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JORDAN Gn-DERIVATIONS ON PATH ALGEBRAS

Abderrahim Adrabi, Driss Bennis, and Brahim Fahid

Abstract. Recently, Brešar’s Jordan {g, h}-derivations have been inves-

tigated on triangular algebras. As a first aim of this paper, we extend this
study to an interesting general context. Namely, we introduce the notion

of Jordan Gn-derivations, with n ≥ 2, which is a natural generalization of

Jordan {g, h}-derivations. Then, we study this notion on path algebras.
We prove that, when n > 2, every Jordan Gn-derivation on a path algebra

is a {g, h}-derivation. However, when n = 2, we give an example showing

that this implication does not hold true in general. So, we characterize
when it holds. As a second aim, we give a positive answer to a variant of

Lvov-Kaplansky conjecture on path algebras. Namely, we show that the
set of values of a multi-linear polynomial on a path algebra KE is either

{0}, KE or the space spanned by paths of a length greater than or equal

to 1.

1. Introduction and definitions

Through this paper, K will denote a field with characteristic zero, A will be
a K-algebra with the center Z(A). For x, y ∈ A, we use x ◦ y (resp., [x, y]) to
denote the Jordan product xy+yx (resp., the Lie product xy−yx) of x and y.

In [6], Brešar introduced the notion of Jordan {g, h}-derivations as follows:
Let g : A→ A and h : A→ A be linear maps. A linear map f : A→ A is said
to be a Jordan {g, h}-derivation if

f(x ◦ y) = g(x) ◦ y + x ◦ h(y) (x, y ∈ A).

For g = f , a Jordan {g, h}-derivation is just a Jordan generalized derivation,
and for g = h = f , it is nothing but the classical Jordan derivation. Sev-
eral authors have been interested in investigating when Jordan derivations are
derivations on various algebra constructions (see for instance [3,4,9,12,13,17]).
In order to extend this classical question to the introduced context, Brešar, in
the same paper [6], introduced the notion of {g, h}-derivation as follows: Let
g : A → A and h : A → A be linear maps. A linear map f : A → A is said to
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be a {g, h}-derivation if

f(xy) = g(x)y + xh(y) = h(x)y + xg(y) (x, y ∈ A).

But, it turned out from the discussion at the beginning of [6, Section 2], that
{g, h}-derivations are maps of the from:

f(x) = λx+ d(x)

for some λ ∈ Z(A) and a derivation d : A→ A. These kind of maps are in fact a
particular case of generalized derivations. Recall that a linear map D : A→ A
is said to be a generalized d-derivation, for some derivation d : A → A, if it
satisfies

D(xy) = D(x)y + xd(y) (x, y ∈ A).

The main aim in [6] was to investigate when a Jordan {g, h}-derivation is a
{g, h}-derivation on tensor algebras. In [11], Kong and Zhang investigated the
same question on triangular algebras.

Inspired by the context above, one can naturally continue the way started by
Brešar and introduce a rather general case of Jordan {g, h}-derivations using
the following notations: Denote x1◦x2 by ◦2xi for all x1, x2 ∈ A and (◦n−1xi)◦
xn by ◦nxi for all x1, . . . , xn ∈ A with n ≥ 2. By convention, we set by ◦0xi = 1

2
and ◦1xi = x1 for all x1 ∈ A. Whence, the generalization of Jordan {g, h}-
derivations is stated as follows: Let Gn = {gi}1≤i≤n be a finite family of linear
maps on A with n ≥ 2. We say that a linear map f : A → A is a Jordan
Gn-derivation, if for every n-tuple (x1, . . . , xn) ∈ An

f(◦nxi) =

n∑
j=1

(((◦j−1xi ◦ gσ(j)(xj)) ◦ xj+1) · · · ) ◦ xn, ∀σ ∈ Sn,

where Sn is the symmetric group of degree n. Also, following Brešar’s approach,
we consider the following notion: we say that a linear map f : A→ A is a Gn-
derivation on A, if for every (x1, . . . , xn) ∈ An,

f(

n∏
i=1

xi) =

n∑
i=1

x1 · · ·xi−1gσ(i)(xi)xi+1 · · ·xn, ∀σ ∈ Sn.(1.1)

However, following similar argument was done by Brešar, we deduce that Gn-
derivations and {g, h}-derivations are the same. In fact, let f be a Gn-derivation
with n ≥ 2. Then, by taking x2 = · · · = xn = 1 in (1.1), we obtain

f(x1) = gσ(1)(x1) + x1gσ(2)(1) + x1(

n∑
i=3

gσ(i)(1)), ∀σ ∈ Sn.(1.2)

And taking x1 = x3 = · · · = xn = 1 in (1.1), we obtain

f(x2) = gσ(1)(1)x2 + gσ(2)(x2) + x2(

n∑
i=3

gσ(i)(1)), ∀σ ∈ Sn.
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Comparing both expressions, we see that every gi(1) lies in Z(A). Setting
λ = f(1) =

∑n
i=1 gi(1), we then infer from (1.1) and (1.2) that, for all i ∈

{1, . . . , n}, f(x)−λx = gi(x)−gi(1)x. If we set d(x) = f(x)−λx for all x ∈ A,
then d is a derivation. Thus, every Gn-derivation f can be written as

f(x) = λx+ d(x).(1.3)

Therefore, every Gn-derivation can be viewed as a generalized d-derivation on
A. Conversely, if a linear map f has the form as in (1.3) and λ =

∑n
i λi, where

λi ∈ Z(A). Then, f is a Gn-derivation on A where each gi is defined by

gi(x) = λix+ d(x) (x ∈ A).

In this context, it is natural to ask whether a Jordan Gn-derivation is nothing
but a Jordan G2-derivation.

In order to answer this question, we investigate Jordan Gn-derivations on
path algebras associated with a finite acyclic quiver. Thus, we assume some
familiarity with basic notions of path algebras (for more details, see [15]).

In the sequel, E = (E0, E1, s, t) designates a finite acyclic quiver, where E0

and E1 are sets of vertices and edges of E, respectively, and the maps s and t
from E1 into E0 determine the edges of E. We denote by KE the path algebra
over K associated with E.

In Section 2, we give our main results. The first one, Theorem 2.3, shows that
a Jordan G2-derivation on KE is a G2-derivation if and only if g1(1) ∈ Z(KE)
or g2(1) ∈ Z(KE). The second main result, Theorem 2.4, shows that for every
n > 2, any Jordan Gn-derivation on KE is a Gn-derivation. Now, using these
two theorems one can answer the above question. Namely, for every n > 2,
Jordan Gn-derivations on KE are Gn-derivations. Unlike the case n = 2, there
exist some Jordan G2-derivations which are not G2-derivations as will be shown
in Example 2.1, which yields that Jordan Gn-derivations generalize naturally
Jordan G2-derivations (i.e., Jordan {g, h}-derivations).

Section 3 presents our investigations on a variant of Lvov-Kaplansky conjec-
ture. Recall the following question known as Lvov-Kaplansky conjecture (see
[7]):

Question 1.1. Let ζ(x1, . . . , xn) be a multi-linear polynomial over a field F.
Is the set of values of ζ on the matrix algebra Mm(F) a vector space?

The reader is referred to [10] for more information about recent and impor-
tant results on this subject. Our investigation is motivated by the work done in
[8, 14, 16] on particular upper triangular matrix algebras. In fact, since upper
triangular matrix algebras are path algebras associated with line quivers (see
[5]), we will push the question further in another direction and ask:

Question 1.2. Let ζ(x1, . . . , xn) be a multi-linear polynomial over K. Is the
set of values of ζ on KE a vector space?
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Theorem 3.1 answers Question 1.2 positively and so it generalizes the work
done for upper triangular matrix algebras. We give also some examples which
apply Theorem 3.1 on some particular important cases.

2. Main results

In this section, the set Gn will be a fixed family {gi}1≤i≤n of linear maps on
KE, where n ≥ 2. We show when every Jordan Gn-derivation on path algebras
is a Gn-derivation. We will see that for every n > 2 this implication holds,
however for the case n = 2, it does not as shown by the following example.

Example 2.1. Let E be the following quiver: v2 v1 v3
e1 e2 and let

f be a Jordan G2-derivation on KE defined by:

f(v1) = 2v1, g1(v1) = v1 + e1 + e2, g2(v1) = v1 − e1 − e2,
f(v2) = 2v2, g1(v2) = v2 + e1, g2(v2) = v2 − e1,
f(v3) = 2v3, g1(v3) = v3 + e2, g2(v3) = v3 − e2,
f(e1) = 2e1, g1(e1) = e1, g2(e1) = e1,
f(e2) = 2e2, g1(e2) = e2, g2(e2) = e2.

By elementary calculations, we have g1(v1)v1 + v1g2(v1) 6= f(v21), hence f is
not a G2-derivation on KE.

To prove the main results, we need the following lemma.

Lemma 2.2. For every Jordan Gn-derivation f on KE with n ≥ 2, f(1) is in
Z(KE). Moreover, if n > 2, then gi(1) is in Z(KE) for all i ∈ {1, . . . , n}.

Proof. Assume f to be a Jordan Gn-derivation on KE with n ≥ 2. Let z be a
non-trivial idempotent in KE. Then, we have

0 = f((((z ◦ (1− z)) ◦ 1) · · · ) ◦ 1)

= (((g1(z) ◦ (1− z)) ◦ 1) · · · ) ◦ 1 + (((z ◦ g2(1− z)) ◦ 1) · · · ) ◦ 1 + 0

= 2n−2(g1(z) ◦ (1− z) + z ◦ g2(1− z))
= g1(z) ◦ (1− z) + z ◦ g2(1− z)
= 2g1(z)− g1(z)z − zg1(z) + zg2(1)− zg2(z) + g2(1)z − g2(z)z.(2.1)

Multiplying (2.1) by z from the left, we obtain

0 = zg1(z)− zg1(z)z + zg2(1)− zg2(z) + zg2(1)z − zg2(z)z.(2.2)

Multiplying (2.1) by z from the right, we obtain

0 = g1(z)z − zg1(z)z + zg2(1)z − zg2(z)z + g2(1)z − g2(z)z.(2.3)

By comparing the equalities (2.2) and (2.3), we get

zg1(z) + zg2(1)− zg2(z) = g1(z)z + g2(1)z − g2(z)z.(2.4)

Similarly, by the definition of Jordan Gn-derivations, we obtain

zgσ(1)(z) + zgσ(2)(1)− zgσ(2)(z) = gσ(1)(z)z + gσ(2)(1)z − gσ(2)(z)z
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for every σ ∈ Sn. Therefore, we have

zg2(z) + zg1(1)− zg1(z) = g2(z)z + g1(1)z − g1(z)z.(2.5)

It follows from (2.4) and (2.5) that

z(g1(1) + g2(1)) = (g1(1) + g2(1))z.

Since every element s(p) + p is a non-trivial idempotent in KE with p is a
non-trivial path in E, g1(1) + g2(1) commutes with all paths in KE. Thus,
g1(1) + g2(1) ∈ Z(KE). Hence by the definition of Jordan Gn-derivations, we
conclude that gσ(1)(1) + gσ(2)(1) ∈ Z(KE) for all σ ∈ Sn. Now, assume that
n > 2, then it follows that g1(1) + g2(1), g3(1) + g2(1) and g1(1) + g3(1) are in
Z(KE). Since Z(KE) is a group, we have g1(1)+g2(1)−g3(1)−g2(1) = g1(1)−
g3(1) ∈ Z(KE). Therefore, g1(1) − g3(1) + g1(1) + g3(1) = 2g1(1) ∈ Z(KE).
So, g1(1) ∈ Z(KE). By similar reasoning, we obtain that all gi(1) are in
Z(KE). �

We start with the first main result which treats the case n = 2.

Theorem 2.3. Every Jordan G2-derivation f on KE is a G2-derivation if and
only if g1(1) ∈ Z(KE) or g2(1) ∈ Z(KE).

Proof. It is clear that if f is a G2-derivation, then g1(1) ∈ Z(KE) and g2(1) ∈
Z(KE). So, it remains to prove the converse implication. Let f be a Jordan
G2-derivation on KE, then we have

f(x ◦ y) = g1(x) ◦ y + x ◦ g2(y) (x, y ∈ KE).(2.6)

Take y = 1 in (2.6), then we obtain

f(x) = g1(x) + x ◦ g2(
1

2
) (x ∈ KE).(2.7)

Similarly, take x = 1, then we obtain

f(y) = g2(y) + y ◦ g1(
1

2
) (y ∈ KE).(2.8)

Without loss of generality, suppose that g1(1) ∈ Z(KE). It follows by Lemma
2.2, that g2(1) ∈ Z(KE). Therefore, the equalities (2.7) and (2.8) become
f(x) = g1(x)+g2(1)x and f(y) = g2(y)+g1(1)y for all x, y ∈ KE, respectively.
For all x, y ∈ KE, we have

f(x ◦ y) = g1(x) ◦ y + x ◦ g2(y)

= (f(x)− g2(1)x) ◦ y + x ◦ (f(y)− g1(1)y)

= f(x) ◦ y + x ◦ (f(y)− f(1)y).

Hence, f is a Jordan generalized derivation onKE. Therefore, by the discussion
in [1, Preliminaries] and [13, Proposition 3.7], f is a generalized derivation with
f(1) = g1(1) + g2(1). Hence, it follows that f is a G2-derivation. �
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In the rest of this paper, P will denote the set of all paths in E including
vertices. Note that P is a basis of KE as a K-vector space. Now, for the case
where n > 2, we have the following second main result.

Theorem 2.4. Every Jordan Gn-derivation on KE with n > 2 is a Gn-
derivation.

Proof. Let f be a Jordan Gn-derivation on KE with n > 2. Then, for every
path p ∈ P, we have

f(p) =
1

2n−1
f(((p ◦ 1) · · · ) ◦ 1)

=
1

2n−1
(
((g1(p) ◦ 1) · · · ) ◦ 1 + · · ·+ ((p ◦ 1) · · · ) ◦ gn(1)

)
=

1

2n−1
(
2n−1g1(p) + 2n−1(

n∑
i=2

gi(1))p
)

= g1(p) + (

n∑
i=2

gi(1))p.(2.9)

And,

f(p) =
1

2n−1
f(((p ◦ 1) · · · ) ◦ 1)

=
1

2n−1
(
((g2(p) ◦ 1) · · · ) ◦ 1 + · · ·+ ((p ◦ 1) · · · ) ◦ gn(1)

)
=

1

2n−1
(
2n−1g2(p) + 2n−1(

n∑
i=1
i6=2

gi(1))p
)

= g2(p) + (

n∑
i=1
i6=2

gi(1))p.(2.10)

This is due to the fact that by Lemma 2.2, all gi(1) ∈ Z(KE). We claim that
f is a Jordan generalized derivation, we only need to check it on every element
in P. Let x and y be two elements in P. Then, we have

f(x ◦ y) =
1

2n−2
f((((x ◦ y) ◦ 1) · · · ) ◦ 1)

=
1

2n−2
(
(((g1(x) ◦ y) ◦ 1) · · · ) ◦ 1 + (((x ◦ g2(y)) ◦ 1) · · · ) ◦ 1

)
+

1

2n−2
(
(((x ◦ y) ◦ g3(1)) · · · ) ◦ 1 + · · ·+ (((x ◦ y) ◦ 1) · · · ) ◦ gn(1)

)
= g1(x) ◦ y + x ◦ g2(y) + (x ◦ y)(

n∑
i=3

gi(1)).(2.11)
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It follows by (2.9) and (2.10) that

(2.11) = (f(x)− (

n∑
i=2

gi(1))x) ◦ y + x ◦ (f(y)− (

n∑
i=1
i 6=2

gi(1))y)

+ (x ◦ y)(

n∑
i=3

gi(1))

= f(x) ◦ y + x ◦ (f(y)− (

n∑
i=1

gi(1))y).

Hence, f is a Jordan generalized derivation onKE. Therefore, by the discussion
in [1, Preliminaries] and [13, Proposition 3.7], f is a generalized derivation
with f(1) =

∑n
i=1 gi(1) and gi(1) ∈ Z(KE). Hence, it follows that f is a

Gn-derivation. �

3. Application on a variant of Lvov-Kaplansky conjecture

In this section, we investigate a variant of Lvov-Kaplansky conjecture (see
Question 1.2 in the introduction). Our main result is as follows.

In the proof, we denote the length of a path p in E by `(p) (i.e., the number
of edges in the path p). By convention, we set the length of vertices to zero.

Theorem 3.1. Let ζ(x1, . . . , xn) =
∑
σ∈Sn cσxσ(1) · · ·xσ(n) be a multi-linear

polynomial over K, with cσ ∈ K. Then, the set of values of ζ on KE is either
{0}, KE or the space spanned by paths of a length greater than or equal to 1.

Proof. We prove the result by recurrence on the length l of the longest path in
E. Let Vj be the space spanned by paths in E with a length greater than or
equal to j ∈ N. It follows that V0 = KE and Vl+k+1 = {0} for all k ∈ N, since
there is no path with a length greater than l. Now, define Ip to be

Ip = {(x1, . . . , xn) ∈ (P ∪ {1})n : ∃σ ∈ Sn,
n∏
i=1

xσ(i) = p},(3.1)

where p ∈ P. Let ζ(x1, . . . , xn) =
∑
σ∈Sn cσxσ(1) · · ·xσ(n) be a multi-linear

polynomial over K, where cσ ∈ K. Let dσ be a Gn-derivation on KE with
gi = cσ

n I, where I is the identity map on KE. Then, ζ can be written as

ζ(x1, . . . , xn) =
∑
σ∈Sn

cσ

n∏
i=1

xσ(i) =
∑
σ∈Sn

dσ(

n∏
i=1

xσ(i))

for every (x1, . . . , xn) ∈ (KE)n. Let p ∈ P with `(p) = 0. Assume that there
exists an element x ∈ Ip such that ζ(x) 6= 0. Then,

∑
σ∈Sn cσ 6= 0. Hence, we

have

ζ(x) = (
∑
σ∈Sn

dσ)(p) = αpp
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for every p ∈ P and for every x ∈ Ip, where αp ∈ K∗. Therefore, by linearity,
the set of values of ζ on KE is KE itself. Now, to prove the set of values
of ζ on KE is Vj , where 0 < j ≤ l, we assume that, for every q ∈ P with
`(q) < j, and for every y ∈ Iq, we have ζ(y) = 0 and there exists x0 ∈ Ip0 for
some p0 ∈ P with `(p0) = j such that ζ(x0) 6= 0. Then, there exists a subset
Sx0

= {σ ∈ Sn :
∏n
i=1 xσ(i),0 6= 0} of Sn such that

∑
σ∈Sx0

cσ 6= 0. Hence, we

have

ζ(x) = (
∑
σ∈Sx0

dσ)(p) = αpp

for every p ∈ P with `(p) ≥ j and for every x ∈ Ip with the components of
x has a similar decomposition of sub-paths of p as x0 of p0, where αp ∈ K∗.
Therefore, the set of values of ζ on KE is Vj . Otherwise, if ζ(y) = 0 for every
q ∈ P and every y ∈ Iq, then the set of values of ζ on KE is {0}. �

We end this section with the following examples. We assume in these exam-
ples that KE has some paths of length greater than or equal to 2 and K = C
or K = R.

Example 3.2. Consider the multi-linear polynomial ζ(x1, x2, x3) = (x1 ◦x2) ◦
x3 over K. Then, the set of values of ζ on KE is KE itself. This is due
the fact that all coefficients are positive. Therefore, for every p ∈ P, we have
ζ(p, 1, 1) = αpp, as desired.

In the following example, we use the notation of the proof of Theorem 3.1.

Example 3.3. Consider the multi-linear polynomial

ζ(x1, x2, x3, x4) = x1x2x3x4 − x1x2x4x3 − x2x1x3x4 + x2x1x4x3

over K. Then, the set of values of ζ on KE is the space spanned by all paths
of a length greater than or equal to 2. This can be checked by choosing a path
p0 = e1 · · · el in P with `(p) ≥ 2 and x0 = (t(e1), e1, t(e1), e2 · · · el). Hence,
ζ(x0) = −p0. Therefore, by similar decomposition of all paths with a length
greater than or equal to 2 as the decomposition done for p0 into sub-paths in
x0, we obtain the desired result.

Recall the following definition of Lie polynomials of order 3.

Definition ([2, Definition 4]). A non-zero multi-linear Lie polynomial ζ of
degree 3 is a polynomial over K that can be written in the form

ζ(x1, x2, x3) = c1[[x1, x2], x3] + c2[[x1, x3], x2],

where c1 and c2 are not both 0 and ci ∈ K.

Example 3.4. Let ζ be the Lie polynomial of the order 3 defined as:

ζ(x1, x2, x3) = [[x1, x2], x3] + [[x1, x3], x2]

= x1x2x3 + x1x3x2 − 2x2x1x3 + x2x3x1 − 2x3x1x2 + x3x2x1.
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Then, the set of values of ζ on KE is the space spanned by all paths with a
length greater than or equal to 1. Indeed, for every p ∈ P with `(p) = 0, and
every x ∈ Ip, ζ(x) = 0, where Ip is defined as in (3.1). Now, for an edge p0 in
P, we have x0 = (p0, t(p0), t(p0)) ∈ Ip0 and ζ(x0) = 2p0 6= 0. Hence, for every
path p with `(p) > 0, we have

ζ(p, t(p), t(p)) = 2p.

By linearity, we deduce that the set of values of ζ on KE is the space spanned
by paths with length at least one.

For the definition of Lie polynomials of order 4, we have the following defi-
nition.

Definition ([2, Definition 5]). A non-zero multi-linear Lie polynomial ζ of
degree 4 is a polynomial over K that can be written in the form

ζ(x1, x2, x3, x4) = c1[[[x1, x2], x3], x4] + c2[[[x1, x2], x4], x3]

+ c3[[[x1, x3], x2], x4] + c4[[[x1, x3], x4], x2]

+ c5[[[x1, x4], x2], x3] + c6[[[x1, x4], x3], x2],

where ci are not all 0 and ci ∈ K.

Example 3.5. Let ζ be the Lie polynomial of the order 4 defined as:

ζ(x1, x2, x3, x4) = [[[x1, x2], x4], x3] + [[[x1, x3], x4], x2]− 2[[[x1, x4], x2], x3]

= x1x2x4x3+x1x3x4x2−2x1x4x2x3−x2x1x3x4+x2x1x4x3

+x2x3x1x4−x2x4x1x3−x2x4x3x1−x3x1x2x4+x3x1x4x2

−x3x2x1x4+2x3x2x4x1−x3x4x1x2−x3x4x2x1+x4x1x2x3

−x4x1x3x2+x4x2x1x3+x4x3x1x2.

By the same reasoning as in the previous example, we choose an edge p0 in
P, we have x0 = (s(p0), p, t(p0), t(p0)) ∈ Ip0 and ζ(x0) = p0 6= 0. Hence, we
conclude that the set of values of ζ on KE is the space spanned by paths with
length at least one.

Since 2 × 2-upper triangular matrix algebra T2(K) is isomorphic to path

algebra associated with the line quiver E2 : v1 v2,
e we have the following

result:

Corollary 3.6 ([16, Theorem 1.1]). Let K be a field with characteristic zero.
Let ζ(x1, . . . , xn) =

∑
σ∈Sn cσxσ(1) · · ·xσ(n) be a multi-linear polynomial over

K, with cσ ∈ K. Then, the image of ζ on KE2 is KE2, Ke or {0}.

By similar reasoning, when K is a field with characteristic zero, the main
result [8, Theorem 3] is generalized from strictly upper triangular matrix alge-
bras to upper triangular matrix algebras Tm(K) ∼= KEm, where m ≥ 2 and

Em is the line quiver v1 v2 · · · vm−1 vm.
e1 em−1
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