KYUNGPOOK Math. J. 57(2017), 99-108 https://doi.org/10.5666/KMJ.2017.57.1.99 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

On the Construction of Polynomial β -algebras over a Field

KEUM SOOK SO Department of Mathematics, Hallym University, Chuncheon 24252, Korea e-mail: ksso@hallym.ac.kr

YOUNG HEE KIM* Department of Mathematics, Chungbuk National University, Chongju 28644, Korea e-mail: yhkim@chungbuk.ac.kr

ABSTRACT. In this paper we construct quadratic β -algebras on a field, and we discuss both linear-quadratic β -algebras and quadratic-linear β -algebras in a field. Moreover, we discuss some relations of binary operations in β -algebras.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras([3, 4]). We refer useful textbooks for BCK/BCI-algebra to [2, 7, 10]. J. Neggers and H. S. Kim([8]) introduced another class related to some of the previous ones, viz., B-algebras and studied some of its properties. They also introduced the notion of β -algebra([9]) where two operations are coupled in such a way as to reflect the natural coupling which exists between the usual group operation and its associated *B*-algebra which is naturally defined by it. P. J. Allen et al.(1) gave another proof of the close relationship of *B*-algebras with groups using the observation that the zero adjoint mapping is surjective. H. S. Kim and H. G. Park([5]) showed that if X is a 0-commutative B-algebra, then (x * a) * (y * b) =(b * a) * (y * x). Using this property they showed that the class of p-semisimple BCI-algebras is equivalent to the class of 0-commutative B-algebras. Y. H. Kim and K. S. So ([6]) investigated some properties of β -algebras and further relations with B-algebras. Especially, they showed that if (X, -, +, 0) is a B^{*}-algebra, then (X, +) is a semigroup with identity 0. They discussed some constructions of linear β -algebras in a field K.

^{*} Corresponding Author.

Received September 22, 2016; accepted November 10, 2016.

²⁰¹⁰ Mathematics Subject Classification: 03G25, 06F35.

Key words and phrases: (linear, quadratic-linear, linear-quadratic) β -algebra, (left, right)-zero semigroup, BCK-algebra.

In this paper we construct quadratic β -algebras on a field, and we discuss both linear-quadratic β -algebras and quadratic-linear β -algebras in a field. Moreover, we discuss some relations of binary operations in β -algebras.

2. Preliminaries

A β -algebra([9]) is a non-empty set X with a constant 0 and two binary operations "+" and "-" satisfying the following axioms: for any $x, y, z \in X$,

- (I) x 0 = x,
- (II) (0-x) + x = 0,
- (III) (x y) z = x (z + y).

Example 2.1.([9]) Let $X := \{0, 1, 2, 3\}$ be a set with the following tables:

+	0	1	2	3	—	0	1	2	3
0	0	1	2	3	0				
	1						0		
2	2	3	0	1	2	2	1	0	3
3	3	0	1	2	3	3	2	1	0

Then (X, +, -, 0) is a β -algebra.

Given a β -algebra X, we denote $x^* := 0 - x$ for any $x \in X$.

Theorem 2.2.([6]) Let $(K, +, \cdot, e)$ be a field (sufficiently large) and let $x, y \in K$. Then (K, \oplus, \ominus, e) is a β -algebra, where $x \oplus y = x + y - e$ and $x \ominus y = x - y + e$ for any $x, y \in K$.

We call such a β -algebra described in Theorem 2.2 a *linear* β -algebra.

If we let $\varphi: K \to K$ be a map defined by $\varphi(x) = e + bx$ for some $b \in K$. Then we have

$$\varphi(x+y) = e + b(x+y)$$
$$= (e+bx) + (e+by) - e$$
$$= \varphi(x) \oplus \varphi(y)$$

and

$$\varphi(x - y) = e + b(x - y)$$

= $(e + bx) - (e + by) + e$
= $\varphi(x) \ominus \varphi(y),$

so that $\varphi(0) = e$ implies $\varphi : (K, -, +, 0) \to (K, \ominus, \oplus, e)$ is a homomorphism of β -algebras, where "-" is the usual subtraction in the field K. If $b \neq 0$, then

 $\psi : (K, \ominus, \oplus, e) \to (K, -, +, 0)$ defined by $\psi(x) := (x - e)/b$ is a homomorphism of β -algebras and the inverse mapping of the mapping φ , so that (K, \ominus, \oplus, e) and (K, -, +, 0) are isomorphic as β -algebras, i.e., there is only one isomorphism type in this case. We summarize:

Proposition 2.3.([6]) The β -algebra (K, \ominus, \oplus, e) discussed in Theorem 2.2 is unique up to isomorphism.

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki and was extensively investigated by several researchers.

An algebra (X; *, 0) of type (2, 0) is called a *BCI-algebra* ([3, 4]) if it satisfies the following conditions: for all $x, y, z \in X$,

- (i) (((x * y) * (x * z)) * (z * y) = 0),
- (ii) ((x * (x * y)) * y = 0),
- (iii) (x * x = 0),
- (iv) $(x * y = 0, y * x = 0 \Rightarrow x = y).$

If a *BCI*-algebra X satisfies the following identity: for all $x \in X$,

(v)
$$(0 * x = 0),$$

then X is called a BCK-algebra ([3, 4]).

3. Constructions of Polynomial β -algebras

Let $(K, +, \cdot, e)$ be a field (sufficiently large) and let $x, y \in K$. First, we consider the case of *quadratic-linear* β -algebras, i.e., $x \oplus y$ is the polynomial of x, y with degree 2, and $x \oplus y$ is the polynomial of x, y with degree 1. Define two binary operations " \oplus, \ominus " on K as follows:

$$x \oplus y := A + Bx + Cy + Dx^2 + Exy + Fy^2,$$
$$x \oplus y := \alpha + \beta x + \gamma y$$

where $\alpha, \beta, \gamma, A, B, C, D, E, F \in K$ (fixed). Assume that $(K, \oplus, \ominus, 0)$ is a β -algebra. It is necessary to find proper solutions for two equations. Since $x = x \ominus e = \alpha + \beta x + \gamma e$, we obtain $(\beta - 1)x + (\alpha + \gamma e) = 0$, and hence $\beta = 1$ and $\alpha = -\gamma e$. It follows that

(3.1)
$$x \ominus y = x + \gamma(y - e)$$

From (3.1) we obtain $e \ominus x = e + \gamma(x - e) = (1 - \gamma)e + \gamma x$. Since $(e \ominus x) \oplus x = e$,

we obtain

$$e = (e \oplus x) \oplus x$$

= $[(1 - \gamma)e + \gamma x] \oplus x$
= $A + B[(1 - \gamma)e + \gamma x] + Cx + D[(1 - \gamma)e + \gamma x]^2$
+ $E[(1 - \gamma)e + \gamma x]x + Fx^2$
= $[A + B(1 - \gamma)e + D(1 - \gamma)^2e^2] + [B\gamma + C + 2D\gamma(1 - \gamma)e$
+ $E(1 - \gamma)e]x + [D\gamma^2 + E\gamma + F]x^2$

If we assume that $|K| \ge 3$, then we obtain

$$D\gamma^{2} + E\gamma + F = 0$$
(3.2)
$$B\gamma + C + 2D\gamma(1-\gamma)e + E(1-\gamma)e = 0$$

$$A + B(1-\gamma)e + D(1-\gamma)^{2}e^{2} = 0$$

Case(i). $\gamma \neq 0$. By formula (3.1) we obtain

$$(x \ominus y) \ominus z = x \ominus y + \gamma(z - e)$$

= $x + \gamma(y - e) + \gamma(z - e)$
= $x + \gamma(y + z - 2e)$

and

$$x \ominus (z \oplus y) = x + \gamma(z \oplus y - e)$$

By (III), we obtain $x + \gamma(y + z - 2e) = x + \gamma(z \oplus y - e)$. Since $\gamma \neq 0$, we have $z \oplus y - e = z + y - 2e$. This shows that $x \oplus y = x + y - e$ for all $x, y \in K$. In this case, we obtain the linear case as described in Theorem 2.2.

Case (ii). $\gamma = 0$. By (3.1), we obtain $x \ominus y = x$. Since $|K| \ge 3$, the formula (3.2) can be represented as

$$F = 0, C + Ee = 0, A + Be + De^2 = e^2$$

It follows that $F = 0, C = -Ee, A = e - Be - De^2$. This shows that

$$x \oplus y = (e - Be - De^{2}) + Bx + (-Ee)y + Dx^{2} + Exy$$

= $e + B(x - e) + D(x^{2} - e^{2}) + E(x - e)y$
= $e + [B + D(x + e) + Ey](x - e)$

which means that $x \oplus y$ is of the form:

$$x \oplus y = e + (a + bx + cy)(x - e).$$

It is a quadratic form (not a linear form) and so (K, \oplus, \ominus, e) is a quadratic-linear β -algebra where $x \oplus y = e + (a + bx + cy)(x - e)$ and $x \oplus y = x$. We summarize:

Theorem 3.1. Let $(K, +, \cdot, e)$ be a field (sufficiently large). If we define two binary operations " \oplus, \ominus " on K by

$$\begin{array}{rcl} x \oplus y & := & e + (a + bx + cy)(x - e) \\ x \oplus y & := & x \end{array}$$

for all $x, y \in K$, then (K, \oplus, \ominus, e) is a quadratic-linear β -algebra.

Corollary 3.2. Let $(K, +, \cdot, 0)$ be a field (sufficiently large) and let $a, b, c \in K$. If we define two binary operations " \oplus, \ominus " on K by

$$\begin{array}{rcl} x \oplus y & := & ax + bx^2 + cxy \\ x \oplus y & := & x \end{array}$$

for all $x, y \in K$, then $(K, \oplus, \ominus, 0)$ is a quadratic-linear β -algebra.

Proof. It follows immediately from Theorem 3.1 by letting e := 0.

Example 3.3. Let **R** be the set of all real numbers. If we define $x \oplus y := x - x^2 - 2xy$ and $x \oplus y := x$ for all $x, y \in \mathbf{R}$, then $(\mathbf{R}, \oplus, \oplus, 0)$ is a quadratic-linear β -algebra.

Let $(K, +, \cdot, e)$ be a field (sufficiently large) and let $x, y \in K$. Next, we consider the case of *linear-quadratic* β -algebras, i.e., $x \oplus y$ is the polynomial of x, y with degree 1, and $x \oplus y$ is the polynomial of x, y with degree 2.

Theorem 3.4. There is no linear-quadratic β -algebras over a field (K, +, -, e).

Proof. Let $(K, +, \cdot, e)$ be a field (sufficiently large). Define two binary operations " \oplus, \ominus " on K as follows:

$$\begin{split} x \oplus y &:= A + Bx + Cy, \\ x \ominus y &:= \alpha + \beta x + \gamma y + \delta x^2 + \varepsilon xy + \xi y^2 \end{split}$$

where $A, B, C, \alpha, \beta, \gamma, \delta, \varepsilon, \xi \in K$ (fixed). Assume that (K, \oplus, \ominus, e) is a β -algebra and $|K| \geq 3$. Then

$$x = x \ominus e$$

= $\alpha + \beta x + \gamma e + \delta x^2 + \varepsilon e x + \xi e^2$
= $[\alpha + \gamma e + \xi e^2] + [\beta + \varepsilon e]x + \delta x^2$

It follows that

(3.3)
$$\begin{aligned} \alpha + \gamma e + \xi e^2 &= 0\\ \beta + \varepsilon e &= 1\\ \delta &= 0 \end{aligned}$$

Case (i). e = 0. By formula (3.3) we obtain $\alpha = 0, \beta = 1, \delta = 0$. It follows that

$$(3.4) x \ominus y = x + \gamma y + \varepsilon xy + \xi y^2$$

It follows that $0 \ominus x = 0 + \gamma x + \varepsilon 0 x + \xi x^2 = \gamma x + \xi x^2$ and hence

$$0 = (0 \ominus x) \oplus x$$

= $(\gamma x + \xi x^2) \oplus x$
= $A + B(\gamma x + \xi x^2) + Cx$
= $A + (B\gamma + C)x + B\xi x^2$

for all $x \in K$. This shows that $A = 0, B\gamma + C = 0, B\xi = 0$. Subcase (i-1). B = 0. Since $C = -B\gamma$, we obtain C = 0 and hence $x \oplus y = 0$ for all $x, y \in K$. This shows that $(0 \oplus x) \oplus x = 0$. Using formula (3.4) we obtain

$$\begin{aligned} (x \ominus y) \ominus z &= (x + \gamma y + \varepsilon xy + \xi y^2) \ominus z \\ &= (x + \gamma y + \varepsilon xy + \xi y^2) + \gamma z + \\ &\varepsilon (x + \gamma y + \varepsilon xy + \xi y^2) z + \xi z^2 \\ &= x + \gamma y + \gamma z + \varepsilon xy + \xi (y^2 + z^2) \\ &+ \varepsilon (x + \gamma y + \varepsilon xy + \xi y^2) z \end{aligned}$$

and

$$x \ominus (z \oplus y) = x \ominus 0 = x$$

By (III), we obtain $\gamma = 0, \varepsilon = 0, \xi = 0$, proving that $x \ominus y = x$. Hence $x \oplus y = 0$ and $x \ominus y = x$ show that $(K, \oplus, \ominus, 0)$ is not a linear-quadratic β -algebra. Subcase (i-2). $\xi = 0$. We apply this condition to the formula (3.4), and obtain $x \ominus y = x + \gamma y + \varepsilon x y$. It follows that $0 \ominus x = \gamma x$ and hence $0 = (0 \ominus x) \oplus x = \gamma x \oplus x = A + B(\gamma x) + Cx = A + (B\gamma + C)x$ for all $x \in K$. It follows that $A = 0, B\gamma + C = 0$. Hence $x \oplus y = B(x - \gamma y)$. It follows that

$$\begin{aligned} x \ominus (z \oplus y) &= x + \gamma (z \oplus y) + \varepsilon x (z \oplus y) \\ &= x + \gamma B (z - \gamma y) + \varepsilon B x (z - \gamma y) \\ &= x + \gamma B z - \gamma^2 B y + \varepsilon B x z - \varepsilon B \gamma x y \end{aligned}$$

and

$$\begin{array}{lll} (x \ominus y) \ominus z &=& (x + \gamma y + \varepsilon xy) \ominus z \\ &=& x + \gamma y + \varepsilon xy + \gamma z + \varepsilon (x + \gamma y + \varepsilon xy)z \end{array}$$

By (III), we obtain $\varepsilon = 0$ and $\gamma(1 + \gamma)B = 0$. If $\gamma = 0$, then $x \oplus y = Bx$ and $x \ominus y = x$. If B = 0, then it is the same case as subcase (i-1). If $\gamma = -1$, then $x \oplus y = B(x + y)$ and $x \ominus y = x - y$. This shows that $(K, \oplus, \ominus, 0)$ is not a linear-quadratic β -algebra.

Case (ii). $e \neq 0$. It follows from (3.3) that $\alpha = -\gamma e - \xi e^2, \beta = 1 - \varepsilon e, \delta = 0$. Hence

(3.5)
$$x \ominus y = (\gamma e - \xi e^2) + (1 - \varepsilon e)x + \gamma y + \varepsilon xy + \xi y^2$$

Subcase (ii-1). $\xi \neq 0$. The formula (3.5) can be written as

(3.6)
$$x \ominus y = x + (\gamma + \varepsilon x)(y - e) + \xi(y^2 - e^2)$$

If y := e in (3.6), then $x \ominus e = x + (\gamma + \varepsilon x)(e - e) + \xi(e^2 - e^2) = x$. If x := e and y := x in (3.6), then $e \ominus x = x + (\gamma + \varepsilon e)(x - e) + \xi(x^2 - e^2)$. It follows that

$$e = (e \ominus x) \oplus x$$

= $A + B(e \ominus x) + Cx$
= $A + B[e + (\gamma + \varepsilon e)(x - e) + \xi(x^2 - e^2)] + Cx$
= $[A + Be - B(\gamma + \varepsilon e)e - B\xi e^2] + [B(\gamma + \varepsilon e) + C]x + B\xi x^2$

for all $x \in K$, and hence we obtain

$$B\xi = 0$$

$$B(\gamma + \varepsilon e) + C = 0$$

$$A + Be - B(\gamma + \varepsilon e)e - B\xi e^{2} = 0$$

Since $\xi \neq 0$, we have B = 0 and hence C = 0, A = 0, i.e., $x \oplus y = 0$ and $x \oplus y = x + (\gamma + \varepsilon x)(y - e) + \xi(y^2 - e^2)$ does not form a β -algebra, since $e \oplus (e \oplus e) = e - e(\gamma + \varepsilon e) - \xi e^2$ and $(e \oplus e) \oplus e = e$.

Subcase (ii-2). $\xi=0.$ The formula can be written as

(3.7)
$$x \ominus y = x + (\gamma + \varepsilon x)(y - e)$$

It follows that $x \ominus e = x + (\gamma + \varepsilon x)(e - e) = x$ and $e \ominus x = e + (\gamma + \varepsilon e)(x - e)$. By (II) we obtain the following.

$$e = (e \ominus x) \oplus x$$

= $[e + (\gamma + \varepsilon e)(x - e)] \oplus x$
= $A + B[e + (\gamma + \varepsilon e)(x - e)] + Cx$
= $[A + Be - B(\gamma + \varepsilon e)e] + [B(\gamma + \varepsilon e) + C]x$

for all $x \in K$, and hence we obtain

$$A + Be - B(\gamma + \varepsilon e)e = e$$
$$B(\gamma + \varepsilon e) + C = 0$$

Hence $A = e + Be[\gamma + \varepsilon e - 1]$ and $C = -B(\gamma + \varepsilon e)$. It follows that

(3.8)
$$x \oplus y = [e + Be(\gamma + \varepsilon e - 1)] + Bx - B(\gamma + \varepsilon e)y$$

Using formulas (3.7) and (3.8), we obtain

$$\begin{aligned} x \ominus (z \oplus y) &= x + (\gamma + \varepsilon x)(z \oplus y - e) \\ &= x + (\gamma + \varepsilon x)[[e + Be(\gamma + \varepsilon e - 1)] + Bz - B(\gamma + \varepsilon e)y - e] \\ &= x + (\gamma + \varepsilon x)[[Be(\gamma + \varepsilon e - 1)] + Bz - B(\gamma + \varepsilon e)y] \\ &= x + B(\gamma + \varepsilon x)[e(\gamma + \varepsilon e - 1) + z - (\gamma + \varepsilon e)y] \end{aligned}$$

K. S. So and Y. H. Kim

By formula (3.7) we obtain

$$\begin{aligned} (x \ominus y) \ominus z &= x \ominus y + (\gamma + \varepsilon(x \ominus y))(z - e) \\ &= x + (\gamma + \varepsilon x)(y - e) + [\gamma + \varepsilon(x + (\gamma + \varepsilon x)(y - e))](z - e) \\ &= x + (\gamma + \varepsilon x)[(y - e) + (1 + \varepsilon(y - e))(z - e)] \end{aligned}$$

By (III), we have

$$B(\gamma + \varepsilon x)[e(\gamma + \varepsilon e - 1) + z - (\gamma + \varepsilon e)y] = (\gamma + \varepsilon x)[(y - e) + (1 + \varepsilon (y - e))(z - e)]$$

Subcase (ii-2-a). $\gamma = \epsilon = 0$. We obtain $\beta = 1, \alpha = 0$ and hence $x \ominus y = x$, $x \oplus y = (e - Be) + Bx$, a linear β -algebra.

Subcase (ii-2-b). $\gamma + \varepsilon x \neq 0$ for all $x \in K$. We obtain the following formula.

$$B[e(\gamma + \varepsilon e - 1) + z - (\gamma + \varepsilon e)y]$$

= $(y - e) + (1 + \varepsilon(y - e))(z - e)$

for all $y, z \in K$. This shows that $\varepsilon = 0, \gamma = -1, \delta = 0, \beta = 1, \alpha = e$ and A = -eand B = C = 1. Hence $x \oplus y = x + y - e$ and $x \oplus y = x - y + e$, i.e., (K, \oplus, \oplus, e) is a linear β -algebra which is not a quadratic-linear β -algebra. Hence there is no linear-quadratic β -algebra which is not a linear β -algebra. \Box

Problem. Construct a complete quadratic β -algebra over a field, i.e., $x \oplus y$ and $x \oplus y$ are both polynomials of x and y of degree 2.

4. Some Relations of Binary Operations in β -algebras

In this section, we discuss some relations of binary operations in β -algebras. For example, given a groupoid (X, +), we want to know the structure of (X, -) if (X, +, -, 0) is a β -algebra. Given a non-empty set X, a groupoid (X, *) is said to be a *left-zero semigroup* if x * y = x for all $x, y \in X$. Similarly, a groupoid (X, *) is said to be a *right-zero semigroup* if x * y = y for all $x, y \in X$.

Proposition 4.1. If (X, \oplus) is a left-zero semigroup and if $(X, \oplus, \ominus, 0)$ is a β -algebra, then (X, \ominus) is also a left-zero semigroup.

Proof. Assume that $(X, \oplus, \ominus, 0)$ is a β -algebra. Then $x \ominus 0 = x$ for all $x \in X$, and $(x \ominus y) \ominus z = x \ominus (z \oplus y) = x \ominus z$, i.e., $(x \ominus y) \ominus z = x \ominus z$ for all $x, y, z \in X$. It follows that $x \ominus y = (x \ominus y) \ominus 0 = x \ominus 0 = x$, i.e., $x \ominus y = x$, for all $x, y \in X$, proving that (X, \ominus) is a left-zero semigroup. \Box

Proposition 4.2. Let $(X, \oplus, 0)$ be an algebra with $0 \oplus x = 0$ for all $x \in X$. If (X, \oplus) is a left-zero semigroup, then $(X, \oplus, \oplus, 0)$ is a β -algebra.

Proof. Since (X, \ominus) is a left-zero semigroup, the conditions (I) and (III) hold. It follows from $0 \oplus x = 0$ for all $x \in X$ that $0 = 0 \oplus x = (0 \ominus x) \oplus x$, proving the proposition.

Corollary 4.3. Let (X, *, 0) be a BCK-algebra. If (X, \ominus) is a left-zero semigroup, then $(X, *, \ominus, 0)$ is a β -algebra.

Proof. Straightforward.

Proposition 4.4. Let $(X, \oplus, 0)$ be an algebra with $0 \oplus x = 0$ for all $x \in X$. If $(X, \oplus, \ominus, 0)$ is a β -algebra, then (X, \ominus) is a left-zero semigroup.

Proof. Let $(X, \oplus, \ominus, 0)$ be a β -algebra. If we let z := 0 in (III), then $x \ominus y = (x \ominus y) \ominus 0 = x \ominus (0 \oplus y) = x \ominus 0 = x$ for all $x, y \in X$, proving the proposition. \Box

Proposition 4.5. Let (X, \oplus) be a right-zero semigroup. If $(X, \oplus, \ominus, 0)$ is a β -algebra, then $X = \{0\}$.

Proof. Assume $(X, \oplus, \ominus, 0)$ is a β -algebra. Since (X, \oplus) is a right-zero semigroup, by (II), we have $0 = (0 \ominus x) \oplus x = x$ for all $x \in X$, proving that $X = \{0\}$. \Box

Proposition 4.6. Let (X, \ominus) be a right-zero semigroup. If $(X, \oplus, \ominus, 0)$ is a β -algebra, then $X = \{0\}$.

Proof. Assume $(X, \oplus, \ominus, 0)$ is a β -algebra. Since (X, \ominus) is a right-zero semigroup, by (II), we have $0 = (0 \ominus x) \oplus x = x \oplus x$ for all $x \in X$. By (III), we have $z = (x \ominus y) \ominus z = x \ominus (z \oplus y) = z \oplus y$ for all $y, z \in X$. It follows that $x = x \oplus x = 0$ for all $x \in X$, proving the proposition.

Theorem 4.7. Let (K, +, -, 0) be a field with $|K| \ge 4$ and let $e \in K$. Define a binary operation " \oplus " on K by $x \oplus y := p(x, y)$, i.e., a quadratic polynomial of x and y in K. If $e \oplus x = e$ for all $x \in K$, then $x \oplus y = e + (A + Bx + Cy)(x - e)$ for all $x, y \in K$ where $A, B, C \in K$.

Proof. Assume p(x, y) := A + Bx + Cy for all $x, y \in K$ where $A, B, C \in K$. Since $e \oplus x = e$, we have $e = e \oplus y = A + Be + Cy$ for all $y \in K$. It shows that A = e(1 - B), C = 0. Hence $x \oplus y = e(1 - B) + Bx = e + B(x - e)$. Assume $p(x, y) := A + Bx + Cy + Dx^2 + Exy + Fy^2$. Then

$$e = e \oplus y$$

= $A + Be + Cy + De^2 + Eey + Fy^2$
= $(A + Be + De^2) + (C + Ee)y + Fy^2$

It follows that $F = 0, C + Ee = 0, A + Be + De^2 = e$. Hence

$$p(x,y) = (e - Be - De^{2}) + Bx - Eey + Dx^{2} + Exy$$

= $e + [B + D(x + e) + Ey](x - e)$
= $e + (B + De + Dx + Ey)(x - e),$

i.e., p(x,y) is of the form p(x,y) = e + (A + Bx + Cy)(x - e). This shows that $x \oplus y = e + q(x,y)(x - e)$ where q(x,y) is a linear polynomial of degree ≤ 1 . \Box

Using Theorem 4.7 and Proposition 4.2, we obtain the following.

Corollary 4.8. Let (K, +, -, 0) be a field with $|K| \ge 4$ and let $e \in K$. Define a binary operation " \oplus " on K by

$$x \oplus y := e + q(x, y)(x - e)$$

where q(x, y) is any polynomial of x and y in K. If $x \ominus y := x$ for all $x, y \in K$, then (K, \oplus, \ominus, e) is a β -algebra.

References

- P. J. Allen, H. S. Kim and J. Neggers, *B-algebras and groups*, Sci. Math. Japo., 9(2003), 9–17.
- [2] A. Iorgulescu, Algebras of logic as BCK-algebras, Editura ASE, Bucharest, 2008.
- [3] K. Iséki, On BCI-algebras, Math. Seminar Notes, 8(1980), 125–130.
- [4] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica, 23(1978), 1–26.
- [5] H. S. Kim and H. G. Park, On 0-commutative B-algebras, Sci. Math. Japo., 62(2005), 7–12.
- [6] Y. H. Kim and K. S. So, β-algebras and related topics, Comm. Korean Math. Soc., 27(2012), 217–222.
- [7] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa, Seoul, 1994.
- [8] J. Neggers and H. S. Kim, On B-algebras, Mat. Vesnik, 54(2002), 21-29.
- [9] J. Neggers and H. S. Kim, On β-algebras, Mat. Slovaca, **52**(2002), 517–530.
- [10] H. Yisheng, BCI-algebras, Science Press, Beijing, 2006.