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ON THE EXISTENCE OF SOLUTIONS OF
QUASILINEAR WAVE EQUATIONS WITH VISCOSITY

JONG YEOUL PARK AND JEONG JA BAE

ABSTRACT. Let Q be a bounded domain in RNV with smooth bound-
ary 0€). In this paper, we consider the existence of solutions of the
following problem:

1.1
( 'u?u (t, x) — div{o(|Vu(t,z)|*) Vu(t, )} — Au(t, z) — Aus(t, z)
+ Slue(t, )P ur(t, @) = plu(t, 2)|9 " u(t, 2),
z€Q, tel0,T),
u(t, z)lan = 0,
u(0,z) = uo(z), u:(0,2) =u1(z), z€Q,

where ¢ > 1,p > 1,6 > 0, p € R, A the Laplacian in RN and

_ 2y & epr . . 1
o = o(v?) is a positive function like as oz

1. Introduction

Many authors have been studied about the existence and uniqueness
of solutions of (1.1) by using various methods. Equation (1.1) with
d = p = 0 was introduced by Greenberg and Maccamy ([5]) as a
model of a modified quasilinear wave equation which has global smooth
solutions for large data. Since then, many authors have investigated
the global existence as well as the asymptotic behavior of solutions
to this and related equations (see Alikakos and Rostamin [2], Engler
[4], Kawashima and Shibata (7], Mizohata and Ukai [9] and Nakao
[10] and the references cited in these papers). When ¢ = u = 0 and
0 = 1, Nakao ([12]) has considered the existence and decay properties
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of solution of (1.1). On the other hand, Matsuyama and Ikehata ([8])
have considered the following quasilinear wave equation

(1.2) Utt — M(/ |Vul? dx) Au + 8us Py = pluli u,
Q

where M (s) is a positive C? class function for s > 0 satisfying M(s) >
mo > 0 with a constant mg. In fact, Equation (1.2) has its origin
in the mathematical description of small amplitude vibrations of an
elastic string whose ends are held a fixed distance apart, hinged or
clamped and is either elastic or compressed by an axial force. In fact,
a mathematical model for (1.2) is an initial boundary value problem
for the nonlinear hyperbolic equation

(1.3)

0%y Eh L rou\? 2y
ph8t2 {po+ oL /0 <_3:L') dx 322 +f forO<z< L, t>0,

where u is the lateral deflection,  the space coordinate, ¢ the time,
E the Young modulus, p the mass density, h the cross section area, L
the length, po the initial axial tension and f the external force. See
Narasimha ([13]).

Kirchhoff first introduced (1.3) in the study of oscillations of elastic
strings and plates, so that (1.3) is called the wave equation of Kirchhoff
type after his name.

In the present paper, we will study the existence and uniqueness of
solutions of (1.1) with § > 0 and u # 0 by using Galerkin method. Our
paper is organized as follows: In section 2, we give lemmas and state
the main result. In section 3, we study the existence and uniqueness
of weak solution of (1.1).

2. Preliminaries

In this section we present some lemmas that will be necessary
throughout this paper.

LEMMA 2.1 (Sobolev-Poincaré [1}). If either 1 < g < +o0 (N =
1,2) or1 < g < 822 (N > 3) is satisfied, then there is a constant C,
such that

lullg+1 < CullVulla for u € Hy(€).
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LEMMA 2.2 (Gagliardo-Nirenberg [1]). Let 1 < r < g < +00 and
p < q. Then the inequality

lullws.e < Cllullfymellulli ™ for W™P(Q) N L7(Q)

-1
holds with some C > 0 and 6 = %—i—%— %) (%4—%—%) provided
that 0 < 6 < 1 (we assume 0 < 0 < 1 if ¢ = +00).

For further a priori estimates, we need the generalized Gronwall’s
inequality which is due to Bihari and Langenhop.

LEMMA 2.3. ([3]). If k > 0 and ¢ > 0 are constants and g(s) is
positive, nondecreasing for s > 0, then the inequality

(2.1) $(t) < k+c /0 ¥(s)9(6(s)) ds

implies that ¢(t) < G~(c [3¥(s)ds), where G(n) = i sy ds n>
k > 0. If g(s) = s, then the inequality (2.1) is the usual Gronwall’s
inequality and Lemma 2.3 reads as follows:

s <h+e | " p(s)6(s) ds

implies that

o(t) <k exp (c/otzlz(s) ds) , t>0.

Lastly, we indicate the following two propositions which are necessary
to obtain convergence results.

PROPOSITION 2.4. (Temam [14]). Let X and Y be two Banach
spaces such that X C Y with a continuous injection. If a function
¢ belongs to L*°(0,T; X) and is weakly continuous with values in Y,
then ¢ is weakly continuous with values in X.
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PROPOSITION 2.5 (Lions [6]). Let X be a Banach space. If f €
LP(0,T; X) and f' € LP(0,T; X) (1 < p < 00), then f, possibly after
redefinition on a set of measure zero, is continuous from [0,T] to X.

Now we consider the following boundary value problem:

uge(t, ) — div{o(|Vu(t, z)|*)Vu(t, z)} — Au(t, ) — Aus(t, z)
+ 8lug(t, 2) P ue(t, ) = plu(t, 2)|9 u(t, 2),
(2.2) zeQ, telo,T)
u(t,z)|on = 0,
u(0,z) = up(z), u(0,2) =wi(z), z €N

We define the potential J{u(?)), energy E(u(t)) and I-positive set W
associated with equation (2.2) by

Tw(®) = 31Vu®)f - 25O,

IVu(t)|?
Be) = zlu@P+3 [ [ omdnds + )
and W = {u(t) € H}(Q) N H3(Q) | I(u(t)) > 0} U {0},

where I(u(t)) = |Vu(®)|§ - pllu@®)IZf}-

To obtain our theorem, we shall make the following assumptions on
o:

o(-) belongs to C2([0,00)) and satisfies

(H1) 0<0o(v?) < k; and |0’/ (v?)]| < k1 < 00,
(Hz) there exists r > 0 such that o(v?) — 2|0’ (v?)|v? > k2 {c(v?) +
2|o’(v?)|v?}" for some ky, k; > 0.

REMARK. Without loss of generality, we may assume r > 2 in
(Hz) of the above hypothesis. When o(v?) = \/—T_i——?” we see o(v?) —
2)0’ (v?)|v? = (1 + )% and o(v?) + 2|0’ (v?)|v? < 2(1 + v%)" % and
hence we can take r = 3.

Our results read as follows.
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THEOREM 2.6. Let N be a positive integer. Under assumptions
(H:) and (H3), suppose that § > 0, u > 0 and p < min{g, M_g:ﬁq}
is such that

(i) 1<p<oo (N=1,2),
(1) 1<p<3,1<g<5(N=3),

N
() 1<p < s,

N+2 N-2
< g < 1mi >4).
N—2“q‘mm{N—2’[N—4]+} (V2 4)

Ifug € WﬂHz(Q), Uy € H&(Q) and

g—1
2 -
pCItt (z(‘?_ln) E(u0)921 <1

then the problem (2.2) has a solution v = u(t,z) satisfying u €
L* (0,T; H: (Q) N HX(Q)), v € L*® (0,T; Hi(Q)) and v" € L
(0, T; L*(Q)).

3. Proof of Theorem 2.6

We now consider the problem (2.2). Throughout this section, we
always assume that up € W N H%(Q) and u; € H}(Q). We employ
the Galerkin method to construct a solution. We present by (w;);en
be a basis in H}(2) N H2(Q) which is orthonormal in L?(Q) and by
V. the subspace of H}(Q) N H?() generated by the m-first vectors
w1, , W and define um(t) = Y7, gjm(t)w;, where um(t) is the
solution of the following problem:

(e (8) = div{o(|Veim (1)) Vum ()} — Aum(t) ~ Aul, (8), w)
+ 8lun (P (urn (8), w) = plum ()7 (um (), w), w € Vo,

m

(3.1) um(0) =uom =Y (uo,w;)w; »uo in HF(Q) N H(Q),
j=1

m
m(O = Ulm Z U1,U)j)wj - U1 in H&(Q)
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Note that we can solve the system (3.1) by a Picard’s iteration method.
Hence the system (3.1) has a local solution in [0, 7)) with 0 < T, < T..
The extension of the solution to the whole interval [0,T] is a conse-
quence of priori estimates we are going to obtain below.

A Priori Estimates I

Multiplying the equation (3.1) by u/,(¢), then we have
(3.2)

d v 1 ROL £ a1

2 (31n B + IV @1 + 5 [ 0o~ £ 125}

+ [V ()13 + 6llupn (¢ )Ilﬁii =0,

2
where I'(t) = olvu'"(t)l o(n)dn.
Integrating (3.2) from O to ¢, then we have the energy identity

(3.3) Eum(t)+/ ||Vum(s)||2ds+6/ [, ( s)||£ﬁds- E(uom),

where B(un(t) = Hlun(®If + HIVam(OIf + § oI O do ~ 2t
[lum ()13 +1-
Next to obtain a priori bound, we need the following results.
LEMMA 3.1. Assume that either 1 < g < +oo (N =1,2) or1 <

g < < 2 (N > 3) is satisfied. Let un(t) be the solution of (3.1) with
Uom E Wﬂ H?(Q) and wy, € H(Q). If

t_l-
(3.4) uCit (?—g‘if—ll)) Bluom) ™ <1,

then u,,(t) € W on [0, T}, that is, ||Vum||%—,u||um||gi} >0 on [0,7T].

Proof. Since I(ugn,) > 0, it follows from the continuity of um(t)
that

(3.5) I{um(t)) > 0 for some interval near ¢ =0.
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Let tmax be a maximal time (possibly tmax = Tm) when (3.5) holds on
[0,%max)- Note that

1 g—1

g—1
m”vum(t)“% on [0, tmax)-

J(um(t)) =

Vum(®)l3
(3.6)
>

By the energy identity (3.3) and (3.6), we have

2(g+1)
g—1

2(g+1)
g—1

2(g+1)
qg—1

IVeum ()13 <

'](um (t))

(3.7) < E(um(t))

< E(uom) on [0,tmax)-

It follows from the Sobolev-Poincaré’s inequality, (3.4) and (3.7) that

1 1
pllum @351 < pCHH I Vum ®)15

<uct (2D Bluon)) T 19wl

< Vum(@)lf on [0, tmax)-

a=1

Therefore, we get I(u,(t)) > 0 on [0, ¢max). This implies that we can
take tmax = T'. This completes the proof of Lemma 3.1. g

Note that Lemma 3.1 implies that

Blum(8) = 5 01 + — 71 0m()) + 55 V()1

g+ (¢
(3.8) +% /Q I(t) dz

g-—1

> Sl @I + 5 IVun(®lf + 5 [ T da.
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Thus, (3.3) and (3.8) imply

1., 2 g—1 2 1/
S I + 5 Vum @I + 3 [ 1) do

(3‘9) té / p+1d t I 2d
+ [t ()| 1 ds + A [V ()2 ds

S E(u()m).

A Priori Estimates II

Multiplying the equation (3.1) by —Au,,(t), then we have
(3.10)

2 (i 8), Bt (0)) ~ [ Vuln ()13 + | Aum (213 +
+ / div{o(|Vm (t)|>) Vim (t) } Ay, (t) dz
Q

6 /Q [ (&) Pt (8) Dt (£) d

1d

el 2
5 21 8un(t)3

— /Q et ()1t (£) Dt (£) d.

Since p > 1, we can use the fact that L?P(Q2) — L*(Q2) and so (3.9)
implies

ja [ 0P (B

< 8|um (D)5, | At (2) 12
< 6CT um (DNIZ | Aum @)l

(3.11) < 6CP(2E (uom)) ¥ | Aum (t)ll2

1
< Ci + 5l Aun @,

where C) = %52031’(213(%,,,))?.
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On the other hand, Schwarz’s inequality and (3.9) imply
/ [t ()77 Lt (£) At (2) dz

< llum O531 1 Vum @)1341
< qCI [ Vum (O3 | Aum (8113
g1

chz+1(2(q“)E( Om)) " Aum @2

From (3.10)-(3.12), we get
(3.13)

(3.12)

9 (1), B (®) + 31 A DI + 35 1 A1)

+/ div{o(|Vttm (£) ) Viir, (1) }Aum (t) dz
Q
az1
2(g+1 2
< G+ 1Vt 01 + 0 (XD Buon)) T 18w 013

On the other hand, integration by parts gives
(3.14)
/ div{o(|Vm|?) Vim } A, dz

2
-3 [ 20 (Vi) o o o
2
'aax;ézj ae
+ OV =1) [ (@(1TunP) + 20/ (V) Vi ) G2 P H ) dS,
> [ @1V ) = 20" (Vi) [Vt ) D () e
£V 1) [ @V ) + 20 (T ) V) G2 P H ) S,

where H(z) denotes the mean curvature of 92 at = with respect to the

outward normal and |D%*un|* = 37, ; |5%%Z;;12. By assumption (Hi)

of Hypothesis and a standard trace theorem, we see
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(3.15)
0 =1) [ (T 2 (TP TP G P (0) S

302/
a0

< csnwmuz‘l 52))| Aur 202

2

Oum |” 45

on

(1 -0 )Ca IIVumIIz + 02]| Au|3
q— 1
< Ca + 6] Aun 3,

Cl 02 (q + 1?_(12-1'" 02)

E(uom) + 62| Aum||3

where C4 = E(ugm)-

Thus (3.13)-(3.15) give
(3.16)
9 (), B (1)) + 3| B O + 5 S| Aum O

+/Q(0(|Vum(t)| ) = 2|0"(|Vum ()1*)] [Vum(@)]?)| D?um (1) dz

2(g+1 2
< G+ 191 + 02 (2 Bom) ) T 8wt

O,

+|(N—1)/89(0(|Vum|2)+20'(IVuml )| Vm|*)| =2 H (=) dS|
< C1 + Ca+ |V (1113 + Coll Aum (9113,

=1

2
where Cg = 0 + quCa™? (%LE(UOm)) .

Therefore,
(3.17)
9 n(t), B () + 5 5 | A (013

/(0 (IVum@®)) = 200" (1Vam&)P)] [Vum (@) D?um (1) dz
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< Cr + || Vur (O3 + Csll Aum (t)113,

where C; = C1 + C4 and Cg = |Cg — %|
Integrating (3.17), from (3.9) we get

/ t [ @170 = 2 (TP [Vt ()2 D (5) s
+ 5 1Aun (@13

< Nl A6z + Vs 2] Vol + 51 Aol
+ [ (Cr IV I + Colum(9) D ds

< Gollufu ()1 + el At (D)l + Vs el Vsl + 3 1 Avill3 + Euom)
+ [[(©r+ ol sun (s ds

< el Aun(®)l2 + Cio +Ci [ ()3 ds,

where 0 < e < 1 5. Thus, we have
(3. 18)

/ /(a(qum — 210" (Vum(8)*)] [Vt (8)[*)| D (s) [ devdls

+ (5 ~ I Bun(®) < Cuo + Cux / | Aun(s)|2 ds.

Next, multiplying the equation (3.1) by —Auwu!,(t), then we have

333 (17U @1+ 1 80m)13)

4 p5 / l (8) P Vi (8) 2

(3.19) o

+ 18 ()2 + / 49 {0 (| Vot (£)2) Vet ()} AL (2) di
0

=~ [ m O ()Mt (8 d
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Integrating (3.19) from 0 to t, then we have

1 1 t
§I|Vu;1(t)l|§+-2-||Aum(t)||§+/0 || Aup, ()13 ds

t
+ / / div{o (| Vi (5)[2) Vi () } At (5) derdis
(3.20) o Ja
1 2 1 2
< 29+ 311w

t -1y (s)Au. (s s
+ 4 /0 /Q i (3)]9 2t (5) A () s,

where we have used the fact that pd fot Jo [ ()P Vur, (s)|? deds >
0.
Note that

t
;u/ /Ium(s)|q"1um(s)Au;n(s)dxds
0o Ja
¢
(3.21) <au [ [ Tum @IV (s)] [Vuin(s)] dads
0o Ja
¢
< qu/o lfm ()19 Vetm (s)ll2] Vg, (5) |2 ds.
Sobolev-Poincaré’s inequality implies
() Vetm(3)lz < Caallum ()% I Vm(5) g

< Cuallum () 1) n | At (8) -

Now, in the case 75 < ¢ < min{ ¥+2, [N__ﬁJr} (N > 4), we observe
from Gagliardo-Nirenberg’s inequality that

llum ()21

1)(1-6 (g—-1)6
(3.23) < Cuallum(s)1 95" | Aum(s)lI5*

1-6 —1)6
sclsnwm(s)né" D=0 Ay (5) 157 D%
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q—1)(1—6
< (1- (0=~ DICET [Vun(5)ls "7
+ (@ = Dol Bl

< (1- (g~ )E)CET"

+ (g — D3] Aum(s)ll2
N-2 1

with 05 = =5~ ~=(<1).

Thus, (3.22) and (3.23) imply
(3.24)
e (8)|9™ Vum (s)ll2
< C13(C16 + (g — 1)03[| Aum (s)[|2)| Aum(s) |2

< Cr(llAum(s)ll2 + | Aum(s)113),

<2(qq +1) B m)) fa=na—oa)

(AerDg, m))H“Y“’i

Where 016 = (]_ —_ (q — 1)03)0?—:{;‘;

Therefore, from (3.21) and (3.24), we have

o t |t (8)|7 Lt (8) Al (5) daeds
ow bk

t
< unu/O (1A2m ()2 + [ Atm ($)I3)| V2 ()2 ds.

On the other hand, since
(3.26)
div{o(|Vtm|*) Vum}

Ox; axJ szax]

(Zlaizzj )

= 0(| Ve |*) Atsn, + 20'(|Vum|2)|Vum|2|D2um|
< (0(|Vum[?) + 20" (|Vtm )| Vum[*) [ D?uml,

N

Bum

o (|Vtm|?) Atty, + 20" (|Vm)|?) Z
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we get

//div{a(|Vum(3)12)Vum(s)}Au'm(s)da:ds
o Jo

¢ 2
(3.27) s ‘;‘ /0 /Q (U(IVum(s)lz)+2a'(|wm(s)|2)wum(s)|2>
| D2t (s)|? dvds

t
+-1—/ /|Au;n(s)|2 dzds.
2Jo Ja

Now, assumption (Hs) implies that
(3.28)

%/0 /Q{O'(|Vum(s)|2) + 20"(|Vum(3)|2)|Vum(s)|2}2|D2um(s)l2 dzds

_l i o(IVu.. (s)12 o' (| Vterm (8)[2) [Vt (s)]2 12
-2/0/9{ (Vm(S)) + 207 IVt (8)[2) Vet ()2}

2(r

|Dtp (5)] 7| D?tn (5))] = dods

1 t o (|Vun(s))? o' (|Vum(8)|2) [ Vum(s) 2}
<3 ([ [1o09un(6)?) + 2 (Vum(6) V()

|D2um(s)|2dmds) ( / / |D2um(s)|2da:ds)
0 JQ

<[ [1o09un(6)?) = 20 (T (] [T

r=2

|D2um(s)|2dmds>% ( /0 t /Q 1D2um(s)|2dxds) N

C t
< 2o+ 0 [ Nun(e)lgas) (supllaum(i3)
0

r—2

=

e

t
< Cio + Cao / | At (5) 2 s + €| Dum(®)]2,
0

where we have used (3.17) and the Young’s inequality at the last stage.
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Thus, from (3.27) and (3.28), we have
(3.29)

/ / v {0 (| Vi (8)[2) Vit (8) At (5)drdls
0 JQ

t 1 t
< Cio + el Aun(@l + Con [ NAun(s)fds+ 3 [ 18un(9)3ds.
0 0
Hence (3.20), (3.25) and (3.29) imply

1 1 1 [
SIVUn 1 + (G~ N Aun (@ + 5 [ Aol ds

1 1
< §|1Vu1||§ + §||Auo||§

(3.30) t
+ unw/O (1AUm ()12 + | Aum (IR Veirn (3) 12 ds

t
+ Cio + Cao f | At (5) 2 ds.
0

Therefore we have
IVur ()3 + | Aum (®)1I3 + /ot |Auz, ()13 ds
@331) <G+ Ca [ ((1Bumle +IAum@IDITn (o)l
+Bun()13) ds,
where Cy; and Csy9 are some constants. Therefore, we obtain
E1(t) < O + Cns /0 "By(s) + Bu(s)} ds,

where E1(t) = [|Vup, (t)[15 + || Aum ()]3.
Now we set g(s) = s + s% on s > 0. Then we have

E, (t) < Ch + 023/0 g(E(s)) ds.
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Note that g(s) is continuous and nondecreasing on s > 0. By applying
Bihari-Langenhop’s inequality, we get
S

El(t) < G_1(023t), where G(S) = / ——dr, s> Co > 0

Ca1 9( )
and this estimate imply
(3.32) Ei(t) = [|Vup, ()3 + | Aum (B)1I5 < Mi(T)

for some constant M; > 0 independent of m.
In particular, (3.31) and (3.32) imply

(3.33) /0 | AuL,(s)]3 ds < Ma(T).

A Priori Estimates II1

Finally, multiplying the equation (3.1) by u/ (¢), then we have
(3.34)

lum (113 — / div{o(|Vum (t)1*) Vum (£) Yur, (t) dz

— (Aum(t), up (8)) = (Aug, (1), um (t)) + 8lup, ()P~ (urn (8), um (2))
= plum ()17 (um(t), upm (2))-
Note that from L?P(Q) — L2(2) and (3.9),

Slumn ()P~ (i (£), upn (8)) < 5/ |7 () urr, (2)| d

(3.35) < Ol (8 lum @)l
< 0CF [|umm ()15 lum ()2
< Corllum (t)|l2-

Now, it follows from (3.9) the Gagliardo-Nirenberg’s inequality and our
assumptions on ¢ that

(3.36)
1t (8)] 97 (i (), U (2)) < ol (8)115, [t (2) 2
< Cagl| Vi ()15 1w ()13 ™% et (£) 2
(g—1)N

<C’29|]u (t “2 with 64 = 2
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for some constants Cog and Cag. Now, we have
div{o(|Vm|?)Vunm }
=V. {a(|VumI2)Vum}

o umz——
6 Z a%{ (1Vum®) 5}

Ou,, Ouy, 0%u
= o[V P) At + 20 (Vi) 3 o2, B, Buidx
1.7—1 " 3 1’ ]

< o(|Vtum[*)| Atum| + 2l0" (1Vem )| [Viim 2| D2

Thus, our assumption (H;) implies that
(3.38)

h /n div{o(|Vem(t)*) Vaim () }urm (t) dz| < Col| Aum (2) l2l|upm ¢)]2-

Thus (3.34)-(3.38) imply

(339)  Jum(®l3 < Ca (1 + (| Aum ()]l2 + IIAULn(t)Ilz) lleem ()2
Thus, from (3.32), (3.33) and (3.39) we have

(3.40)

lurr, ()|l < M3(T) for some constant Mz >0 independent of m.

Limiting process

By above estimates, {um} has a subsequence still denoted by {um}
such that
(3.41) Um —u in L%(0,T; H3(Q) N H2(Q)) weak™,

(3.42) ul, »u' in L®(0,T; H}(Q)) weak*,

(3.43) up, - u” in L®(0,T;L%(Q)) weak*,
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(3.44) u —u' in L%(0,T; Hp () weak,

(3.45) W —u in LPYY(0,T;LPYY(R)) weak,

(3.46)  div{o(|Vum|?)Vun} — ¢ in L®(0,T;L*(Q)) weak",
lul, P ul, — ¢ in Lp'%—_l((O,T)xQ) weak,

|7 Y — ¥ in LT ((0,T) x Q) weak.

It follows from a classical compactness argument (cf. Lions [6]) that
as m — 00

(3.47)

(3.48) [ul, [P~ tul, — Ju/|P~ v’ in L’%—l((O, T) x ) weak,
(3.49) |ty 9 Lt — [u|7tw in L55 ((0,T) x ) weak.

We shall show that ¢ = div{c(|Vu|?)Vu} is satisfied. For any w €
Co(0, 00; H3 (£2)), we have

T
/0 (¢ — div{o(|Vu|?)Vu},w) dt
T
(350) = /0 (€ — div{o(|Vum[2)Vum}, w) dé

T
+ / (div{o(|Vum|?) Vitm } — div{e(|Vu|?)Vu}, w) dt.
0

It follows from (3.46) that the first term of the right hand sides of
(3.50) tends to zero. Also, (3.41) and mean value theorem imply

T
/0 (div{o (| Vetm|2) Vit } — div{o(|Vul>) Vu}, w) dt

T
= /0 (div{o(|Vum|?)(Vtm — Vu)},w) dt
(3.51) - div{;o(IVum|2) —o(|Vul?))Vu},w)dt
< O / |Vt — Vullg| Voot
0

T
+ Cys max{o’(s)} / 1Vt — Vull2[| V]2 dt
s 0

—0asm—
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and hence we conclude ¢ = div {o(|Vu|?)Vu}. On the other hand, we
can use Aubin-Lions’ compactness lemma (cf. proposition 2.4 and 2.5)

and so we can extract from {un,} subsequence still denoted by {um}
such that for each ¢t € [0, T]

(3.52) um(t) — u(t) strongly in HE(R).

By letting m — oo in (3.1), we can find that u satisfies the equation:

(" (t) = div{o([Vu(t))Vu(t)} - Au(t) — Au'(t), w)

(3.53) + 0w/ ()P (' (), w) = plu()| " (u(t), w)

for all w € H}(Q).

Now, the above result (3.52) implies

(3.54) Um(0) = uom — u(0) strongly in  H}(Q).

Thus, from (3.1) and (3.54), u(0) = ug. Also, from (3.42) we obtain

(3.55) (ur,(0) —v/(0),w) >0 as m— oo foreach w e Hi(Q).

Thus, (3.1) and (3.55) imply «/(0) = 3. This completes the proof of

Theorem 2.6. g
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