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MODULAR INVARIANTS UNDER THE ACTIONS OF SOME

REFLECTION GROUPS RELATED TO WEYL GROUPS

Kenshi Ishiguro, Takahiro Koba, Toshiyuki Miyauchi, and Erika Takigawa

Abstract. Some modular representations of reflection groups related to

Weyl groups are considered. The rational cohomology of the classifying
space of a compact connected Lie group G with a maximal torus T is ex-

pressed as the ring of invariants, H∗(BG;Q) ∼= H∗(BT ;Q)W (G), which

is a polynomial ring. If such Lie groups are locally isomorphic, the ra-
tional representations of their Weyl groups are equivalent. However, the

integral representations need not be equivalent. Under the mod p reduc-
tions, we consider the structure of the rings, particularly for the Weyl

group of symplectic groups Sp(n) and for the alternating groups An as

the subgroup of W (SU(n)). We will ask if such rings of invariants are
polynomial rings, and if each of them can be realized as the mod p coho-

mology of a space. For n = 3, 4, the rings under a conjugate of W (Sp(n))

are shown to be polynomial, and for n = 6, 8, they are non–polynomial.
The structures of H∗(BTn−1;Fp)An will be also discussed for n = 3, 4.

The invariant theory of some finite groups will be discussed, [20] and [19].
For any prime p we note that H∗(BTn;Fp) = Fp[t1, t2, . . . , tn], a polynomial
ring generated by n elements of degree 2. When p does not divide the or-
der of a subgroup W of GL(n,Fp), it is well-known that the invariant ring
Fp[t1, t2, . . . , tn]W is a polynomial ring if and only if W is a pseudo-reflection
group, [13, §20-2, §20-3]. This result can fail in a modular case. Namely, even
if W is a pseudo-reflection group, the invariant ring need not be a polynomial
ring for |W | ≡ 0 mod p. This paper concerns such uncertainty.

The Weyl group of SU(n) is isomorphic to the symmetric group Σn. The
reflection group W (SU(n)) is generated by the permutation matrices Σn−1 and
an (n− 1)× (n− 1) reflection, [14, Ch. 3]. For instance,

W (SU(3)) =

〈(
0 1
1 0

)
,

(
1 −1
0 −1

)〉
.
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In [15], Kudo considers the invariant ring H∗(BTn−1;Fp)Wn,d , where Wn,d =

φdW (SU(n))φ−1
d = W (SU(n)/Zd) for the following matrix:

φd =


1 0

. . .
...

1 0
1−d
d · · · 1−d

d
1
d

 .

In this paper, we consider some mod 2 invariant rings related to the sym-

plectic groups, namely H∗(BTn;F2)Wn where Wn is the mod 2 reduction
of Wn = φ2W (Sp(n))φ−1

2 . We note that the reflection group W (Sp(n)) is
generated by the permutation matrices Σn and the n × n diagonal matrix(−1

1 . . .
1

)
. We also note that φdW (Sp(n))φ−1

d ⊂ GL(n,Z) if and only if

d = 2.
For a subgroup W of GL(n,F2), we see [18, §8.1] that the Dickson alge-

bra F2[t1, t2, . . . , tn]GL(n,F2) is included in the invariant ring F2[t1, t2, . . . , tn]W ,
and F2[t1, t2, . . . , tn]GL(n,F2) = F2[cn,n−1, cn,n−2, . . . , cn,0]. Let W ∗ denote the
dual representation of a subgroup W of GL(n,Fp). Some comparisons between

H∗(BTn;Fp)W and H∗(BTn;Fp)W
∗

are done in [9] and [10]. In the case of
n = d, the representation Wn,n = W (PSU(n)) is equivalent to the dual rep-
resentation W (SU(n))∗. It is known, [7], that for p ≥ 5, the invariant ring
H∗(BT p−1;Fp)W (SU(p))∗ is not polynomial. At p = 2 or 3, the invariant rings
are polynomial. Kudo shows [15] that even H∗(BT 3;F2)W4,4 is also polyno-
mial. However, for n = 6, 8, the rings H∗(BTn−1;F2)Wn,n are not polynomial,
and the rings H∗(BTn−1;F3)Wn,n are not polynomial for n = 6, 9. Duan an-
nounced some related work at The 2nd Pan-Pacific International Conference
on Topology and Applications, [4].

Although |Wn| = |W (Sp(n))|
2 , in a way, our results are similar to the ones in

[15] as long as n is small. Namely, for n = 3, 4, we will show that all of the invari-

ant rings are polynomial rings, though H∗(BTn;F2)Wn 6∼= H∗(BTn;F2)Wn
∗
.

And, except H∗(BT 3;F2)W3
∗ ∼= H∗(BT 3;F2)W (SU(4)), the other three invari-

ant rings are not isomorphic to the mod 2 cohomology of spaces. See [3],
[17, §3], [18, Ch 10], and [1] for a detail of the realization problem.

Theorem 1. (a) H∗(BT 3;F2)W3 = F2[x2, x8, x12], where x2 = t3, x8 = (t1 +
t2)4 + (t1t2 + t1t3 + t2t3)2 + t1t2t3(t1 + t2 + t3), and x12 = {t1t2(t1 + t2) +
t1t3(t1 + t3) + t2t3(t2 + t3)}2 + t1t2t3(t31 + t32 + t33) + t21t

2
2t

2
3.

(b) H∗(BT 3;F2)W3
∗

= F2[y4, y6, y8], where y4 = t21 +t22 +t1t2, y6 = t1t2(t1 +
t2), and y8 = c3,2 = (t1 + t2 + t3)4 + (t1t2 + t1t3 + t2t3)2 + t1t2t3(t1 + t2 + t3).

(c) H∗(BT 3;F2)W3 is not realizable.

Theorem 2. (a) H∗(BT 4;F2)W4 = F2[x2, x4, c4,3, c4,2], where x2 = t4, x4 =
(t1 + t2 + t3)(t1 + t2 + t3 + t4).
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(b) H∗(BT 4;F2)W4
∗

= F2[z4, z6, z8, c4,3], where H∗(BT 3;F2)W (SU(4)) =
F2[z4, z6, z8].

(c) Both of these invariant rings are not realizable.

When n gets larger, our results suggest that the ring H∗(BTn;F2)Wn would
not be a polynomial ring. A direct application of a method of [15] implies
that, for n = 6, 8, they are not polynomial rings, as shown in Proposition 3.1.
While doing this work, the case of n = 5 had been remained open due to a
heavy calculation involved. Now it can be seen [12] that the invariant rings are
polynomial.

The mod p reduction of an integral reflection group is also a reflection group.
The converse need not be true. We will see a few examples using the alternating
groups An as the subgroup of W (SU(n)). For instance, one can see that A3 is
a pseudo–reflection group at p if and only if p = 3. The following shows the
structure of invariant rings under An for small n.

Theorem 3. For An ⊂W (SU(n)), the following hold:
(a) H∗(BT 2;F2)A3 = F2[x4, x6, y6]/x3

4 + x2
6 + y2

6 + x6y6 = 0, where x4 =
t21 + t1t2 + t22, x6 = t21t2 + t1t

2
2, and y6 = t31 + t21t2 + t32.

(b) H∗(BT 2;F3)A3 = F3[t1− t2, t1t2(t1 + t2)] and H∗(BT 2;F3)A
∗
3 = F3[t1 +

t2, t1t2(t1 − t2)]. Both of these are not realizable.
(c) For p ≥ 5, we have H∗(BT 2;Fp)A3 = Fp[x4, x6, z6]/4x3

4 = 27x2
6 + z2

6 ,
where x4 = t21 + t1t2 + t22, x6 = t21t2 + t1t

2
2, and z6 = (t1− t2)(t1 +2t2)(2t1 + t2).

(d) H∗(BT 3;F2)A4 = F2[α4, α6, β6, x8]/α3
4 + α2

6 + β2
6 + α6β6 = 0, where

α4 = (t1 + t2)2 + (t1 + t2)(t1 + t3) + (t1 + t3)2, α6 = (t1 + t2)(t1 + t3)(t2 + t3),
β6 = (t1 + t2)3 + (t1 + t2)2(t1 + t3) + (t1 + t3)3, and x8 = t1t2t3(t1 + t2 + t3).

In §1, we will show some basic results. It includes the matrix presentations,
the order of Wn, systems of parameters and the Dickson algebras. In §2 both
Theorem 1 and Theorem 2 will be proved. For the non–realizability, our proof
uses the classification theorem of 2–compact groups, [2]. Finally in §3, using
Poincaré series and others, non–polynomial cases are discussed.

Major results in this work were announced at a fall meeting of the Japan
Math. Soc., [11] together with The 2nd Pan-Pacific International Conference
on Topology and Applications, Busan Korea [21].

1. Basic results

The integral representation of the Weyl group W (Sp(n)) = (Z/2)noΣn can

be given by

〈
Σn,

(−1
1

. . .
1

)〉
as reflection groups, [14, Ch. 3]. Let φ = φ−1

2

so that φ =

( 1

. . .
1 0

1 ... 1 2

)
=


En−2 0

0 . . . 0 1 0
1 . . . 1 1 2

.
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We will show that φ−1W (Sp(n))φ ⊂ GL(n,Z).

Proposition 1.1. The group Wn = φ−1W (Sp(n))φ is included in GL(n,Z).

Proof. For each σ of the reflections which generate W (Sp(n)), it’s enough to
show that φ−1σφ ∈ GL(n,Z). First recall that Σn−1 ⊂ W (SU(n)), and that
φ−1W (SU(n))φ ⊂ GL(n− 1,Z). Since Σn is generated by Σn−1 together with
the transposition σn−1 switching n − 1 and n, we see φ−1Σnφ is included in
GL(n,Z) by the following:

φ−1σn−1φ =
1

2

 2En−2 0

0 . . . 0 2 0
−1 . . .− 1 −1 1


 En−2 0

0 1
0 1 0


 En−2 0

0 . . . 0 1 0
1 . . . 1 1 2



=

 En−2 0

1 . . . 1 1 2
−1 . . .− 1 0 −1

 .

Moreover we see that

φ−1

(−1
1 . . .

1

)
φ

=
1

2

 2En−2 0

0 . . . 0 2 0
−1 . . .− 1 −1 1




−1
1

. . .

1


 En−2 0

0 . . . 0 1 0
1 . . . 1 1 2



=



−1
1

. . . 0
1

0 . . . 0 1 0
1 0 . . . 0 0 1

 .

This completes the proof. �

Next consider the mod 2 reduction Wn of Wn. Since the scalar matrix
−En ∈W (Sp(n)), it is also contained in Wn. Hence the kernel of the projection

Wn−→Wn contains Z/2. It turns out |Wn| = |Wn|
2 = 2n−1 · n! for n ≥ 3.

Proposition 1.2. For n ≥ 3, the subgroup Wn of GL(n,F2) is isomorphic to
Wn/Z/2.

Proof. Note that Wn
∼= (Z/2)n o Σn. A result of Minkowski tells us, [18,

Lemma 10.7.1], that the kernel of the projection GL(n,Z)−→GL(n,F2) is an
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elementary 2–abelian. For n ≥ 3, the homomorphism Σn−→GL(n,F2) should
be injective. Thus the kernel of Wn−→Wn has to come from diagonal matrices
of W (Sp(n)). The desired result is obtained from the following observation:

φ−1


ε1

ε2

. . .

εn

φ =


ε1

. . . 0
εn−1

εn−ε1
2 . . . εn−εn−1

2 εn

 .

�

We recall how to see if a ring of invariants H∗(BTn;Fp)W is polynomial
for a prime p (see [8, 14, 16, 18]). An element of H∗(BTn;Fp) is considered as
a function of n variables, t1, t2, . . . , tn. A set of n elements x1, x2, . . . , xn ∈
H∗(BTn;Fp)W is said to be a system of parameters if the solution of the
following system of equations

x1(t1, t2, . . . , tn) = 0,

x2(t1, t2, . . . , tn) = 0,
...

xn(t1, t2, . . . , tn) = 0

is trivial. Namely t1 = t2 = · · · = tn = 0. As before, we write H∗(BTn;Fp) =
Fp[t1, t2, . . . , tn]. Let d(x) denote 1

2 deg(x) so that d(ti) = 1 for 1 ≤ i ≤
n. Usually d(x) is said to be the algebraic degree of x, while deg(x) is the
topological degree. According to [18, Proposition 5.5.5], for a finite group W ,
if we can find a system of parameters {x1, x2, . . . , xn} with

∏n
i=1 d(xi) = |W |,

then H∗(BTn;Fp)W = Fp[x1, x2, . . . , xn].
Next we recall some basic things about generators of the Dickson algebra

Fp[t1, t2, . . . , tn]GL(n,Fp), [18, §8.1]. Let

V = Fp〈t1〉 ⊕ Fp〈t2〉 ⊕ · · · ⊕ Fp〈tn〉,

the vector space over Fp with basis t1, t2, . . . , tn. Consider the polynomial

f(X) =
∏

v∈V (X−v). Then f(X) = Xpn

+
∑n−1

i=0 (−1)n−icn,iX
pi

and Fp[t1, t2,

. . . , tn]GL(n,Fp) = Fp[cn,n−1, cn,n−2, . . . , cn,0] with d(cn,i) = pn − pi. For in-
stance, if p = 2 and n = 2, then f(X) = X4 + c2,1X

2 + c2,0X with c2,1 =
t21 + t1t2 + t22 and c2,0 = t21t2 + t1t

2
2. The Dickson invariants cn,i (0 ≤ i ≤ n− 1)

can be expressed using determinants. Consider the following polynomial:

∆n(X) =

∣∣∣∣∣∣∣∣∣
t1 . . . tn X
tp1 . . . tpn Xp

...
...

...

tp
n

1 . . . tp
n

n Xpn

∣∣∣∣∣∣∣∣∣ .
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Then ∆n(X) = cnf(X) where cn = ∆n−1(tn). From this observation, for
p = 2, we see the following:

c3,2 =

∣∣∣∣∣∣
t1 t2 t3
t21 t22 t23
t81 t82 t83

∣∣∣∣∣∣∣∣∣∣∣∣
t1 t2 t3
t21 t22 t23
t41 t42 t43

∣∣∣∣∣∣
and

c4,3 =

∣∣∣∣∣∣∣∣
t1 t2 t3 t4
t21 t22 t23 t24
t41 t42 t43 t44
t16
1 t16

2 t16
3 t16

4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
t1 t2 t3 t4
t21 t22 t23 t24
t41 t42 t43 t44
t81 t82 t83 t84

∣∣∣∣∣∣∣∣
.

2. Polynomial rings and non–realizability

Some invariant elements can be found using orbit sums or orbit polynomials.
A typical example is

∏n
i=1(X + ti) for the permutation representation of Σn.

Another way of finding elements of unstable algebras H∗(BTn;Fp)W can be
given by use of cohomology operations, [18, Ch. 10]. In fact, in the part (a) of
Theorem 1 we see x12 = Sq4(x8).

Proof of Theorem 1. (a) Suppose x2 = t3, x8 = (t1+t2)4+(t1t2+t1t3+t2t3)2+
t1t2t3(t1+t2+t3), x12 = {t1t2(t1+t2)+t1t3(t1+t3)+t2t3(t2+t3)}2+t1t2t3(t31+
t32 + t33) + t21t

2
2t

2
3. We notice that W3 is generated by the 3 reflections:

W3 =

〈0 1 0
1 0 0
0 0 1

 ,

1 0 0
1 1 0
1 0 1

 ,

1 0 0
0 1 0
1 0 1

〉

It is easy to check that the elements x2,x8,x12 are W3–invariant. For in-
stance, the middle matrix sends t1 to t1 +t2 +t3, and fixes both t2 and t3. Con-
sequently x8 is sent to (t1+t3)4+{(t1+t2+t3)(t2+t3)+t2t3}2+(t1+t2+t3)t2t3t1
= x8. The solution of the following system of equations

t3 = 0,

(t1 + t2)4 + (t1t2 + t1t3 + t2t3)2 + t1t2t3(t1 + t2 + t3) = 0,

{t1t2(t1 + t2) + t1t3(t1 + t3) + t2t3(t2 + t3)}2

+t1t2t3(t31 + t32 + t33) + t21t
2
2t

2
3 = 0
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is trivial. Hence {x2, x8, x12} is a system of parameters. Consequently we see

that H∗(BT 3;F2)W3 is the polynomial ring generated by these elements, since
|W3| = 22 · 3! = d(x2) · d(x8) · d(x12).

(b) Notice that {y4, y6, y8} is a system of parameters. Furthermore |W3
∗| =

22 · 3! = d(y4) · d(y6) · d(y8). A similar argument shows the desired result.

(c) If the unstable algebra H∗(BT 3;F2)W3 is realizable, there is a 2–compact

group X, [6] such that H∗(BT 3;F2)W3 ∼= H∗(BX;F2). Since the polynomial
algebra is generated by even-degree elements, the classifying space BX is 2–
torsion free. So the 2–adic cohomology is also a polynomial algebra generated
by elements of the same degree. We can find, [2], a compact connected Lie
group G such that H∗(BX;Z∧2 ) ∼= H∗(BG;Z∧2 ). However, any Lie group G
does not satisfy the condition that H∗(BG;F2) = F2[x2, x8, x12], since this

cohomology does not contain a generator of degree 4. Thus, H∗(BT 3;F2)W3 is
not realizable. This completes the proof. �

The representation of Σn = W (SU(n)) is generated by the permutation
matrices together with the following (n− 1)× (n− 1) matrix:

1 −1
. . .

...

1
...

−1

 .

We will prove Theorem 2.

Proof of Theorem 2. (a) We notice that W4 is generated by the 4 reflections:

W4 =

〈
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


︸ ︷︷ ︸

Σ3

,


1 0 0 0
0 1 0 0
1 1 1 0
1 1 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1


〉
.

The argument is analogous to the previous ones. Notice that {x2, x4, c4,3, c4,2}
is a system of parameters. Furthermore |W4| = 26 · 3 = d(x2) · d(x4) · d(c4,3) ·
d(c4,2). Thus H∗(BT 4;F2)W4 = F2[x2, x4, c4,3, c4,2].

(b) Recall that H∗(BSU(n);F2) = H∗(BTn−1;F2)W (SU(n)) for n ≥ 3 and
H∗(BSU(n);F2) ∼= H∗(BU(n);F2)/(c1). Here notice that

W4
∗

=




b1
A b2

b3
0 0 0 1


∣∣∣∣∣∣∣∣ A ∈W (SU(4)), bi ∈ F2 for i = 1, 2, 3

 .
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Consequently we can see that, for H∗(BT 3;F2)W (SU(4)) = F2[z4, z6, z8], the set
{z4, z6, z8, c4,3} is a system of parameters. And the product of their algebraic

degree is equal to the order of W4
∗
. So the desired result follows.

(c) Again the argument is analogous to the part (c) of Theorem 1. Using
the classification of Lie groups, we can show that H∗(BG;Z∧2 ) is isomorphic

to neither H∗(BT 4;F2)W4 nor H∗(BT 4;F2)W4
∗

for any compact connected Lie
group G. This completes the proof. �

Remark 1. The following is the case of n = 2. The group W2 = φ−1W (Sp(2))φ
∼= D8 is generated by the two reflections

(
1 2
0 −1

)
and

(−1 0
1 1

)
. The mod 2

reduction is W2 = Z/2 〈( 1 0
1 1 )〉 and H∗(BT 2;F2)W2 = F2[t2, t1(t1 + t2)].

Remark 2. Another set of generators for the polynomial ring H∗(BT 4;F2)W4 is
obtained as follows. The higher dimensional elements are less computational.
Let V = F2〈t1〉 ⊕ F2〈t2〉 ⊕ F2〈t3〉 ⊕ F4〈t4〉. The W4–action divides V into
four invariant subsets. They are {0}, {t4}, {t1 + t2 + t3, t1 + t2 + t3 + t4}
and the rest of 12 vectors. For A = t1(t1 + t4)(t2 + t3)(t2 + t3 + t4), B =
t2(t1 + t3)(t2 + t4)(t1 + t3 + t4) and C = t3(t1 + t2)(t3 + t4)(t1 + t2 + t4), we can
see that W4 permutes these three elements and A+B +C = 0. The invariant
ring contains y16 = A2+AB+B2 and y24 = AB(A+B). Since {x2, x4, y16, y24}
is a system of parameters, it follows that H∗(BT 4;F2)W4 = F2[x2, x4, y16, y24].
The following is the orbit polynomial for the set U of the 12 vectors.

f(X) =
∏
u∈U

(X + u)

= X12 + (x2
2 + x4)X10 + x2x4X

9 + (x4
2 + x2

4)X8 + (x6
2 + x4

2x4 + x3
4)X6

+ x2x4(x4
2 + x2

4)X5 + {x2
2x

2
4(x2

2 + x4) + y16}X4 + x3
2x

3
4X

3

+ (x2
2 + x4)y16X

2 + x2x4y16X + y24.

3. Structure of invariant rings

We will see examples of invariant rings that are not polynomial in this sec-
tion. We use a result of Dwyer–Wilkerson [7, Theorem 1.4]. Suppose that V
is a finite dimensional vector space over the field Fp, and that W is a sub-
group of Aut(V ). Note that the symmmetric algebra S(V ) is isomorphic to
H∗(BTn;Fp) if dimV = n. Let U be a subset of V , and WU the subgroup of

W consisting of elements which fix U pointwise. Then if S(V )W
∗

is a polyno-
mial ring over Fp, then WU must be a pseudo–reflection group and S(V )WU is
also a polynomial ring.

Proposition 3.1. Let n = 6, 8. Then H∗(BTn;F2)Wn is not a polynomial
ring.

Proof. According to the result of Dwyer–Wilkerson, we need to find a subset
U such that the subgroup WU is not generated by pseudo–reflections. Our
method is an immediate consequence of that of Kudo, [15].
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The dual representation Wn
∗

is expressed as follows:

Wn
∗

=




b1

A
...

bn−1

0 . . . 0 1


∣∣∣∣∣∣∣∣∣

A ∈W (SU(n)),
bi ∈ F2 for 1 ≤ i ≤ n− 1

 .

First we consider the case of n = 6. Let U = {x,y, z} for

x = t(1, 1, 1, 0, 0, 0), y = t(1, 1, 0, 1, 1, 0), z = t(0, 0, 0, 0, 0, 1).

Recall that any element of W (SU(6)) is a 5× 5 matrix such that each column
is one of the set of the standard basis {e1, e2, e3, e4, e5} and the vector b =
t(1, 1, 1, 1, 1) at p = 2. As in [15, proof of Theorem 3], it follows that

WU =

{
e, (1, 2), (4, 5), (1, 2)(4, 5), (1, 4)(2, 5)(3, 6),

(1, 5, 2, 4)(3, 6), (1, 4, 2, 5)(3, 6), (1, 5)(2, 4)(3, 6)

}
.

Since WU is not a pseudo–reflection group, we see that H∗(BT 6;F2)W6 is not
a polynomial ring by [7].

The case of n = 8 is analogous. Let U = {x,y, z,w} for

x = t(1, 1, 1, 1, 0, 0, 0, 0), y = t(1, 1, 0, 0, 1, 1, 0, 0),

z = t(1, 0, 1, 0, 1, 0, 1, 0), w = t(0, 0, 0, 0, 0, 0, 0, 1).

Again, the group WU is not a pseudo–reflection group, hence H∗(BT 8;F2)W8

is not a polynomial ring. �

The concept of the Poincaré series can be useful to find the structure of
invariant rings, [18] and [14]. For a graded vector space M = ⊕∞i=0M2i over a
field F, we define the Poincaré series by PF(M, t) =

∑∞
i=0(dimF M2i)·ti. If M =

F[f1, . . . , fm]/(h1, . . . , hk), where {f1, . . . , fm} are generators and {h1, . . . , hk}
are relations, then the following holds:

PF(M, t) =

∏k
i=1(1− td(hi))∏m
j=1(1− td(fj))

.

Proof of Theorem 3. (a) The alternating group A3 as a subgroup of W (SU(3))
is generated by

(
0 −1
1 −1

)
. In a non-modular case, the Poincaré series can be

calculated by Molien’s theorem:

PF2
(H∗(BT 2;F2)A3 , t) =

1

|A3|
∑
w∈A3

1

det(E2 − tw)
=

(1− t6)

(1− t2)(1− t3)2
.

The three elements {x4, x6, y6} are A3–invariant with x3
4 + x2

6 + y2
6 + x6y6 = 0.

So we obtain the desired result.
(b) It is easy to show that both {t1−t2, t1t2(t1+t2)} and {t1+t2, t1t2(t1−t2)}

are systems of parameters. Clearly the product of their algebraic degrees is
equal to the order of A3. Thus the two invariant rings have to be polynomial
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rings. The nonrealizability of each invariant ring is based on a result of [5]. If
a polynomial ring H∗(BTn;Fp)W is realizable for an odd prime p, the modu-
lar representation W−→GL(n,Fp) should lift to a p–adic representation as a
pseudo–reflection group. This is impossible in each case.

(c) For p ≥ 5, we see the following:

PFp
(H∗(BT 2;Fp)A3 , t) =

(1− t6)

(1− t2)(1− t3)2
.

The three elements {x4, x6, z6} are A3–invariant with 4x3
4 = 27x2

6 +z2
6 , and the

desired result follows.
(d) Recall that A4 = (Z/2〈a〉 × Z/2〈b〉) o Z/3〈c〉, where a = (12)(34),

b = (13)(24), c = (123) with c−1ac = ab and c−1bc = a. Each of the integral
matrix presentations is as follows:

a =

0 1 −1
1 0 −1
0 0 −1

 , b =

0 −1 1
0 −1 0
1 −1 0

 , c =

0 0 1
1 0 0
0 1 0

 .

Under the mod 2 reduction, we can show that Z/2〈a〉 × Z/2〈b〉 is a reflection
group and H∗(BT 3;F2)Z/2〈a〉×Z/2〈b〉 = F2[x2, y2, x8], where x2 = t1 + t2, y2 =
t1 + t3, x8 = t1t2t3(t1 + t2 + t3). The group Z/3〈c〉 acts on Z/2〈a〉 × Z/2〈b〉
as A3, and fixes x4. Thus the Poincaré series of F2[x1, y1]Z/3〈c〉 is given by the
following:

PF2
(F2[x1, y1]Z/3〈c〉, t) =

(1− t6)

(1− t2)(1− t3)2
.

Since H∗(BT 3;F2)A4 =
(
H∗(BT 3;F2)Z/2〈a〉×Z/2〈b〉)Z/3〈c〉

, we obtain the de-
sired result. �

Remark 3. As mentioned before, we will see that A3 is a pseudo–reflection
group at p if and only if p = 3. For p 6= 3 (non–modular case), it follows from
the invariant ring not being polynomial. For p = 3, the rank of the matrix(

0 −1
1 −1

)
− ( 1 0

0 1 ) is 1 and the desired result follows.

Remark 4. We consider the rational invariant rings for the groups in Theorem 3
whose mod p reductions are pseudo–reflection groups. First it is straightforward
to see the following:

H∗(BT 2;Q)A3 = Q[x4, x6, z6]/4x3
4 = 27x2

6 + z2
6 ,

where x4 = t21 + t1t2 + t22, x6 = t21t2 + t1t
2
2, and z6 = (t1− t2)(t1 + 2t2)(2t1 + t2).

Next we consider H∗(BT 3;Q)Z/2〈a〉×Z/2〈b〉. The Poincaré series is the fol-
lowing:

PQ(H∗(BT 3;Q)Z/2〈a〉×Z/2〈b〉, t) =
(1− t6)

(1− t2)3(1− t3)
.
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Let x4 = t21 + t22 + t23 + t1t2 + t1t3 + t2t3, y4 = (t1 − t2)(t1 + t2 + 2t3), z4 =
(t1 − t3)(t1 + 2t2 + t3) and x6 = t1t2t3 − (t1t2 + t1t3 + t2t3)(t1 + t2 + t3). Then

H∗(BT 3;Q)Z/2〈a〉×Z/2〈b〉 = Q[x4, y4, z4, x6]/ ∼,
where 27x2

6 = 8x3
4 + 2y3

4 + 2z3
4 − 6x4y

2
4 − 6x4z

2
4 + 6x4y4z4− 3y2

4z4− 3y4z
2
4 must

be satisfied.
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