Browse > Article
http://dx.doi.org/10.4134/JKMS.j200219

ON PETERSON'S OPEN PROBLEM AND REPRESENTATIONS OF THE GENERAL LINEAR GROUPS  

Phuc, Dang Vo (Faculty of Education Studies University of Khanh Hoa)
Publication Information
Journal of the Korean Mathematical Society / v.58, no.3, 2021 , pp. 643-702 More about this Journal
Abstract
Fix ℤ/2 is the prime field of two elements and write 𝒜2 for the mod 2 Steenrod algebra. Denote by GLd := GL(d, ℤ/2) the general linear group of rank d over ℤ/2 and by ${\mathfrak{P}}_d$ the polynomial algebra ℤ/2[x1, x2, …, xd] as a connected unstable 𝒜2-module on d generators of degree one. We study the Peterson "hit problem" of finding the minimal set of 𝒜2-generators for ${\mathfrak{P}}_d$. Equivalently, we need to determine a basis for the ℤ/2-vector space $$Q{\mathfrak{P}}_d:={\mathbb{Z}}/2{\otimes}_{\mathcal{A}_2}\;{\mathfrak{P}}_d{\sim_=}{\mathfrak{P}}_d/{\mathcal{A}}^+_2{\mathfrak{P}}_d$$ in each degree n ≥ 1. Note that this space is a representation of GLd over ℤ/2. The problem for d = 5 is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree n = r(2t - 1) + 2ts with r = d = 5, s = 8 and t an arbitrary non-negative integer. An application of this study to the cases t = 0 and t = 1 shows that the Singer algebraic transfer of rank 5 is an isomorphism in the bidegrees (5, 5 + (13.20 - 5)) and (5, 5 + (13.21 - 5)). Moreover, the result when t ≥ 2 was also discussed. Here, the Singer transfer of rank d is a ℤ/2-algebra homomorphism from GLd-coinvariants of certain subspaces of $Q{\mathfrak{P}}_d$ to the cohomology groups of the Steenrod algebra, $Ext^{d,d+*}_{\mathcal{A}_2}$ (ℤ/2, ℤ/2). It is one of the useful tools for studying these mysterious Ext groups.
Keywords
Steenrod algebra; Peterson hit problem; Singer algebraic transfer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. K. Tin, The admissible monomial basis for the polynomial algebra of five variables in degree 2s+1 + 2s - 5, East-West J. Math. 16 (2014), no. 1, 34-46.
2 J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214. https://doi.org/10.1007/BF02564578   DOI
3 N. K. Tin, The admissible monomial basis for the polynomial algebra of five variables in degree eight, Journal of Mathematical Sciences and Applications 2 (2014), no. 2, 21-24, https://doi.org/10.12691/jmsa-2-2-2, available online at http://pubs.sciepub.com/jmsa/2/2/2/   DOI
4 N. K. Tin, The admissible monomial basis for the polynomial algebra as a module over Steenrod algebra in some degrees, JP J. Algebra Number Theory Appl. 46 (2020), no. 1, 55-68. http://dx.doi.org/10.17654/NT046010055   DOI
5 N. K. Tin, The hit problem for the polynomial algebra as a module over Steenrod algebra, I, JP J. Algebra Number Theory Appl. 47 (2020), no. 1, 67-86. http://dx.doi.org/10.17654/NT047010067   DOI
6 W. M. Singer, On the action of the Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc. 111 (1991), no. 2, 577-583. https://doi.org/10.1090/S0002-9939-1991-1045150-9   DOI
7 S. V. Ault and W. Singer, On the homology of elementary Abelian groups as modules over the Steenrod algebra, J. Pure Appl. Algebra 215 (2011), no. 12, 2847-2852. https://doi.org/10.1016/j.jpaa.2011.04.004   DOI
8 J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104. https://doi.org/10.2307/1970147   DOI
9 J. Adem, The iteration of the Steenrod squares in algebraic topology, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 720-726. https://doi.org/10.1073/pnas.38.8.720   DOI
10 M. A. Alghamdi, M. C. Crabb, and J. R. Hubbuck, Representations of the homology of BV and the Steenrod algebra. I, in Adams Memorial Symposium on Algebraic Topology, 2 (Manchester, 1990), 217-234, London Math. Soc. Lecture Note Ser., 176, Cambridge Univ. Press, Cambridge, 1992. https://doi.org/10.1017/CBO9780511526312.020   DOI
11 J. M. Boardman, Modular representations on the homology of powers of real projective space, in Algebraic topology (Oaxtepec, 1991), 49-70, Contemp. Math., 146, Amer. Math. Soc., Providence, RI, 1993. https://doi.org/10.1090/conm/146/01215   DOI
12 A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The mod-p lower central series and the Adams spectral sequence, Topology 5 (1966), 331-342. https://doi.org/10.1016/0040-9383(66)90024-3   DOI
13 T. W. Chen, Determination of $Ext^{5,*}_{\mathfrak{A}}$(ℤ/2, ℤ/2), Topol. Appl. 158 (2011), no. 5, 660-689. https://doi.org/10.1016/j.topol.2011.01.002   DOI
14 P. H. Cho'n and L. M. Ha, Lambda algebra and the Singer transfer, C. R. Math. Acad. Sci. Paris 349 (2011), no. 1-2, 21-23. https://doi.org/10.1016/j.crma.2010.11.008   DOI
15 M. C. Crabb and J. R. Hubbuck, Representations of the homology of BV and the Steenrod algebra II, in Algebra Topology: New trend in localization and periodicity; in Progr. Math. 136 (1996), 143-154. https://doi.org/10.1007/978-3-0348-9018-2_9   DOI
16 M. D. Crossley, Monomial bases for H*(ℂP × ℂP) over ${\mathfrak{A}}$(p), Trans. Amer. Math. Soc. 351 (1999), no. 1, 171-192. https://doi.org/10.1090/S0002-9947-99-02060-7   DOI
17 G. Walker and R. M. W. Wood, Weyl modules and the mod 2 Steenrod algebra, J. Algebra 311 (2007), no. 2, 840-858. https://doi.org/10.1016/j.jalgebra.2007.01.021   DOI
18 M. D. Crossley, ${\mathcal{A}}$(p) generators for H*(V ) and Singer's homological transfer, Math. Z. 230 (1999), no. 3, 401-411. https://doi.org/10.1007/PL00004698   DOI
19 Nguyen H. V. Hu'ng and T. N. Nam, The hit problem for the Dickson algebra, Trans. Amer. Math. Soc. 353 (2001), no. 12, 5029-5040. https://doi.org/10.1090/S0002-9947-01-02705-2   DOI
20 Nguyen H. V. Hu'ng and T. N. Nam, The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4065-4089. https://doi.org/10.1090/S0002-9947-05-03889-4   DOI
21 F. P. Peterson, Generators of H*(ℝP × ℝP) as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., Providence, RI, April 1987.
22 N. Sum, On the determination of the Singer transfer, Vietnam Journal of Science, Technology and Engineering, 60 (2018), no. 1, 3-16. https://doi.org/10.31276/VJSTE.60(1).03, available online at https://vietnamscience.vjst.vn/index.php/VJSTE/article/view/100.   DOI
23 D. J. Pengelley and F. Williams, Sparseness for the symmetric hit problem at all primes, Math. Proc. Cambridge Philos. Soc. 158, (2015), no. 2, 269-274. https://doi.org/10.1017/S0305004114000668   DOI
24 D. V. Phuc, The "hit" problem of five variables in the generic degree and its application, Topol. Appl. 282 (2020), 107321, in press. https://doi.org/10.1016/j.topol.2020.107321   DOI
25 F. P. Peterson, A-generators for certain polynomial algebras, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 311-312. https://doi.org/10.1017/S0305004100067803   DOI
26 D. V. Phuc, The hit problem for the polynomial algebra of five variables in degree seventeen and its application, East-West J. Math. 18 (2016), no. 1, 27-46.
27 D. V. Phuc, The Peterson hit problem in some types of degrees and applications, PhD. thesis, Quy Nhon University, 2017.
28 D. V. Phuc, On Peterson's open problem and representations of the general linear groups, Preprint 2020, 61 pages, available online at http://arxiv.org/abs/1907.08768.
29 D. V. Phuc, A note on the epimorphism of the fifth algebraic transfer, JP J. Algebra Number Theory Appl. 48 (2020), no. 2, 193-201. http://dx.doi.org/10.17654/NT048020193   DOI
30 D. V. Phuc, A note on the non-trivial elements in the cohomology groups of the Steenrod algebra, Adv. Math. Sci. J. 10 (2021), no. 1, 367-376. https://doi.org/10.37418/amsj.10.1.36   DOI
31 R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 307-309. https://doi.org/10.1017/S0305004100067797   DOI
32 D. J. Pengelley and F. Williams, A new action of the Kudo-Araki-May algebra on the dual of the symmetric algebras, with applications to the hit problem, Algebr. Geom. Topol. 11 (2011), no. 3, 1767-1780. https://doi.org/10.2140/agt.2011.11.1767   DOI
33 R. M. W. Wood, Problems in the Steenrod algebra, Bull. London Math. Soc. 30 (1998), no. 5, 449-517. https://doi.org/10.1112/S002460939800486X   DOI
34 H. Zare, On the relation between Dyer-Lashof algebra and the hit problems, Preprint 2016, 15 pages.
35 J. S. P. Wang, On the cohomology of the mod - 2 Steenrod algebra and the nonexistence of elements of Hopf invariant one, Illinois J. Math. 11 (1967), 480-490. http://projecteuclid.org/euclid.ijm/1256054570   DOI
36 M. F. Mothebe and L. Uys, Some relations between admissible monomials for the polynomial algebra, Int. J. Math. Math. Sci. 2015 (2015), Art. ID 235806, 7 pp. https://doi.org/10.1155/2015/235806   DOI
37 T. N. Nam, ${\mathcal{A}}$-generateurs generiques pour l'algebre polynomiale, Adv. Math. 186 (2004), no. 2, 334-362. https://doi.org/10.1016/j.aim.2003.08.004   DOI
38 T. N. Nam, Transfert algebrique et action du groupe lineaire sur les puissances divisees modulo 2, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 5, 1785-1837.   DOI
39 D. J. Pengelley and F. Williams, Beyond the hit problem: minimal presentations of odd-primary Steenrod modules, with application to CP(∞) and BU, Homology Homotopy Appl. 9 (2007), no. 2, 363-395. http://projecteuclid.org/euclid.hha/1201127342   DOI
40 G. Walker and R. M. W. Wood, Young tableaux and the Steenrod algebra, in Proceedings of the School and Conference in Algebraic Topology, 379-397, Geom. Topol. Monogr., 11, Geom. Topol. Publ., Coventry, 2007.
41 G. Walker and R. M. W. Wood, Polynomials and the mod 2 Steenrod Algebra: Volume 1, The Peterson hit problem, in London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, January 11, 2018.
42 C. T. C. Wall, Generators and relations for the Steenrod algebra, Ann. of Math. (2) 72 (1960), 429-444. https://doi.org/10.2307/1970225   DOI
43 W. M. Singer, Rings of symmetric functions as modules over the Steenrod algebra, Algebr. Geom. Topol. 8 (2008), no. 1, 541-562. https://doi.org/10.2140/agt.2008.8.541   DOI
44 I. Madsen, On the action of the Dyer-Lashof algebra in H*(G), Pacific J. Math. 60 (1975), no. 1, 235-275. http://projecteuclid.org/euclid.pjm/1102868451   DOI
45 D. J. Pengelley and F. Williams, Global structure of the mod two symmetric algebra, H*(BO; ${\mathbb{F}}_2$), over the Steenrod algebra, Algebr. Geom. Topol. 3 (2003), 1119-1138. https://doi.org/10.2140/agt.2003.3.1119   DOI
46 D. V. Phuc, ${\mathcal{A}}$-generators for the polynomial algebra of five variables in degree 5(2t - 1) + 6.2t, Commun. Korean Math. Soc. 35 (2020), no. 2, 371-399. https://doi.org/10.4134/CKMS.c190076   DOI
47 N. K. Tin, On Singer's conjecture for the fifth algebraic transfer, Preprint 2016, 25 pages, available online at http://arxiv.org/abs/1609.02250.
48 A. S. Janfada and R. M. W. Wood, The hit problem for symmetric polynomials over the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 133 (2002), no. 2, 295-303. https://doi.org/10.1017/S0305004102006059   DOI
49 R. R. Bruner, L. M. Ha, and N. H. V. Hung, On the behavior of the algebraic transfer, Trans. Amer. Math. Soc. 357 (2005), no. 2, 473-487. https://doi.org/10.1090/S0002-9947-04-03661-X   DOI
50 Nguyen H. V. Hu'ng and F. P. Peterson, ${\mathcal{A}}$-generators for the Dickson algebra, Trans. Amer. Math. Soc. 347 (1995), no. 12, 4687-4728. https://doi.org/10.2307/2155059   DOI
51 M. Kameko, Products of projective spaces as Steenrod modules, PhD. thesis, The Johns Hopkins University, ProQuest LLC, Ann Arbor, MI, 1990, 29 pages.
52 M. H. Le, Sub-Hopf algebras of the Steenrod algebra and the Singer transfer, Geom. Topol. Publ. 11 (2007), 101-124. https://doi.org/10.2140/gtm.2007.11.81   DOI
53 W.-H. Lin, Ext4,*A(ℤ/2, ℤ/2) and Ext5,*A(ℤ/2, ℤ/2), Topology Appl. 155 (2008), no. 5, 459-496. https://doi.org/10.1016/j.topol.2007.11.003   DOI
54 A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Proc. Natl. Acad. Sci. USA. 46 (1960), no. 7, 978-981. https://doi.org/10.1073/pnas.46.7.978   DOI
55 D. J. Pengelley and F. Williams, The hit problem for H*(BU(2); ${\mathbb{F}}_p$), Algebr. Geom. Topol. 13 (2013), no. 4, 2061-2085. https://doi.org/10.2140/agt.2013.13.2061   DOI
56 N. Minami, The iterated transfer analogue of the new doomsday conjecture, Trans. Amer. Math. Soc. 351 (1999), no. 6, 2325-2351. https://doi.org/10.1090/S0002-9947-99-02037-1   DOI
57 M. F. Mothebe, Dimension result for the polynomial algebra ${\mathbb{F}}_2$[x1, . . . , xn] as a module over the Steenrod algebra, Int. J. Math. Math. Sci. 2013 (2013), Art. ID 150704, 6 pp. https://doi.org/10.1155/2013/150704   DOI
58 M. F. Mothebe, P. Kaelo, and O. Ramatebele, Dimension formula for the polynomial algebra as a module over the Steenrod algebra in degrees less than or equal to 12, Journal of Mathematics Research 8 (2016), no. 5, 92-100. https://doi.org/10.5539/jmr.v8n5p92   DOI
59 D. V. Phuc and N. Sum, On a minimal set of generators for the polynomial algebra of five variables as a module over the Steenrod algebra, Acta Math. Vietnam. 42 (2017), no. 1, 149-162. https://doi.org/10.1007/s40306-016-0190-z   DOI
60 D. V. Phuc and N. Sum, On the generators of the polynomial algebra as a module over the Steenrod algebra, C. R. Math. Acad. Sci. Paris 353 (2015), no. 11, 1035-1040. https://doi.org/10.1016/j.crma.2015.09.002   DOI
61 S. B. Priddy, On characterizing summands in the classifying space of a group. I, Amer. J. Math. 112 (1990), no. 5, 737-748. https://doi.org/10.2307/2374805   DOI
62 J. Repka and P. Selick, On the subalgebra of H*((RP)n; ${\mathbb{F}}_2$) annihilated by Steenrod operations, J. Pure Appl. Algebra 127 (1998), no. 3, 273-288. https://doi.org/10.1016/S0022-4049(96)00177-6   DOI
63 J. Silverman and W. Singer, On the action of Steenrod squares on polynomial algebras. II, J. Pure Appl. Algebra 98 (1995), no. 1, 95-103. https://doi.org/10.1016/0022-4049(95)90027-6   DOI
64 W. M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), no. 4, 493-523. https://doi.org/10.1007/BF01221587   DOI
65 N. E. Steenrod, Cohomology operations, Lectures by N. E. STeenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, NJ, 1962.
66 N. Sum, On a construction for the generators of the polynomial algebra as a module over the Steenrod algebra, in Algebraic topology and related topics, 265-286, Trends Math, Birkhauser/Springer, Singapore, 2019. https://doi.org/10.1007/978-981-13-5742-8_14
67 N. Sum, The negative answer to Kameko's conjecture on the hit problem, Adv. Math. 225 (2010), no. 5, 2365-2390. https://doi.org/10.1016/j.aim.2010.04.026   DOI
68 N. Sum, On the Peterson hit problem of five variables and its applications to the fifth Singer transfer, East-West J. Math. 16 (2014), no. 1, 47-62.
69 N. Sum, On the Peterson hit problem, Adv. Math. 274 (2015), 432-489. https://doi.org/10.1016/j.aim.2015.01.010   DOI
70 N. Sum, The kernel of Kameko's homomorphism and the Peterson hit problem, Preprint 2019, 31 pages, available online at http://viasm.edu.vn/xuat-ban/tien-an-phamviasm/?filter=2019.
71 N. Sum, The squaring operation and the Singer algebraic transfer, Vietnam J. Math. (2020), in press. https://doi.org/10.1007/s10013-020-00423-1   DOI
72 M. C. Tangora, On the cohomology of the Steenrod algebra, Math. Z. 116 (1970), 18-64. https://doi.org/10.1007/BF01110185   DOI