DOI QR코드

DOI QR Code

ANALYTIC SOLUTION OF HIGH ORDER FRACTIONAL BOUNDARY VALUE PROBLEMS

  • Muner M. Abou Hasan (School of Mathematics and Data Science, Emirates Aviation University) ;
  • Soliman A. Alkhatib (Department of Engineering Mathematics and Physics, Future University in Egypt)
  • Received : 2022.09.01
  • Accepted : 2023.06.01
  • Published : 2023.09.15

Abstract

The existence of solution of the fractional order differential equations is very important mathematical field. Thus, in this work, we discuss, under some hypothesis, the existence of a positive solution for the nonlinear fourth order fractional boundary value problem which includes the p-Laplacian transform. The proposed method in the article is based on the fixed point theorem. More precisely, Krasnosilsky's theorem on a fixed point and some properties of the Green's function were used to study the existence of a solution for fourth order fractional boundary value problem. The main theoretical result of the paper is explained by example.

Keywords

References

  1. A.I. Abbas, On a Thermoelastic Fractional Order Model, J. phys., 1(2) (2012), 24-30. 
  2. H.I. Abdel-Gawad, M.S. Abou-Dina, A.F. Ghaleb and M. Tantawy, Heat traveling waves in rigid thermal conductors with phase lag and stability analysis, Acta Mech., 233 (2022), 25272539, https://doi.org/10.1007/s00707-022-03241-3. 
  3. H.I. Abdel-Gawad and M. Tantawy, Fractional KdV and Boussenisq-Burger's equations, reduction to PDE and stability approaches, Math. Med. Appl. Sci., 43(7) (2020), 4125-4135.  https://doi.org/10.1002/mma.6178
  4. H.I. Abdel-Gawad, M. Tantawy and S. Mani Rajan, Similariton regularized waves solutions of the (1+2)-dimensional non-autonomous BBME in shallow water and stability, J. Ocean Eng. Sci., 7(4) (2022), 321-326.  https://doi.org/10.1016/j.joes.2021.09.002
  5. T.A. Assiri and Saja A Alsulami, Approximation of the Fractional Variable Order Wave Model by Weighted Average Finite Difference Method, J. Comput. Theor. Nanoscience, 18(6) (2021), 1685-1691, https://doi.org/10.1166/jctn.2021.9730. 
  6. Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal., 72 (2010), 916-924.  https://doi.org/10.1016/j.na.2009.07.033
  7. D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calaulus, Models and Numerical Methods, Springer Science and Business Media LLC, 2012. 
  8. D. Baleanu, J.A.T. Machado and A.C.J. Luo, Fractional dynamics and control, World Scientific, Boston, 2012. 
  9. D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour Res., 36 (2000), 1403-1412.  https://doi.org/10.1029/2000WR900031
  10. R.C. Koeller, Application of fractional calculus to the theory of viscoelasticity, J Appl. Mech., 51 (1984), 229-307.  https://doi.org/10.1115/1.3167616
  11. M.A. Krasnoselskii, Positive Solutions of Operator Equations, Groningen, 1964. 
  12. K. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley and Sons, New York, 1993. 
  13. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999. 
  14. Y. Povstenko, Fractional Thermoelasticity, Solid Mechanics and Its Applications, Springer International Publishing Switzerland, 2015. 
  15. J. Sabatier, O.P. Agrawal and J.A.T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007. 
  16. N.H. Sweilam and M.M. Abou Hasan, An improved method for nonlinear variable order Lvy -Feller advection-dispersion equation, Bull. Malay. Math. Sci. Soc., 42 (2019), 3021-3046, https://doi.org/10.1007/s40840-018-0644-7. 
  17. N.H. Sweilam and M.M. Abou Hasan, Efficient Method for Fractional Levy-Feller Advection-Dispersion Equation Using Jacobi Polynomials, Progress in Fractional Diff. Appl., 6(2) (2020), 115-128, https://doi:10.18576/pfda/060204. 
  18. N.H. Sweilam, M.M. Abou Hasan and S.M. Al-Mekhlafi,On variableorder Salmonella bacterial infection mathematical model, Math. Meth. Appl. Sci., 2022, https://doi.org/10.1002/mma.8548. 
  19. N.H. Sweilam, T.A. Assiri, and M.M. Abou Hasan, Optimal control problem of variable-order delay system of advertising procedure, Nume. Treatment, DCDS-S 15(5) (2022), 1247-1268.  https://doi.org/10.3934/dcdss.2021085
  20. N.H. Sweilam, A.F. Ghaleb, M.S. Abou-Dina, M.M. Abou Hasan, S.M. Al-Mekhlafi and E.K. Rawy, Numerical solution to a one-dimensional nonlinear problem of heat wave propagation in a rigid thermal conducting slab, Indian J. Phys., 96(1) (2022), 223-232.  https://doi.org/10.1007/s12648-020-01952-8
  21. V.E. Tarasov, Fractional Dynamics Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer Science and Business Media, 2011. 
  22. J. Wang, H.J. Xiang and Z. Liu, Positive solutions for three-point boundary value problems of nonlinear fractional differential equations with p-Laplacian, Far East J. Appl. Math., 37(1) (2009), 33-47. 
  23. X. Xu, D. Jiang, W. Hu, D. O'Regan and R.P. Agarwal, Positive properties of Green's function for three-point boundary value problems of nonlinear fractional differential equations and its applications, Appl. Anal., 91 (2012), 323-343. https://doi.org/10.1080/00036811.2011.629608