• Title/Summary/Keyword: p-Laplacian equations

Search Result 31, Processing Time 0.02 seconds

MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION

  • Ki, Yun-Ho;Park, Kisoeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1805-1821
    • /
    • 2016
  • In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.

AN EXISTENCE OF THREE DIFFERENT NON-TRIVIAL SOLUTIONS FOR DISCRETE ANISOTROPIC EQUATIONS WITH TWO REAL PARAMETERS

  • Ahmed A.H., Alkhalidi;Haiffa Muhsan B., Alrikabi;Mujtaba Zuhair, Ali
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.855-867
    • /
    • 2022
  • This study finds three different solutions (3-Sol's) for the fourth order nonlinear discrete anisotropic equations (DAE) with real parameter. We use the variational method(VM) and 𝜙p-Laplacian operator (𝜙p-LO) to prove the main results. In the following paper, we take the parameters λ, 𝜇 such that λ > 0 and 𝜇 ≥ 0 into consideration.

QUALITATIVE PROPERTIES OF WEAK SOLUTIONS FOR p-LAPLACIAN EQUATIONS WITH NONLOCAL SOURCE AND GRADIENT ABSORPTION

  • Chaouai, Zakariya;El Hachimi, Abderrahmane
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1003-1031
    • /
    • 2020
  • We consider the following Dirichlet initial boundary value problem with a gradient absorption and a nonlocal source $$\frac{{\partial}u}{{\partial}t}-div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)={\lambda}u^k{\displaystyle\smashmargin{2}{\int\nolimits_{\Omega}}}u^sdx-{\mu}u^l{\mid}{\nabla}u{\mid}^q$$ in a bounded domain Ω ⊂ ℝN, where p > 1, the parameters k, s, l, q, λ > 0 and µ ≥ 0. Firstly, we establish local existence for weak solutions; the aim of this part is to prove a crucial priori estimate on |∇u|. Then, we give appropriate conditions in order to have existence and uniqueness or nonexistence of a global solution in time. Finally, depending on the choices of the initial data, ranges of the coefficients and exponents and measure of the domain, we show that the non-negative global weak solution, when it exists, must extinct after a finite time.

ON THE EXISTENCE OF SOLUTIONS OF QUASILINEAR WAVE EQUATIONS WITH VISCOSITY

  • Park, Jong-Yeoul;Bae, Jeong-Ja
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.339-358
    • /
    • 2000
  • Let be a bonded domain in N with smooth boundary . In this paper, we consider the existence of solutions of the following problem: (1.1)-div{} - + = , , , , , , where q > 1, p$\geq$1, $\delta$>0, , the Laplacian in N and is a positive function like as .

  • PDF

EXISTENCE OF GLOBAL SOLUTIONS TO SOME NONLINEAR EQUATIONS ON LOCALLY FINITE GRAPHS

  • Chang, Yanxun;Zhang, Xiaoxiao
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.703-722
    • /
    • 2021
  • Let G = (V, E) be a connected locally finite and weighted graph, ∆p be the p-th graph Laplacian. Consider the p-th nonlinear equation -∆pu + h|u|p-2u = f(x, u) on G, where p > 2, h, f satisfy certain assumptions. Grigor'yan-Lin-Yang [24] proved the existence of the solution to the above nonlinear equation in a bounded domain Ω ⊂ V. In this paper, we show that there exists a strictly positive solution on the infinite set V to the above nonlinear equation by modifying some conditions in [24]. To the m-order differential operator 𝓛m,p, we also prove the existence of the nontrivial solution to the analogous nonlinear equation.

NEHARI MANIFOLD AND MULTIPLICITY RESULTS FOR A CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN

  • Ghanmi, Abdeljabbar;Zhang, Ziheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1297-1314
    • /
    • 2019
  • In this work, we investigate the following fractional boundary value problems $$\{_tD^{\alpha}_T({\mid}_0D^{\alpha}_t(u(t)){\mid}^{p-2}_0D^{\alpha}_tu(t))\\={\nabla}W(t,u(t))+{\lambda}g(t){\mid}u(t){\mid}^{q-2}u(t),\;t{\in}(0,T),\\u(0)=u(T)=0,$$ where ${\nabla}W(t,u)$ is the gradient of W(t, u) at u and $W{\in}C([0,T]{\times}{\mathbb{R}}^n,{\mathbb{R}})$ is homogeneous of degree r, ${\lambda}$ is a positive parameter, $g{\in}C([0,T])$, 1 < r < p < q and ${\frac{1}{p}}<{\alpha}<1$. Using the Fibering map and Nehari manifold, for some positive constant ${\lambda}_0$ such that $0<{\lambda}<{\lambda}_0$, we prove the existence of at least two non-trivial solutions

SOLVABILITY OF NONLINEAR ELLIPTIC TYPE EQUATION WITH TWO UNRELATED NON STANDARD GROWTHS

  • Sert, Ugur;Soltanov, Kamal
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1337-1358
    • /
    • 2018
  • In this paper, we study the solvability of the nonlinear Dirichlet problem with sum of the operators of independent non standard growths $$-div\({\mid}{\nabla}u{\mid}^{p_1(x)-2}{\nabla}u\)-\sum\limits^n_{i=1}D_i\({\mid}u{\mid}^{p_0(x)-2}D_iu\)+c(x,u)=h(x),\;{\in}{\Omega}$$ in a bounded domain ${\Omega}{\subset}{\mathbb{R}}^n$. Here, one of the operators in the sum is monotone and the other is weakly compact. We obtain sufficient conditions and show the existence of weak solutions of the considered problem by using monotonicity and compactness methods together.

LONG-TIME BEHAVIOR OF SOLUTIONS TO A NONLOCAL QUASILINEAR PARABOLIC EQUATION

  • Thuy, Le Thi;Tinh, Le Tran
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1365-1388
    • /
    • 2019
  • In this paper we consider a class of nonlinear nonlocal parabolic equations involving p-Laplacian operator where the nonlocal quantity is present in the diffusion coefficient which depends on $L^p$-norm of the gradient and the nonlinear term is of polynomial type. We first prove the existence and uniqueness of weak solutions by combining the compactness method and the monotonicity method. Then we study the existence of global attractors in various spaces for the continuous semigroup generated by the problem. Finally, we investigate the existence and exponential stability of weak stationary solutions to the problem.

ANALYTIC SOLUTION OF HIGH ORDER FRACTIONAL BOUNDARY VALUE PROBLEMS

  • Muner M. Abou Hasan;Soliman A. Alkhatib
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.601-612
    • /
    • 2023
  • The existence of solution of the fractional order differential equations is very important mathematical field. Thus, in this work, we discuss, under some hypothesis, the existence of a positive solution for the nonlinear fourth order fractional boundary value problem which includes the p-Laplacian transform. The proposed method in the article is based on the fixed point theorem. More precisely, Krasnosilsky's theorem on a fixed point and some properties of the Green's function were used to study the existence of a solution for fourth order fractional boundary value problem. The main theoretical result of the paper is explained by example.

ON EXISTENCE OF SOLUTIONS OF DEGENERATE WAVE EQUATIONS WITH NONLINEAR DAMPING TERMS

  • Park, Jong-Yeoul;Bae, Jeong-Ja
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.465-490
    • /
    • 1998
  • In this paper, we consider the existence and asymptotic behavior of solutions of the following problem: $u_{tt}$ -(t, x) - (∥∇u(t, x)∥(equation omitted) + ∥∇v(t, x) (equation omitted)$^{\gamma}$ $\Delta$u(t, x)+$\delta$$u_{t}$ (t, x)│sup p-1/ $u_{t}$ (t, x) = $\mu$│u(t, x) $^{q-1}$u(t, x), x$\in$$\Omega$, t$\in$[0, T], $v_{tt}$ (t, x) - (∥∇uu(t, x) (equation omitted) + ∥∇v(t, x) (equation omitted)sup ${\gamma}$/ $\Delta$v(t, x)+$\delta$$v_{t}$ (t, x)│sup p-1/ $u_{t}$ (t, x) = $\mu$ u(t, x) $^{q-1}$u(t, x), x$\in$$\Omega$, t$\in$[0, T], u(0, x) = $u_{0}$ (x), $u_{t}$ (0, x) = $u_1$(x), x$\in$$\Omega$, u(0, x) = $v_{0}$ (x), $v_{t}$ (0, x) = $v_1$(x), x$\in$$\Omega$, u│∂$\Omega$=v│∂$\Omega$=0 T > 0, q > 1, p $\geq$1, $\delta$ > 0, $\mu$ $\in$ R, ${\gamma}$ $\geq$ 1 and $\Delta$ is the Laplacian in $R^{N}$.X> N/.

  • PDF