MODULAR INVARIANTS UNDER THE ACTIONS OF SOME REFLECTION GROUPS RELATED TO WEYL GROUPS

Kenshi Ishiguro, Takahiro Koba, Toshiyuki Miyauchi, and Erika Takigawa

Abstract

Some modular representations of reflection groups related to Weyl groups are considered. The rational cohomology of the classifying space of a compact connected Lie group G with a maximal torus T is expressed as the ring of invariants, $H^{*}(B G ; \mathbb{Q}) \cong H^{*}(B T ; \mathbb{Q})^{W(G)}$, which is a polynomial ring. If such Lie groups are locally isomorphic, the rational representations of their Weyl groups are equivalent. However, the integral representations need not be equivalent. Under the mod p reductions, we consider the structure of the rings, particularly for the Weyl group of symplectic groups $S p(n)$ and for the alternating groups A_{n} as the subgroup of $W(S U(n))$. We will ask if such rings of invariants are polynomial rings, and if each of them can be realized as the $\bmod p$ cohomology of a space. For $n=3,4$, the rings under a conjugate of $W(S p(n))$ are shown to be polynomial, and for $n=6,8$, they are non-polynomial. The structures of $H^{*}\left(B T^{n-1} ; \mathbb{F}_{p}\right)^{A_{n}}$ will be also discussed for $n=3,4$.

The invariant theory of some finite groups will be discussed, [20] and [19]. For any prime p we note that $H^{*}\left(B T^{n} ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$, a polynomial ring generated by n elements of degree 2 . When p does not divide the order of a subgroup W of $G L\left(n, \mathbb{F}_{p}\right)$, it is well-known that the invariant ring $\mathbb{F}_{p}\left[t_{1}, t_{2}, \ldots, t_{n}\right]^{W}$ is a polynomial ring if and only if W is a pseudo-reflection group, $[13, \S 20-2, \S 20-3]$. This result can fail in a modular case. Namely, even if W is a pseudo-reflection group, the invariant ring need not be a polynomial ring for $|W| \equiv 0 \bmod p$. This paper concerns such uncertainty.

The Weyl group of $S U(n)$ is isomorphic to the symmetric group Σ_{n}. The reflection group $W(S U(n))$ is generated by the permutation matrices Σ_{n-1} and an $(n-1) \times(n-1)$ reflection, [14, Ch. 3]. For instance,

$$
W(S U(3))=\left\langle\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right)\right\rangle
$$

[^0]In [15], Kudo considers the invariant ring $H^{*}\left(B T^{n-1} ; \mathbb{F}_{p}\right)^{W_{n, d}}$, where $W_{n, d}=$ $\phi_{d} W(S U(n)) \phi_{d}^{-1}=W\left(S U(n) / \mathbb{Z}_{d}\right)$ for the following matrix:

$$
\phi_{d}=\left(\begin{array}{cccc}
1 & & & 0 \\
& \ddots & & \vdots \\
& & 1 & 0 \\
\frac{1-d}{d} & \ldots & \frac{1-d}{d} & \frac{1}{d}
\end{array}\right)
$$

In this paper, we consider some mod 2 invariant rings related to the symplectic groups, namely $H^{*}\left(B T^{n} ; \mathbb{F}_{2}\right)^{\overline{W_{n}}}$ where $\overline{W_{n}}$ is the mod 2 reduction of $W_{n}=\phi_{2} W(S p(n)) \phi_{2}^{-1}$. We note that the reflection group $W(S p(n))$ is generated by the permutation matrices Σ_{n} and the $n \times n$ diagonal matrix $\left(\begin{array}{cccc}-1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & \\ d=2 .\end{array}\right.$

For a subgroup W of $G L\left(n, \mathbb{F}_{2}\right)$, we see $[18, \S 8.1]$ that the Dickson algebra $\mathbb{F}_{2}\left[t_{1}, t_{2}, \ldots, t_{n}\right]^{G L\left(n, \mathbb{F}_{2}\right)}$ is included in the invariant ring $\mathbb{F}_{2}\left[t_{1}, t_{2}, \ldots, t_{n}\right]^{W}$, and $\mathbb{F}_{2}\left[t_{1}, t_{2}, \ldots, t_{n}\right]^{G L\left(n, \mathbb{F}_{2}\right)}=\mathbb{F}_{2}\left[c_{n, n-1}, c_{n, n-2}, \ldots, c_{n, 0}\right]$. Let W^{*} denote the dual representation of a subgroup W of $G L\left(n, \mathbb{F}_{p}\right)$. Some comparisons between $H^{*}\left(B T^{n} ; \mathbb{F}_{p}\right)^{W}$ and $H^{*}\left(B T^{n} ; \mathbb{F}_{p}\right)^{W^{*}}$ are done in [9] and [10]. In the case of $n=d$, the representation $W_{n, n}=W(\operatorname{PSU}(n))$ is equivalent to the dual representation $W(S U(n))^{*}$. It is known, [7], that for $p \geq 5$, the invariant ring $H^{*}\left(B T^{p-1} ; \mathbb{F}_{p}\right)^{W(S U(p))^{*}}$ is not polynomial. At $p=2$ or 3 , the invariant rings are polynomial. Kudo shows [15] that even $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{W_{4,4}}$ is also polynomial. However, for $n=6,8$, the rings $H^{*}\left(B T^{n-1} ; \mathbb{F}_{2}\right)^{W_{n, n}}$ are not polynomial, and the rings $H^{*}\left(B T^{n-1} ; \mathbb{F}_{3}\right)^{W_{n, n}}$ are not polynomial for $n=6,9$. Duan announced some related work at The 2nd Pan-Pacific International Conference on Topology and Applications, [4].

Although $\left|\overline{W_{n}}\right|=\frac{|W(S p(n))|}{2}$, in a way, our results are similar to the ones in [15] as long as n is small. Namely, for $n=3,4$, we will show that all of the invariant rings are polynomial rings, though $H^{*}\left(B T^{n} ; \mathbb{F}_{2}\right)^{\overline{W_{n}}} \not \neq H^{*}\left(B T^{n} ; \mathbb{F}_{2}\right)^{\overline{W n}^{*}}$. And, except $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{\overline{W 3}_{3}} \cong H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{W(S U(4))}$, the other three invariant rings are not isomorphic to the mod 2 cohomology of spaces. See [3], $[17, \S 3],[18, \mathrm{Ch} 10]$, and $[1]$ for a detail of the realization problem.
Theorem 1. (a) $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{\overline{W_{3}}}=\mathbb{F}_{2}\left[x_{2}, x_{8}, x_{12}\right]$, where $x_{2}=t_{3}, x_{8}=\left(t_{1}+\right.$ $\left.t_{2}\right)^{4}+\left(t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}\right)^{2}+t_{1} t_{2} t_{3}\left(t_{1}+t_{2}+t_{3}\right)$, and $x_{12}=\left\{t_{1} t_{2}\left(t_{1}+t_{2}\right)+\right.$ $\left.t_{1} t_{3}\left(t_{1}+t_{3}\right)+t_{2} t_{3}\left(t_{2}+t_{3}\right)\right\}^{2}+t_{1} t_{2} t_{3}\left(t_{1}^{3}+t_{2}^{3}+t_{3}^{3}\right)+t_{1}^{2} t_{2}^{2} t_{3}^{2}$.
(b) $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{\overline{W_{3}}}=\mathbb{F}_{2}\left[y_{4}, y_{6}, y_{8}\right]$, where $y_{4}=t_{1}^{2}+t_{2}^{2}+t_{1} t_{2}, y_{6}=t_{1} t_{2}\left(t_{1}+\right.$ t_{2}), and $y_{8}=c_{3,2}=\left(t_{1}+t_{2}+t_{3}\right)^{4}+\left(t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}\right)^{2}+t_{1} t_{2} t_{3}\left(t_{1}+t_{2}+t_{3}\right)$.
(c) $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{\overline{W_{3}}}$ is not realizable.

Theorem 2. (a) $H^{*}\left(B T^{4} ; \mathbb{F}_{2}\right)^{\overline{W_{4}}}=\mathbb{F}_{2}\left[x_{2}, x_{4}, c_{4,3}, c_{4,2}\right]$, where $x_{2}=t_{4}, x_{4}=$ $\left(t_{1}+t_{2}+t_{3}\right)\left(t_{1}+t_{2}+t_{3}+t_{4}\right)$.
(b) $H^{*}\left(B T^{4} ; \mathbb{F}_{2}\right)^{\bar{W}_{4}}{ }^{*}=\mathbb{F}_{2}\left[z_{4}, z_{6}, z_{8}, c_{4,3}\right]$, where $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{W(S U(4))}=$ $\mathbb{F}_{2}\left[z_{4}, z_{6}, z_{8}\right]$.
(c) Both of these invariant rings are not realizable.

When n gets larger, our results suggest that the ring $H^{*}\left(B T^{n} ; \mathbb{F}_{2}\right)^{\overline{W_{n}}}$ would not be a polynomial ring. A direct application of a method of [15] implies that, for $n=6,8$, they are not polynomial rings, as shown in Proposition 3.1. While doing this work, the case of $n=5$ had been remained open due to a heavy calculation involved. Now it can be seen [12] that the invariant rings are polynomial.

The $\bmod p$ reduction of an integral reflection group is also a reflection group. The converse need not be true. We will see a few examples using the alternating groups A_{n} as the subgroup of $W(S U(n))$. For instance, one can see that A_{3} is a pseudo-reflection group at p if and only if $p=3$. The following shows the structure of invariant rings under A_{n} for small n.

Theorem 3. For $A_{n} \subset W(S U(n))$, the following hold:
(a) $H^{*}\left(B T^{2} ; \mathbb{F}_{2}\right)^{A_{3}}=\mathbb{F}_{2}\left[x_{4}, x_{6}, y_{6}\right] / x_{4}^{3}+x_{6}^{2}+y_{6}^{2}+x_{6} y_{6}=0$, where $x_{4}=$ $t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}, x_{6}=t_{1}^{2} t_{2}+t_{1} t_{2}^{2}$, and $y_{6}=t_{1}^{3}+t_{1}^{2} t_{2}+t_{2}^{3}$.
(b) $H^{*}\left(B T^{2} ; \mathbb{F}_{3}\right)^{A_{3}}=\mathbb{F}_{3}\left[t_{1}-t_{2}, t_{1} t_{2}\left(t_{1}+t_{2}\right)\right]$ and $H^{*}\left(B T^{2} ; \mathbb{F}_{3}\right)^{A_{3}^{*}}=\mathbb{F}_{3}\left[t_{1}+\right.$ $\left.t_{2}, t_{1} t_{2}\left(t_{1}-t_{2}\right)\right]$. Both of these are not realizable.
(c) For $p \geq 5$, we have $H^{*}\left(B T^{2} ; \mathbb{F}_{p}\right)^{A_{3}}=\mathbb{F}_{p}\left[x_{4}, x_{6}, z_{6}\right] / 4 x_{4}^{3}=27 x_{6}^{2}+z_{6}^{2}$, where $x_{4}=t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}, x_{6}=t_{1}^{2} t_{2}+t_{1} t_{2}^{2}$, and $z_{6}=\left(t_{1}-t_{2}\right)\left(t_{1}+2 t_{2}\right)\left(2 t_{1}+t_{2}\right)$.
(d) $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{A_{4}}=\mathbb{F}_{2}\left[\alpha_{4}, \alpha_{6}, \beta_{6}, x_{8}\right] / \alpha_{4}^{3}+\alpha_{6}^{2}+\beta_{6}^{2}+\alpha_{6} \beta_{6}=0$, where $\alpha_{4}=\left(t_{1}+t_{2}\right)^{2}+\left(t_{1}+t_{2}\right)\left(t_{1}+t_{3}\right)+\left(t_{1}+t_{3}\right)^{2}, \alpha_{6}=\left(t_{1}+t_{2}\right)\left(t_{1}+t_{3}\right)\left(t_{2}+t_{3}\right)$, $\beta_{6}=\left(t_{1}+t_{2}\right)^{3}+\left(t_{1}+t_{2}\right)^{2}\left(t_{1}+t_{3}\right)+\left(t_{1}+t_{3}\right)^{3}$, and $x_{8}=t_{1} t_{2} t_{3}\left(t_{1}+t_{2}+t_{3}\right)$.

In $\S 1$, we will show some basic results. It includes the matrix presentations, the order of $\overline{W_{n}}$, systems of parameters and the Dickson algebras. In $\S 2$ both Theorem 1 and Theorem 2 will be proved. For the non-realizability, our proof uses the classification theorem of 2-compact groups, [2]. Finally in $\S 3$, using Poincaré series and others, non-polynomial cases are discussed.

Major results in this work were announced at a fall meeting of the Japan Math. Soc., [11] together with The 2nd Pan-Pacific International Conference on Topology and Applications, Busan Korea [21].

1. Basic results

The integral representation of the Weyl group $W(S p(n))=(\mathbb{Z} / 2)^{n} \rtimes \Sigma_{n}$ can be given by $\left\langle\Sigma_{n},\left(\begin{array}{cccc}-1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1\end{array}\right)\right\rangle$ as reflection groups, [14, Ch. 3]. Let $\phi=\phi_{2}^{-1}$ so that $\phi=\left(\begin{array}{llll}1 & & & \\ & \ddots & & \\ & & 1 & 0\end{array}\right)=\left(\begin{array}{cccc}E_{n-2} & & 0 \\ & & & 0 \\ & & & \\ \hline 0 \ldots 0 & 1 & 0 \\ 1 \ldots & 1 & 2\end{array}\right)$.

We will show that $\phi^{-1} W(S p(n)) \phi \subset G L(n, \mathbb{Z})$.
Proposition 1.1. The group $W_{n}=\phi^{-1} W(S p(n)) \phi$ is included in $G L(n, \mathbb{Z})$.
Proof. For each σ of the reflections which generate $W(S p(n))$, it's enough to show that $\phi^{-1} \sigma \phi \in G L(n, \mathbb{Z})$. First recall that $\Sigma_{n-1} \subset W(S U(n))$, and that $\phi^{-1} W(S U(n)) \phi \subset G L(n-1, \mathbb{Z})$. Since Σ_{n} is generated by Σ_{n-1} together with the transposition σ_{n-1} switching $n-1$ and n, we see $\phi^{-1} \Sigma_{n} \phi$ is included in $G L(n, \mathbb{Z})$ by the following:

$$
\begin{aligned}
& \phi^{-1} \sigma_{n-1} \phi=\frac{1}{2}\left(\begin{array}{c|c|c}
2 E_{n-2} & 0 \\
\hline 0 \ldots 0 & 2 & 0 \\
-1 \ldots-1 & -1 & 1
\end{array}\right)\left(\begin{array}{c|cc}
E_{n-2} & 0 \\
\hline 0 & 1 & 0
\end{array}\right)\left(\begin{array}{cc}
E_{n-2} & 0 \\
\hline 0 \ldots 0 & 1 \\
\hline 1 \ldots 1 & 1
\end{array}\right) \\
& =\left(\right) .
\end{aligned}
$$

Moreover we see that

$$
\begin{aligned}
& \phi^{-1}\left(\begin{array}{cccc}
-1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right) \phi \\
& =\frac{1}{2}\left(\begin{array}{r|rrr}
2 E_{n-2} & 0 \\
& & \\
\hline 0 \ldots 0 & 2 & 0 \\
-1 \ldots-1 & -1 & 1
\end{array}\right)\left(\begin{array}{rrrr}
-1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right)\left(\begin{array}{cc}
E_{n-2} & 0 \\
& \\
\hline 0 \ldots 0 & 1 \\
1 \ldots 1 & 0 \\
& \\
&
\end{array}\right) \\
& =\left(\begin{array}{cccc|c}
-1 & & & & \\
& 1 & & & \\
\\
& & \ddots & & \\
& & & 1 & \\
\hline 0 & & \cdots & 0 & 1
\end{array}\right) .
\end{aligned}
$$

This completes the proof.
Next consider the mod 2 reduction $\overline{W_{n}}$ of W_{n}. Since the scalar matrix $-E_{n} \in W(S p(n))$, it is also contained in W_{n}. Hence the kernel of the projection $W_{n} \longrightarrow \overline{W_{n}}$ contains $\mathbb{Z} / 2$. It turns out $\left|\overline{W_{n}}\right|=\frac{\left|W_{n}\right|}{2}=2^{n-1} \cdot n$! for $n \geq 3$.

Proposition 1.2. For $n \geq 3$, the subgroup $\overline{W_{n}}$ of $G L\left(n, \mathbb{F}_{2}\right)$ is isomorphic to $W_{n} / \mathbb{Z} / 2$.
Proof. Note that $W_{n} \cong(\mathbb{Z} / 2)^{n} \rtimes \Sigma_{n}$. A result of Minkowski tells us, [18, Lemma 10.7.1], that the kernel of the projection $G L(n, \mathbb{Z}) \longrightarrow G L\left(n, \mathbb{F}_{2}\right)$ is an
elementary 2-abelian. For $n \geq 3$, the homomorphism $\Sigma_{n} \longrightarrow G L\left(n, \mathbb{F}_{2}\right)$ should be injective. Thus the kernel of $W_{n} \longrightarrow \overline{W_{n}}$ has to come from diagonal matrices of $W(S p(n))$. The desired result is obtained from the following observation:

$$
\phi^{-1}\left(\begin{array}{cccc}
\varepsilon_{1} & & & \\
& \varepsilon_{2} & & \\
& & \ddots & \\
& & & \varepsilon_{n}
\end{array}\right) \phi=\left(\begin{array}{ccc|c}
\varepsilon_{1} & & & \\
& \ddots & & 0 \\
& & \varepsilon_{n-1} & \\
\hline \frac{\varepsilon_{n}-\varepsilon_{1}}{2} & \ldots & \frac{\varepsilon_{n}-\varepsilon_{n-1}}{2} & \varepsilon_{n}
\end{array}\right)
$$

We recall how to see if a ring of invariants $H^{*}\left(B T^{n} ; \mathbb{F}_{p}\right)^{W}$ is polynomial for a prime p (see $[8,14,16,18])$. An element of $H^{*}\left(B T^{n} ; \mathbb{F}_{p}\right)$ is considered as a function of n variables, $t_{1}, t_{2}, \ldots, t_{n}$. A set of n elements $x_{1}, x_{2}, \ldots, x_{n} \in$ $H^{*}\left(B T^{n} ; \mathbb{F}_{p}\right)^{W}$ is said to be a system of parameters if the solution of the following system of equations

$$
\left\{\begin{array}{c}
x_{1}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=0 \\
x_{2}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=0 \\
\vdots \\
x_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=0
\end{array}\right.
$$

is trivial. Namely $t_{1}=t_{2}=\cdots=t_{n}=0$. As before, we write $H^{*}\left(B T^{n} ; \mathbb{F}_{p}\right)=$ $\mathbb{F}_{p}\left[t_{1}, t_{2}, \ldots, t_{n}\right]$. Let $d(x)$ denote $\frac{1}{2} \operatorname{deg}(x)$ so that $d\left(t_{i}\right)=1$ for $1 \leq i \leq$ n. Usually $d(x)$ is said to be the algebraic degree of x, while $\operatorname{deg}(x)$ is the topological degree. According to [18, Proposition 5.5.5], for a finite group W, if we can find a system of parameters $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ with $\prod_{i=1}^{n} d\left(x_{i}\right)=|W|$, then $H^{*}\left(B T^{n} ; \mathbb{F}_{p}\right)^{W}=\mathbb{F}_{p}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Next we recall some basic things about generators of the Dickson algebra $\mathbb{F}_{p}\left[t_{1}, t_{2}, \ldots, t_{n}\right]^{G L\left(n, \mathbb{F}_{p}\right)},[18, \S 8.1]$. Let

$$
V=\mathbb{F}_{p}\left\langle t_{1}\right\rangle \oplus \mathbb{F}_{p}\left\langle t_{2}\right\rangle \oplus \cdots \oplus \mathbb{F}_{p}\left\langle t_{n}\right\rangle
$$

the vector space over \mathbb{F}_{p} with basis $t_{1}, t_{2}, \ldots, t_{n}$. Consider the polynomial $f(X)=\prod_{v \in V}(X-v)$. Then $f(X)=X^{p^{n}}+\sum_{i=0}^{n-1}(-1)^{n-i} c_{n, i} X^{p^{i}}$ and $\mathbb{F}_{p}\left[t_{1}, t_{2}\right.$, $\left.\ldots, t_{n}\right]^{G L\left(n, \mathbb{F}_{p}\right)}=\mathbb{F}_{p}\left[c_{n, n-1}, c_{n, n-2}, \ldots, c_{n, 0}\right]$ with $d\left(c_{n, i}\right)=p^{n}-p^{i}$. For instance, if $p=2$ and $n=2$, then $f(X)=X^{4}+c_{2,1} X^{2}+c_{2,0} X$ with $c_{2,1}=$ $t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}$ and $c_{2,0}=t_{1}^{2} t_{2}+t_{1} t_{2}^{2}$. The Dickson invariants $c_{n, i}(0 \leq i \leq n-1)$ can be expressed using determinants. Consider the following polynomial:

$$
\Delta_{n}(X)=\left|\begin{array}{cccc}
t_{1} & \ldots & t_{n} & X \\
t_{1}^{p} & \ldots & t_{n}^{p} & X^{p} \\
\vdots & & \vdots & \vdots \\
t_{1}^{p^{n}} & \ldots & t_{n}^{p^{n}} & X^{p^{n}}
\end{array}\right|
$$

Then $\Delta_{n}(X)=c_{n} f(X)$ where $c_{n}=\Delta_{n-1}\left(t_{n}\right)$. From this observation, for $p=2$, we see the following:

$$
c_{3,2}=\frac{\left|\begin{array}{ccc}
t_{1} & t_{2} & t_{3} \\
t_{1}^{2} & t_{2}^{2} & t_{3}^{2} \\
t_{1}^{8} & t_{2}^{8} & t_{3}^{8}
\end{array}\right|}{\left|\begin{array}{ccc}
t_{1} & t_{2} & t_{3} \\
t_{1}^{2} & t_{2}^{2} & t_{3}^{2} \\
t_{1}^{4} & t_{2}^{4} & t_{3}^{4}
\end{array}\right|}
$$

and
$c_{4,3}=\frac{\left|\begin{array}{cccc}t_{1} & t_{2} & t_{3} & t_{4} \\ t_{1}^{2} & t_{2}^{2} & t_{3}^{2} & t_{4}^{2} \\ t_{1}^{4} & t_{2}^{4} & t_{3}^{4} & t_{4}^{4} \\ t_{1}^{16} & t_{2}^{16} & t_{3}^{16} & t_{4}^{16}\end{array}\right|}{\left|\begin{array}{cccc}t_{1} & t_{2} & t_{3} & t_{4} \\ t_{1}^{2} & t_{2}^{2} & t_{3}^{2} & t_{4}^{2} \\ t_{1}^{4} & t_{2}^{4} & t_{3}^{4} & t_{4}^{4} \\ t_{1}^{8} & t_{2}^{8} & t_{3}^{8} & t_{4}^{8}\end{array}\right|}$.

2. Polynomial rings and non-realizability

Some invariant elements can be found using orbit sums or orbit polynomials. A typical example is $\prod_{i=1}^{n}\left(X+t_{i}\right)$ for the permutation representation of Σ_{n}. Another way of finding elements of unstable algebras $H^{*}\left(B T^{n} ; \mathbb{F}_{p}\right)^{W}$ can be given by use of cohomology operations, [18, Ch. 10]. In fact, in the part (a) of Theorem 1 we see $x_{12}=S q^{4}\left(x_{8}\right)$.

Proof of Theorem 1. (a) Suppose $x_{2}=t_{3}, x_{8}=\left(t_{1}+t_{2}\right)^{4}+\left(t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}\right)^{2}+$ $t_{1} t_{2} t_{3}\left(t_{1}+t_{2}+t_{3}\right), x_{12}=\left\{t_{1} t_{2}\left(t_{1}+t_{2}\right)+t_{1} t_{3}\left(t_{1}+t_{3}\right)+t_{2} t_{3}\left(t_{2}+t_{3}\right)\right\}^{2}+t_{1} t_{2} t_{3}\left(t_{1}^{3}+\right.$ $\left.t_{2}^{3}+t_{3}^{3}\right)+t_{1}^{2} t_{2}^{2} t_{3}^{2}$. We notice that $\overline{W_{3}}$ is generated by the 3 reflections:

$$
\overline{W_{3}}=\left\langle\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\right\rangle
$$

It is easy to check that the elements x_{2}, x_{8}, x_{12} are $\overline{W_{3}}$-invariant. For instance, the middle matrix sends t_{1} to $t_{1}+t_{2}+t_{3}$, and fixes both t_{2} and t_{3}. Consequently x_{8} is sent to $\left(t_{1}+t_{3}\right)^{4}+\left\{\left(t_{1}+t_{2}+t_{3}\right)\left(t_{2}+t_{3}\right)+t_{2} t_{3}\right\}^{2}+\left(t_{1}+t_{2}+t_{3}\right) t_{2} t_{3} t_{1}$ $=x_{8}$. The solution of the following system of equations

$$
\left\{\begin{array}{l}
t_{3}=0 \\
\left(t_{1}+t_{2}\right)^{4}+\left(t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}\right)^{2}+t_{1} t_{2} t_{3}\left(t_{1}+t_{2}+t_{3}\right)=0, \\
\left\{t_{1} t_{2}\left(t_{1}+t_{2}\right)+t_{1} t_{3}\left(t_{1}+t_{3}\right)+t_{2} t_{3}\left(t_{2}+t_{3}\right)\right\}^{2} \\
+t_{1} t_{2} t_{3}\left(t_{1}^{3}+t_{2}^{3}+t_{3}^{3}\right)+t_{1}^{2} t_{2}^{2} t_{3}^{2}=0
\end{array}\right.
$$

is trivial. Hence $\left\{x_{2}, x_{8}, x_{12}\right\}$ is a system of parameters. Consequently we see that $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{\overline{W_{3}}}$ is the polynomial ring generated by these elements, since $\left|\overline{W_{3}}\right|=2^{2} \cdot 3!=d\left(x_{2}\right) \cdot d\left(x_{8}\right) \cdot d\left(x_{12}\right)$.
(b) Notice that $\left\{y_{4}, y_{6}, y_{8}\right\}$ is a system of parameters. Furthermore $\left|{\overline{W_{3}}}^{*}\right|=$ $2^{2} \cdot 3!=d\left(y_{4}\right) \cdot d\left(y_{6}\right) \cdot d\left(y_{8}\right)$. A similar argument shows the desired result.
(c) If the unstable algebra $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{\overline{W_{3}}}$ is realizable, there is a 2 -compact group $X,[6]$ such that $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{\overline{W_{3}}} \cong H^{*}\left(B X ; \mathbb{F}_{2}\right)$. Since the polynomial algebra is generated by even-degree elements, the classifying space $B X$ is $2-$ torsion free. So the 2 -adic cohomology is also a polynomial algebra generated by elements of the same degree. We can find, [2], a compact connected Lie group G such that $H^{*}\left(B X ; \mathbb{Z}_{2}^{\wedge}\right) \cong H^{*}\left(B G ; \mathbb{Z}_{2}^{\wedge}\right)$. However, any Lie group G does not satisfy the condition that $H^{*}\left(B G ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[x_{2}, x_{8}, x_{12}\right]$, since this cohomology does not contain a generator of degree 4. Thus, $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{\overline{W_{3}}}$ is not realizable. This completes the proof.

The representation of $\Sigma_{n}=W(S U(n))$ is generated by the permutation matrices together with the following $(n-1) \times(n-1)$ matrix:

$$
\left(\begin{array}{cccc}
1 & & & -1 \\
& \ddots & & \vdots \\
& & 1 & \vdots \\
& & & -1
\end{array}\right)
$$

We will prove Theorem 2.
Proof of Theorem 2. (a) We notice that $\overline{W_{4}}$ is generated by the 4 reflections:

$$
\overline{W_{4}}=\underbrace{\left\langle\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right.}_{\Sigma_{3}},\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)\rangle
$$

The argument is analogous to the previous ones. Notice that $\left\{x_{2}, x_{4}, c_{4,3}, c_{4,2}\right\}$ is a system of parameters. Furthermore $\left|\overline{W_{4}}\right|=2^{6} \cdot 3=d\left(x_{2}\right) \cdot d\left(x_{4}\right) \cdot d\left(c_{4,3}\right)$. $d\left(c_{4,2}\right)$. Thus $H^{*}\left(B T^{4} ; \mathbb{F}_{2}\right)^{\overline{W_{4}}}=\mathbb{F}_{2}\left[x_{2}, x_{4}, c_{4,3}, c_{4,2}\right]$.
(b) Recall that $H^{*}\left(B S U(n) ; \mathbb{F}_{2}\right)=H^{*}\left(B T^{n-1} ; \mathbb{F}_{2}\right)^{W(S U(n))}$ for $n \geq 3$ and $H^{*}\left(B S U(n) ; \mathbb{F}_{2}\right) \cong H^{*}\left(B U(n) ; \mathbb{F}_{2}\right) /\left(c_{1}\right)$. Here notice that

$$
\left.\left.{\overline{W_{4}}}^{*}=\left\{\left.\left(\begin{array}{c|c}
A & b_{1} \\
b_{2} \\
& b_{3} \\
\hline 0 & 0
\end{array}\right) \right\rvert\, \begin{array}{c}
1
\end{array}\right) \right\rvert\, A \in W(S U(4)), \quad b_{i} \in \mathbb{F}_{2} \quad \text { for } i=1,2,3\right\}
$$

Consequently we can see that, for $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{W(S U(4))}=\mathbb{F}_{2}\left[z_{4}, z_{6}, z_{8}\right]$, the set $\left\{z_{4}, z_{6}, z_{8}, c_{4,3}\right\}$ is a system of parameters. And the product of their algebraic degree is equal to the order of ${\overline{W_{4}}}^{*}$. So the desired result follows.
(c) Again the argument is analogous to the part (c) of Theorem 1. Using the classification of Lie groups, we can show that $H^{*}\left(B G ; \mathbb{Z}_{2}^{\wedge}\right)$ is isomorphic to neither $H^{*}\left(B T^{4} ; \mathbb{F}_{2}\right)^{\overline{W_{4}}}$ nor $H^{*}\left(B T^{4} ; \mathbb{F}_{2}\right)^{\bar{W}_{4}^{*}}$ for any compact connected Lie group G. This completes the proof.

Remark 1. The following is the case of $n=2$. The group $W_{2}=\phi^{-1} W(S p(2)) \phi$ $\cong D_{8}$ is generated by the two reflections $\left(\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right)$ and $\left(\begin{array}{cc}-1 & 0 \\ 1 & 1\end{array}\right)$. The $\bmod 2$ reduction is $\overline{W_{2}}=\mathbb{Z} / 2\left\langle\left(\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right)\right\rangle$ and $H^{*}\left(B T^{2} ; \mathbb{F}_{2}\right)^{\overline{W_{2}}}=\mathbb{F}_{2}\left[t_{2}, t_{1}\left(t_{1}+t_{2}\right)\right]$.
Remark 2. Another set of generators for the polynomial ring $H^{*}\left(B T^{4} ; \mathbb{F}_{2}\right)^{\overline{W_{4}}}$ is obtained as follows. The higher dimensional elements are less computational. Let $V=\mathbb{F}_{2}\left\langle t_{1}\right\rangle \oplus \mathbb{F}_{2}\left\langle t_{2}\right\rangle \oplus \mathbb{F}_{2}\left\langle t_{3}\right\rangle \oplus \mathbb{F}_{4}\left\langle t_{4}\right\rangle$. The $\overline{W_{4}}$-action divides V into four invariant subsets. They are $\{0\},\left\{t_{4}\right\},\left\{t_{1}+t_{2}+t_{3}, t_{1}+t_{2}+t_{3}+t_{4}\right\}$ and the rest of 12 vectors. For $A=t_{1}\left(t_{1}+t_{4}\right)\left(t_{2}+t_{3}\right)\left(t_{2}+t_{3}+t_{4}\right), B=$ $t_{2}\left(t_{1}+t_{3}\right)\left(t_{2}+t_{4}\right)\left(t_{1}+t_{3}+t_{4}\right)$ and $C=t_{3}\left(t_{1}+t_{2}\right)\left(t_{3}+t_{4}\right)\left(t_{1}+t_{2}+t_{4}\right)$, we can see that $\overline{W_{4}}$ permutes these three elements and $A+B+C=0$. The invariant ring contains $y_{16}=A^{2}+A B+B^{2}$ and $y_{24}=A B(A+B)$. Since $\left\{x_{2}, x_{4}, y_{16}, y_{24}\right\}$ is a system of parameters, it follows that $H^{*}\left(B T^{4} ; \mathbb{F}_{2}\right)^{\overline{W_{4}}}=\mathbb{F}_{2}\left[x_{2}, x_{4}, y_{16}, y_{24}\right]$. The following is the orbit polynomial for the set U of the 12 vectors.

$$
\begin{aligned}
f(X)= & \prod_{u \in U}(X+u) \\
= & X^{12}+\left(x_{2}^{2}+x_{4}\right) X^{10}+x_{2} x_{4} X^{9}+\left(x_{2}^{4}+x_{4}^{2}\right) X^{8}+\left(x_{2}^{6}+x_{2}^{4} x_{4}+x_{4}^{3}\right) X^{6} \\
& +x_{2} x_{4}\left(x_{2}^{4}+x_{4}^{2}\right) X^{5}+\left\{x_{2}^{2} x_{4}^{2}\left(x_{2}^{2}+x_{4}\right)+y_{16}\right\} X^{4}+x_{2}^{3} x_{4}^{3} X^{3} \\
& +\left(x_{2}^{2}+x_{4}\right) y_{16} X^{2}+x_{2} x_{4} y_{16} X+y_{24} .
\end{aligned}
$$

3. Structure of invariant rings

We will see examples of invariant rings that are not polynomial in this section. We use a result of Dwyer-Wilkerson [7, Theorem 1.4]. Suppose that V is a finite dimensional vector space over the field \mathbb{F}_{p}, and that W is a subgroup of $\operatorname{Aut}(V)$. Note that the symmmetric algebra $S(V)$ is isomorphic to $H^{*}\left(B T^{n} ; \mathbb{F}_{p}\right)$ if $\operatorname{dim} V=n$. Let U be a subset of V, and W_{U} the subgroup of W consisting of elements which fix U pointwise. Then if $S(V)^{W^{*}}$ is a polynomial ring over \mathbb{F}_{p}, then W_{U} must be a pseudo-reflection group and $S(V)^{W_{U}}$ is also a polynomial ring.
Proposition 3.1. Let $n=6,8$. Then $H^{*}\left(B T^{n} ; \mathbb{F}_{2}\right)^{\overline{W_{n}}}$ is not a polynomial ring.
Proof. According to the result of Dwyer-Wilkerson, we need to find a subset U such that the subgroup W_{U} is not generated by pseudo-reflections. Our method is an immediate consequence of that of Kudo, [15].

The dual representation ${\overline{W_{n}}}^{*}$ is expressed as follows:

$$
{\overline{W_{n}}}^{*}=\left\{\left.\left(\begin{array}{c|c}
& b_{1} \\
A & \vdots \\
& b_{n-1} \\
\hline 0 \ldots 0 & 1
\end{array}\right) \right\rvert\, \begin{array}{l}
A \in W(S U(n)), \\
b_{i} \in \mathbb{F}_{2} \text { for } 1 \leq i \leq n-1
\end{array}\right\}
$$

First we consider the case of $n=6$. Let $U=\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}\}$ for

$$
\boldsymbol{x}={ }^{t}(1,1,1,0,0,0), \quad \boldsymbol{y}={ }^{t}(1,1,0,1,1,0), \quad \boldsymbol{z}={ }^{t}(0,0,0,0,0,1) .
$$

Recall that any element of $W(S U(6))$ is a 5×5 matrix such that each column is one of the set of the standard basis $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}, \boldsymbol{e}_{5}\right\}$ and the vector $\boldsymbol{b}=$ ${ }^{t}(1,1,1,1,1)$ at $p=2$. As in [15, proof of Theorem 3], it follows that

$$
W_{U}=\left\{\begin{array}{c}
e,(1,2),(4,5),(1,2)(4,5),(1,4)(2,5)(3,6), \\
(1,5,2,4)(3,6),(1,4,2,5)(3,6),(1,5)(2,4)(3,6)
\end{array}\right\} .
$$

Since W_{U} is not a pseudo-reflection group, we see that $H^{*}\left(B T^{6} ; \mathbb{F}_{2}\right)^{\overline{W_{6}}}$ is not a polynomial ring by [7].

The case of $n=8$ is analogous. Let $U=\{\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{w}\}$ for

$$
\begin{array}{lr}
\boldsymbol{x}={ }^{t}(1,1,1,1,0,0,0,0), \quad \boldsymbol{y}={ }^{t}(1,1,0,0,1,1,0,0), \\
\boldsymbol{z}={ }^{t}(1,0,1,0,1,0,1,0), & \boldsymbol{w}={ }^{t}(0,0,0,0,0,0,0,1) .
\end{array}
$$

Again, the group W_{U} is not a pseudo-reflection group, hence $H^{*}\left(B T^{8} ; \mathbb{F}_{2}\right)^{\overline{W_{8}}}$ is not a polynomial ring.

The concept of the Poincaré series can be useful to find the structure of invariant rings, [18] and [14]. For a graded vector space $M=\oplus_{i=0}^{\infty} M_{2 i}$ over a field \mathbb{F}, we define the Poincaré series by $P_{\mathbb{F}}(M, t)=\sum_{i=0}^{\infty}\left(\operatorname{dim}_{\mathbb{F}} M_{2 i}\right) \cdot t^{i}$. If $M=$ $\mathbb{F}\left[f_{1}, \ldots, f_{m}\right] /\left(h_{1}, \ldots, h_{k}\right)$, where $\left\{f_{1}, \ldots, f_{m}\right\}$ are generators and $\left\{h_{1}, \ldots, h_{k}\right\}$ are relations, then the following holds:

$$
P_{\mathbb{F}}(M, t)=\frac{\prod_{i=1}^{k}\left(1-t^{\mathrm{d}\left(h_{i}\right)}\right)}{\prod_{j=1}^{m}\left(1-t^{\mathrm{d}\left(f_{j}\right)}\right)} .
$$

Proof of Theorem 3. (a) The alternating group A_{3} as a subgroup of $W(S U(3))$ is generated by $\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$. In a non-modular case, the Poincaré series can be calculated by Molien's theorem:

$$
P_{\mathbb{F}_{2}}\left(H^{*}\left(B T^{2} ; \mathbb{F}_{2}\right)^{A_{3}}, t\right)=\frac{1}{\left|A_{3}\right|} \sum_{w \in A_{3}} \frac{1}{\operatorname{det}\left(E_{2}-t w\right)}=\frac{\left(1-t^{6}\right)}{\left(1-t^{2}\right)\left(1-t^{3}\right)^{2}}
$$

The three elements $\left\{x_{4}, x_{6}, y_{6}\right\}$ are A_{3}-invariant with $x_{4}^{3}+x_{6}^{2}+y_{6}^{2}+x_{6} y_{6}=0$. So we obtain the desired result.
(b) It is easy to show that both $\left\{t_{1}-t_{2}, t_{1} t_{2}\left(t_{1}+t_{2}\right)\right\}$ and $\left\{t_{1}+t_{2}, t_{1} t_{2}\left(t_{1}-t_{2}\right)\right\}$ are systems of parameters. Clearly the product of their algebraic degrees is equal to the order of A_{3}. Thus the two invariant rings have to be polynomial
rings. The nonrealizability of each invariant ring is based on a result of [5]. If a polynomial ring $H^{*}\left(B T^{n} ; \mathbb{F}_{p}\right)^{W}$ is realizable for an odd prime p, the modular representation $W \longrightarrow G L\left(n, \mathbb{F}_{p}\right)$ should lift to a p-adic representation as a pseudo-reflection group. This is impossible in each case.
(c) For $p \geq 5$, we see the following:

$$
P_{\mathbb{F}_{p}}\left(H^{*}\left(B T^{2} ; \mathbb{F}_{p}\right)^{A_{3}}, t\right)=\frac{\left(1-t^{6}\right)}{\left(1-t^{2}\right)\left(1-t^{3}\right)^{2}}
$$

The three elements $\left\{x_{4}, x_{6}, z_{6}\right\}$ are A_{3}-invariant with $4 x_{4}^{3}=27 x_{6}^{2}+z_{6}^{2}$, and the desired result follows.
(d) Recall that $A_{4}=(\mathbb{Z} / 2\langle a\rangle \times \mathbb{Z} / 2\langle b\rangle) \rtimes \mathbb{Z} / 3\langle c\rangle$, where $a=(12)(34)$, $b=(13)(24), c=(123)$ with $c^{-1} a c=a b$ and $c^{-1} b c=a$. Each of the integral matrix presentations is as follows:

$$
a=\left(\begin{array}{lll}
0 & 1 & -1 \\
1 & 0 & -1 \\
0 & 0 & -1
\end{array}\right), \quad b=\left(\begin{array}{lll}
0 & -1 & 1 \\
0 & -1 & 0 \\
1 & -1 & 0
\end{array}\right), \quad c=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Under the mod 2 reduction, we can show that $\mathbb{Z} / 2\langle a\rangle \times \mathbb{Z} / 2\langle b\rangle$ is a reflection group and $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{\mathbb{Z} / 2\langle a\rangle \times \mathbb{Z} / 2\langle b\rangle}=\mathbb{F}_{2}\left[x_{2}, y_{2}, x_{8}\right]$, where $x_{2}=t_{1}+t_{2}, y_{2}=$ $t_{1}+t_{3}, x_{8}=t_{1} t_{2} t_{3}\left(t_{1}+t_{2}+t_{3}\right)$. The group $\mathbb{Z} / 3\langle c\rangle$ acts on $\mathbb{Z} / 2\langle a\rangle \times \mathbb{Z} / 2\langle b\rangle$ as A_{3}, and fixes x_{4}. Thus the Poincaré series of $\mathbb{F}_{2}\left[x_{1}, y_{1}\right]^{\mathbb{Z} / 3\langle c\rangle}$ is given by the following:

$$
P_{\mathbb{F}_{2}}\left(\mathbb{F}_{2}\left[x_{1}, y_{1}\right]^{\mathbb{Z} / 3\langle c\rangle}, t\right)=\frac{\left(1-t^{6}\right)}{\left(1-t^{2}\right)\left(1-t^{3}\right)^{2}}
$$

Since $H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{A_{4}}=\left(H^{*}\left(B T^{3} ; \mathbb{F}_{2}\right)^{\mathbb{Z} / 2\langle a\rangle \times \mathbb{Z} / 2\langle b\rangle}\right)^{\mathbb{Z} / 3\langle c\rangle}$, we obtain the desired result.

Remark 3. As mentioned before, we will see that A_{3} is a pseudo-reflection group at p if and only if $p=3$. For $p \neq 3$ (non-modular case), it follows from the invariant ring not being polynomial. For $p=3$, the rank of the matrix $\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)-\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is 1 and the desired result follows.

Remark 4. We consider the rational invariant rings for the groups in Theorem 3 whose $\bmod p$ reductions are pseudo-reflection groups. First it is straightforward to see the following:

$$
H^{*}\left(B T^{2} ; \mathbb{Q}\right)^{A_{3}}=\mathbb{Q}\left[x_{4}, x_{6}, z_{6}\right] / 4 x_{4}^{3}=27 x_{6}^{2}+z_{6}^{2}
$$

where $x_{4}=t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}, x_{6}=t_{1}^{2} t_{2}+t_{1} t_{2}^{2}$, and $z_{6}=\left(t_{1}-t_{2}\right)\left(t_{1}+2 t_{2}\right)\left(2 t_{1}+t_{2}\right)$.
Next we consider $H^{*}\left(B T^{3} ; \mathbb{Q}\right)^{\mathbb{Z} / 2\langle a\rangle \times \mathbb{Z} / 2\langle b\rangle}$. The Poincaré series is the following:

$$
P_{\mathbb{Q}}\left(H^{*}\left(B T^{3} ; \mathbb{Q}\right)^{\mathbb{Z} / 2\langle a\rangle \times \mathbb{Z} / 2\langle b\rangle}, t\right)=\frac{\left(1-t^{6}\right)}{\left(1-t^{2}\right)^{3}\left(1-t^{3}\right)}
$$

Let $x_{4}=t_{1}^{2}+t_{2}^{2}+t_{3}^{2}+t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}, y_{4}=\left(t_{1}-t_{2}\right)\left(t_{1}+t_{2}+2 t_{3}\right), z_{4}=$ $\left(t_{1}-t_{3}\right)\left(t_{1}+2 t_{2}+t_{3}\right)$ and $x_{6}=t_{1} t_{2} t_{3}-\left(t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}\right)\left(t_{1}+t_{2}+t_{3}\right)$. Then

$$
H^{*}\left(B T^{3} ; \mathbb{Q}\right)^{\mathbb{Z} / 2\langle a\rangle \times \mathbb{Z} / 2\langle b\rangle}=\mathbb{Q}\left[x_{4}, y_{4}, z_{4}, x_{6}\right] / \sim,
$$

where $27 x_{6}^{2}=8 x_{4}^{3}+2 y_{4}^{3}+2 z_{4}^{3}-6 x_{4} y_{4}^{2}-6 x_{4} z_{4}^{2}+6 x_{4} y_{4} z_{4}-3 y_{4}^{2} z_{4}-3 y_{4} z_{4}^{2}$ must be satisfied.

References

[1] K. K. S. Andersen and J. Grodal, The Steenrod problem of realizing polynomial cohomology rings, J. Topol. 1 (2008), no. 4, 747-760. https://doi.org/10.1112/jtopol/jtn021
[2] , The classification of 2-compact groups, J. Amer. Math. Soc. 22 (2009), no. 2, 387-436. https://doi.org/10.1090/S0894-0347-08-00623-1
[3] A. Clark and J. Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), 425-434. http://projecteuclid.org/euclid.pjm/1102913229
[4] H. Duan, The cohomology of projective unitary groups, talk, The 2nd Pan-Pacific International Conference on Topology and Applications at Busan, Korea, 2017.
[5] W. G. Dwyer, H. R. Miller, and C. W. Wilkerson, Homotopical uniqueness of classifying spaces, Topology 31 (1992), no. 1, 29-45. https://doi.org/10.1016/0040-9383(92) 90062-M
[6] W. G. Dwyer and C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. (2) 139 (1994), no. 2, 395-442. https://doi.org/10. 2307/2946585
[7] , Kähler differentials, the T-functor, and a theorem of Steinberg, Trans. Amer. Math. Soc. 350 (1998), no. 12, 4919-4930. https://doi.org/10.1090/S0002-9947-98-02373-3
[8] , Poincaré duality and Steinberg's theorem on rings of coinvariants, Proc. Amer. Math. Soc. 138 (2010), no. 10, 3769-3775. https://doi.org/10.1090/S0002-9939-2010-10429-X
[9] K. Ishiguro, Classifying spaces and a subgroup of the exceptional Lie group G_{2}, in Groups of homotopy self-equivalences and related topics (Gargnano, 1999), 183-193, Contemp. Math., 274, Amer. Math. Soc., Providence, RI, 2001. https://doi.org/10.1090/conm/ 274/04463
[10] , Invariant rings and dual representations of dihedral groups, J. Korean Math. Soc. 47 (2010), no. 2, 299-309. https://doi.org/10.4134/JKMS.2010.47.2.299
[11] K. Ishiguro and T. Koba, Modular invariants and Weyl groups, talk, Fall meeting of the Japan Math. Soc. at Kyoto Sangyou Univ., 2015.
[12] K. Ishiguro, T. Koba, T. Miyauchi, and E. Takigawa, Modular invariants under the actions of some reflection groups related to Weyl groups, Fukuoka University Science Reports 49 (2019), no. 1, 1-8.
[13] R. M. Kane, The homology of Hopf spaces, North-Holland Mathematical Library, 40, North-Holland Publishing Co., Amsterdam, 1988.
[14] , Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 5, Springer-Verlag, New York, 2001. https://doi.org/ 10.1007/978-1-4757-3542-0
[15] S. Kudo, Invariant rings and representations of symmetric groups, Bull. Korean Math. Soc. 50 (2013), no. 4, 1193-1200. https://doi.org/10.4134/BKMS.2013.50.4.1193
[16] M. D. Neusel and L. Smith, Invariant theory of finite groups, Mathematical Surveys and Monographs, 94, American Mathematical Society, Providence, RI, 2002.
[17] D. Notbohm, Classifying spaces of compact Lie groups and finite loop spaces, in Handbook of algebraic topology, 1049-1094, North-Holland, Amsterdam, 1995. https: //doi.org/10.1016/B978-044481779-2/50022-5
[18] L. Smith, Polynomial invariants of finite groups, Research Notes in Mathematics, 6, A K Peters, Ltd., Wellesley, MA, 1995.
[19] , Polynomial invariants of finite groups. A survey of recent developments, Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 3, 211-250. https://doi.org/10.1090/S0273-0979-97-00724-6
[20] R. P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 475-511. https://doi.org/10.1090/S0273-0979-1979-14597-X
[21] E. Takigawa, Modular invariants under the actions of some reflection groups related to Weyl groups, talk, The 2nd Pan-Pacific International Conference on Topology and Applications at Busan, Korea, 2017.

Kenshi Ishiguro
Department of Applied Mathematics
Fukuoka University
Fukuoka, 814-1108, Japan
Email address: kenshi@cis.fukuoka-u.ac.jp
Takahiro Koba
Wakaba senior high school
Fukuoka, 810-0062, Japan
Email address: kopatto@icloud.com
Toshiyuki Miyauchi
Department of Applied Mathematics
Fukuoka University
Fukuoka, 814-0180, Japan
Email address: tmiyauchi@fukuoka-u.ac.jp
Erika Takigawa
Department of Applied Mathematics
Fukuoka University
Fukuoka, 814-0180, Japan
Email address: sd170003@cis.fukuoka-u.ac.jp

[^0]: Received February 7, 2019; Revised May 21, 2019; Accepted June 26, 2019.
 2010 Mathematics Subject Classification. Primary 55R35; Secondary 13A50, 55P60.
 Key words and phrases. Invariant theory, unstable algebra, pseudo-reflection group, Poincaré series, Lie group, p-compact group, classifying space.

