x y) \ominus z \\
& =x+\gamma y+\varepsilon x y+\gamma z+\varepsilon(x+\gamma y+\varepsilon x y) z
\end{aligned}
$$

By (III), we obtain $\varepsilon=0$ and $\gamma(1+\gamma) B=0$. If $\gamma=0$, then $x \oplus y=B x$ and $x \ominus y=x$. If $B=0$, then it is the same case as subcase (i-1). If $\gamma=-1$, then $x \oplus y=B(x+y)$ and $x \ominus y=x-y$. This shows that $(K, \oplus, \ominus, 0)$ is not a linear-quadratic β-algebra.
Case (ii). $e \neq 0$. It follows from (3.3) that $\alpha=-\gamma e-\xi e^{2}, \beta=1-\varepsilon e, \delta=0$. Hence

$$
\begin{equation*}
x \ominus y=\left(\gamma e-\xi e^{2}\right)+(1-\varepsilon e) x+\gamma y+\varepsilon x y+\xi y^{2} \tag{3.5}
\end{equation*}
$$

Subcase (ii-1). $\xi \neq 0$. The formula (3.5) can be written as

$$
\begin{equation*}
x \ominus y=x+(\gamma+\varepsilon x)(y-e)+\xi\left(y^{2}-e^{2}\right) \tag{3.6}
\end{equation*}
$$

If $y:=e$ in (3.6), then $x \ominus e=x+(\gamma+\varepsilon x)(e-e)+\xi\left(e^{2}-e^{2}\right)=x$. If $x:=e$ and $y:=x$ in (3.6), then $e \ominus x=x+(\gamma+\varepsilon e)(x-e)+\xi\left(x^{2}-e^{2}\right)$. It follows that

$$
\begin{aligned}
e & =(e \ominus x) \oplus x \\
& =A+B(e \ominus x)+C x \\
& =A+B\left[e+(\gamma+\varepsilon e)(x-e)+\xi\left(x^{2}-e^{2}\right)\right]+C x \\
& =\left[A+B e-B(\gamma+\varepsilon e) e-B \xi e^{2}\right]+[B(\gamma+\varepsilon e)+C] x+B \xi x^{2}
\end{aligned}
$$

for all $x \in K$, and hence we obtain

$$
\begin{gathered}
B \xi=0 \\
B(\gamma+\varepsilon e)+C=0 \\
A+B e-B(\gamma+\varepsilon e) e-B \xi e^{2}=0
\end{gathered}
$$

Since $\xi \neq 0$, we have $B=0$ and hence $C=0, A=0$, i.e., $x \oplus y=0$ and $x \ominus y=x+(\gamma+\varepsilon x)(y-e)+\xi\left(y^{2}-e^{2}\right)$ does not form a β-algebra, since $e \ominus(e \oplus e)=$ $e-e(\gamma+\varepsilon e)-\xi e^{2}$ and $(e \ominus e) \ominus e=e$.
Subcase (ii-2). $\xi=0$. The formula can be written as

$$
\begin{equation*}
x \ominus y=x+(\gamma+\varepsilon x)(y-e) \tag{3.7}
\end{equation*}
$$

It follows that $x \ominus e=x+(\gamma+\varepsilon x)(e-e)=x$ and $e \ominus x=e+(\gamma+\varepsilon e)(x-e)$. By (II) we obtain the following.

$$
\begin{aligned}
e & =(e \ominus x) \oplus x \\
& =[e+(\gamma+\varepsilon e)(x-e)] \oplus x \\
& =A+B[e+(\gamma+\varepsilon e)(x-e)]+C x \\
& =[A+B e-B(\gamma+\varepsilon e) e]+[B(\gamma+\varepsilon e)+C] x
\end{aligned}
$$

for all $x \in K$, and hence we obtain

$$
\begin{gathered}
A+B e-B(\gamma+\varepsilon e) e=e \\
B(\gamma+\varepsilon e)+C=0
\end{gathered}
$$

Hence $A=e+B e[\gamma+\varepsilon e-1]$ and $C=-B(\gamma+\varepsilon e)$. It follows that

$$
\begin{equation*}
x \oplus y=[e+B e(\gamma+\varepsilon e-1)]+B x-B(\gamma+\varepsilon e) y \tag{3.8}
\end{equation*}
$$

Using formulas (3.7) and (3.8), we obtain

$$
\begin{aligned}
x \ominus(z \oplus y) & =x+(\gamma+\varepsilon x)(z \oplus y-e) \\
& =x+(\gamma+\varepsilon x)[[e+B e(\gamma+\varepsilon e-1)]+B z-B(\gamma+\varepsilon e) y-e] \\
& =x+(\gamma+\varepsilon x)[[B e(\gamma+\varepsilon e-1)]+B z-B(\gamma+\varepsilon e) y] \\
& =x+B(\gamma+\varepsilon x)[e(\gamma+\varepsilon e-1)+z-(\gamma+\varepsilon e) y]
\end{aligned}
$$

By formula (3.7) we obtain

$$
\begin{aligned}
(x \ominus y) \ominus z & =x \ominus y+(\gamma+\varepsilon(x \ominus y))(z-e) \\
& =x+(\gamma+\varepsilon x)(y-e)+[\gamma+\varepsilon(x+(\gamma+\varepsilon x)(y-e))](z-e) \\
& =x+(\gamma+\varepsilon x)[(y-e)+(1+\varepsilon(y-e))(z-e)]
\end{aligned}
$$

By (III), we have

$$
\begin{gathered}
B(\gamma+\varepsilon x)[e(\gamma+\varepsilon e-1)+z-(\gamma+\varepsilon e) y] \\
=(\gamma+\varepsilon x)[(y-e)+(1+\varepsilon(y-e))(z-e)]
\end{gathered}
$$

Subcase (ii-2-a). $\gamma=\epsilon=0$. We obtain $\beta=1, \alpha=0$ and hence $x \ominus y=x$, $x \oplus y=(e-B e)+B x$, a linear β-algebra.
Subcase (ii-2-b). $\gamma+\varepsilon x \neq 0$ for all $x \in K$. We obtain the following formula.

$$
\begin{aligned}
& B[e(\gamma+\varepsilon e-1)+z-(\gamma+\varepsilon e) y] \\
& =(y-e)+(1+\varepsilon(y-e))(z-e)
\end{aligned}
$$

for all $y, z \in K$. This shows that $\varepsilon=0, \gamma=-1, \delta=0, \beta=1, \alpha=e$ and $A=-e$ and $B=C=1$. Hence $x \oplus y=x+y-e$ and $x \ominus y=x-y+e$, i.e., (K, \oplus, \ominus, e) is a linear β-algebra which is not a quadratic-linear β-algebra. Hence there is no linear-quadratic β-algebra which is not a linear β-algebra.

Problem. Construct a complete quadratic β-algebra over a field, i.e., $x \oplus y$ and $x \ominus y$ are both polynomials of x and y of degree 2 .

4. Some Relations of Binary Operations in β-algebras

In this section, we discuss some relations of binary operations in β-algebras. For example, given a groupoid $(X,+)$, we want to know the structure of $(X,-)$ if $(X,+,-, 0)$ is a β-algebra. Given a non-empty set X, a groupoid $(X, *)$ is said to be a left-zero semigroup if $x * y=x$ for all $x, y \in X$. Similarly, a groupoid $(X, *)$ is said to be a right-zero semigroup if $x * y=y$ for all $x, y \in X$.
Proposition 4.1. If (X, \oplus) is a left-zero semigroup and if $(X, \oplus, \ominus, 0)$ is a β algebra, then (X, \ominus) is also a left-zero semigroup.
Proof. Assume that $(X, \oplus, \ominus, 0)$ is a β-algebra. Then $x \ominus 0=x$ for all $x \in X$, and $(x \ominus y) \ominus z=x \ominus(z \oplus y)=x \ominus z$, i.e., $(x \ominus y) \ominus z=x \ominus z$ for all $x, y, z \in X$. It follows that $x \ominus y=(x \ominus y) \ominus 0=x \ominus 0=x$, i.e., $x \ominus y=x$, for all $x, y \in X$, proving that (X, \ominus) is a left-zero semigroup.
Proposition 4.2. Let $(X, \oplus, 0)$ be an algebra with $0 \oplus x=0$ for all $x \in X$. If (X, \ominus) is a left-zero semigroup, then $(X, \oplus, \ominus, 0)$ is a β-algebra.
Proof. Since (X, \ominus) is a left-zero semigroup, the conditions (I) and (III) hold. It follows from $0 \oplus x=0$ for all $x \in X$ that $0=0 \oplus x=(0 \ominus x) \oplus x$, proving the proposition.

Corollary 4.3. Let $(X, *, 0)$ be a $B C K$-algebra. If (X, \ominus) is a left-zero semigroup, then $(X, *, \ominus, 0)$ is a β-algebra.
Proof. Straightforward.
Proposition 4.4. Let $(X, \oplus, 0)$ be an algebra with $0 \oplus x=0$ for all $x \in X$. If $(X, \oplus, \ominus, 0)$ is a β-algebra, then (X, \ominus) is a left-zero semigroup.
Proof. Let $(X, \oplus, \ominus, 0)$ be a β-algebra. If we let $z:=0$ in (III), then $x \ominus y=$ $(x \ominus y) \ominus 0=x \ominus(0 \oplus y)=x \ominus 0=x$ for all $x, y \in X$, proving the proposition.

Proposition 4.5. Let (X, \oplus) be a right-zero semigroup. If $(X, \oplus, \ominus, 0)$ is a β algebra, then $X=\{0\}$.
Proof. Assume $(X, \oplus, \ominus, 0)$ is a β-algebra. Since (X, \oplus) is a right-zero semigroup, by (II), we have $0=(0 \ominus x) \oplus x=x$ for all $x \in X$, proving that $X=\{0\}$.
Proposition 4.6. Let (X, \ominus) be a right-zero semigroup. If $(X, \oplus, \ominus, 0)$ is a β algebra, then $X=\{0\}$.
Proof. Assume $(X, \oplus, \ominus, 0)$ is a β-algebra. Since (X, \ominus) is a right-zero semigroup, by (II), we have $0=(0 \ominus x) \oplus x=x \oplus x$ for all $x \in X$. By (III), we have $z=(x \ominus y) \ominus z=x \ominus(z \oplus y)=z \oplus y$ for all $y, z \in X$. It follows that $x=x \oplus x=0$ for all $x \in X$, proving the proposition.
Theorem 4.7. Let $(K,+,-, 0)$ be a field with $|K| \geq 4$ and let $e \in K$. Define a binary operation " \oplus " on K by $x \oplus y:=p(x, y)$, i.e., a quadratic polynomial of x and y in K. If $e \oplus x=e$ for all $x \in K$, then $x \oplus y=e+(A+B x+C y)(x-e)$ for all $x, y \in K$ where $A, B, C \in K$.
Proof. Assume $p(x, y):=A+B x+C y$ for all $x, y \in K$ where $A, B, C \in K$. Since $e \oplus x=e$, we have $e=e \oplus y=A+B e+C y$ for all $y \in K$. It shows that $A=e(1-B), C=0$. Hence $x \oplus y=e(1-B)+B x=e+B(x-e)$. Assume $p(x, y):=A+B x+C y+D x^{2}+E x y+F y^{2}$. Then

$$
\begin{aligned}
e & =e \oplus y \\
& =A+B e+C y+D e^{2}+E e y+F y^{2} \\
& =\left(A+B e+D e^{2}\right)+(C+E e) y+F y^{2}
\end{aligned}
$$

It follows that $F=0, C+E e=0, A+B e+D e^{2}=e$. Hence

$$
\begin{aligned}
p(x, y) & =\left(e-B e-D e^{2}\right)+B x-E e y+D x^{2}+E x y \\
& =e+[B+D(x+e)+E y](x-e) \\
& =e+(B+D e+D x+E y)(x-e)
\end{aligned}
$$

i.e., $p(x, y)$ is of the form $p(x, y)=e+(A+B x+C y)(x-e)$. This shows that $x \oplus y=e+q(x, y)(x-e)$ where $q(x, y)$ is a linear polynomial of degree ≤ 1.

Using Theorem 4.7 and Proposition 4.2, we obtain the following.

Corollary 4.8. Let $(K,+,-, 0)$ be a field with $|K| \geq 4$ and let $e \in K$. Define a binary operation " \oplus " on K by

$$
x \oplus y:=e+q(x, y)(x-e)
$$

where $q(x, y)$ is any polynomial of x and y in K. If $x \ominus y:=x$ for all $x, y \in K$, then (K, \oplus, \ominus, e) is a β-algebra.

References

[1] P. J. Allen, H. S. Kim and J. Neggers, B-algebras and groups, Sci. Math. Japo., 9(2003), 9-17.
[2] A. Iorgulescu, Algebras of logic as BCK-algebras, Editura ASE, Bucharest, 2008.
[3] K. Iséki, On BCI-algebras, Math. Seminar Notes, 8(1980), 125-130.
[4] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica, 23(1978), 1-26.
[5] H. S. Kim and H. G. Park, On 0-commutative B-algebras, Sci. Math. Japo., 62(2005), 7-12.
[6] Y. H. Kim and K. S. So, β-algebras and related topics, Comm. Korean Math. Soc., 27(2012), 217-222.
[7] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa, Seoul, 1994.
[8] J. Neggers and H. S. Kim, On B-algebras, Mat. Vesnik, 54(2002), 21-29.
[9] J. Neggers and H. S. Kim, On β-algebras, Mat. Slovaca, 52 (2002), 517-530.
[10] H. Yisheng, BCI-algebras, Science Press, Beijing, 2006.

[^0]: * Corresponding Author.

 Received September 22, 2016; accepted November 10, 2016.
 2010 Mathematics Subject Classification: 03G25, 06F35.
 Key words and phrases: (linear, quadratic-linear, linear-quadratic) β-algebra, (left, right)zero semigroup, $B C K$-algebra.

