Browse > Article
http://dx.doi.org/10.4134/BKMS.b151001

MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION  

Ki, Yun-Ho (Department of Mathematics Education Sangmyung University)
Park, Kisoeb (Department of Mathematics Incheon National University)
Publication Information
Bulletin of the Korean Mathematical Society / v.53, no.6, 2016 , pp. 1805-1821 More about this Journal
Abstract
In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.
Keywords
three critical points; p(x)-Laplacian; variable exponent Lebesgue-Sobolev spaces;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), no. 4, 349-381.   DOI
2 S. Aouaoui, On some degenerate quasilinear equations involving variable exponents, Nonlinear Anal. 75 (2012), no. 4, 1843-1858.   DOI
3 D. Arcoya and J. Carmona, A nondifferentiable extension of a theorem of Pucci and Serrin and applications, J. Differential Equations 235 (2007), no. 2, 683-700.   DOI
4 J.-H. Bae, Y.-H. Kim, and C. Zhang, Multiple solutions for the equations involving nonhomogeneous operators of p(x)-Laplace type in ${\mathbb{R}}^N$, submitted.
5 X. Fan and D. Zhao, On the spaces $L^{p(x)}({\Omega})$ and $W^{m,p(x)}({\Omega})$, J. Math. Anal. Appl. 263 (2001), no. 2, 424-446.   DOI
6 V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal. 71 (2009), no. 7-8, 3305-3321.   DOI
7 S. D. Lee, K. Park, and Y.-H. Kim, Existence and multiplicity of solutions for equations involving nonhomogeneous operators of p(x)-Laplace type in ${\mathbb{R}}^N$, Bound. Value Probl. 261 (2014), 1-17.
8 J. Liu and X. Shi, Existence of three solutions for a class of quasilinear elliptic systems involving the (p(x), q(x))-Laplacian, Nonlinear Anal. 71 (2009), no. 1-2, 550-557.   DOI
9 O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41 (1991), no. 4, 592-618.
10 K. R. Rajagopal and M. Ruzicka, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn. 13 (2001), no. 1, 59-78.   DOI
11 B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling 32 (2000), no. 11-13, 1485-1494.   DOI
12 B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000), no. 3, 220-226.   DOI
13 B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70 (2009), no. 9, 3084-3089.   DOI
14 B. Ricceri, A further three critical points theorem, Nonlinear Anal. 71 (2009), no. 9, 4151-4157.   DOI
15 M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748, Springer, Berlin, 2000.
16 M.-M. Boureanu and D.-N. Udrea, Existence and multiplicity result for elliptic problems with p(${\cdot}$)-growth conditions, Nonlinear Anal. Real World Appl. 14 (2013), no. 4, 1829-1844.   DOI
17 M. S. Berger, Nonlinearity and Functional Analysis: Lectures on Nonlinear Problems in Mathematical Analysis, Academic Press, 1977.
18 G. Bonanno and A. Chinni, Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent, J. Math. Anal. Appl. 418 (2014), no. 2, 812-827.   DOI
19 M.-M. Boureanu and F. Preda, Infinitely many solutions for elliptic problems with variable exponent and nonlinear boundary conditions, Nonlinear Differential Equations Appl. 19 (2012), no. 2, 235-251.   DOI
20 F. Colasuonno, P. Pucci, and C. Varga, Multiple solutions for an eigenvalue problem involving p-Laplacian type operators, Nonlinear Anal. 75 (2012), no. 12, 4496-4512.   DOI
21 D. E. Edmunds and J. Rakosnik, Sobolev embedding with variable exponent, Studia Math. 143 (2000), no. 3, 267-293.   DOI
22 X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl. 339 (2008), no. 2, 1395-1412.   DOI
23 X. Fan, J. Shen, and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}({\Omega})$, J. Math. Anal. Appl. 262 (2001), no. 2, 749-760.   DOI
24 X. Fan and Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), no. 8, 1843-1852.   DOI
25 X. Fan, Q. Zhang, and D. Zhao, Eigenvalue of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), no. 2, 306-317.   DOI
26 E. Zeidler, Nonlinear Functional Analysis and its Applications III, Springer, New York, 1985.
27 I. Sim and Y.-H. Kim, Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents, Discrete Contin. Dyn. Syst. Supplement 2013 (2013), 695-707.
28 P. Winkert, Multiplicity results for a class of elliptic problems with nonlinear boundary condition, Commun. Pure Appl. Anal. 12 (2013), no. 2, 785-802.   DOI
29 J. Yao, Solutions for Neumann boundary value problems involving p(x)-Laplace operators, Nonlinear Anal. 68 (2008), no. 5, 1271-1283.   DOI
30 E. Zeidler, Nonlinear Functional Analysis and its Applications II/B, Springer, New York, 1990.
31 J.-H. Zhao and P.-H. Zhao, Existence of infinitely many weak solutions for the p-Laplacian with nonlinear boundary conditions, Nonlinear Anal. 69 (2008), no. 4, 1343-1355.   DOI