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WITH p-LAPLACIAN

Abdeljabbar Ghanmi and Ziheng Zhang

Abstract. In this work, we investigate the following fractional boundary
value problems

tDαT
(
|0Dαt (u(t))|p−2

0D
α
t u(t)

)
= ∇W (t, u(t)) + λg(t)|u(t)|q−2u(t), t ∈ (0, T ),

u(0) = u(T ) = 0,

where ∇W (t, u) is the gradient of W (t, u) at u and W ∈ C([0, T ]×Rn,R)
is homogeneous of degree r, λ is a positive parameter, g ∈ C([0, T ]),

1 < r < p < q and 1
p
< α < 1. Using the Fibering map and Nehari

manifold, for some positive constant λ0 such that 0 < λ < λ0, we prove
the existence of at least two non-trivial solutions.

1. Introduction

Fractional order models can be found to be more adequate than integer
order models in some real world problems as fractional derivatives provide an
excellent tool for the description of memory and hereditary properties of various
materials and processes. The mathematical modeling of systems and processes
in the fields of physics, chemistry, aerodynamics, electro dynamics of complex
medium, polymer rheology, etc. involves derivatives of fractional order. As
a consequence, the subject of fractional differential equations is gaining more
importance and attention. There has been significant development in ordinary
and partial differential equations involving both Riemann-Liouville and Caputo
fractional derivatives. For details and examples, one can see the monographs
[2, 11,15,18,19,21] and the papers [1, 6, 10,14,29].

Recently, equations including both left and right fractional derivatives are
discussed. Apart from their possible applications, equations with left and right
derivatives is an interesting and new field in fractional differential equations
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theory. In this topic, many results are obtained in dealing with the existence
and multiplicity of solutions of nonlinear fractional differential equations by
using techniques of nonlinear analysis, such as fixed point theory (including
Leray-Schauder nonlinear alternative), topological degree theory (including co-
incidence degree theory) and comparison method (including upper and lower
solutions and monotone iterative method), see [4, 12,30] and so on.

It should be noted that critical point theory and variational methods have
also turned out to be very effective tools in determining the existence of solu-
tions for integer order differential equations. The idea behind them is trying to
find solutions of a given boundary value problem by looking for critical points
of a suitable energy functional defined on an appropriate function space. In the
last 30 years, the critical point theory has become a wonderful tool in studying
the existence of solutions to differential equations with variational structures,
we refer the reader to the books due to Mawhin and Willem [17], Rabinowitz
[20], Schechter [22] and the references listed therein.

Motivated by the above classical works, in recent paper [13], the authors
showed that critical point theory is an effective approach to deal with the
existence of solutions for the following fractional boundary value problem

(FBVP)

{
tD

α
T (0D

α
t u(t)) = ∇W (t, u(t)), t ∈ [0, T ],

u(0) = u(T ),

where α ∈ ( 1
2 , 1), tD

α
Tu is the so called Riemann-Liouville fractional derivatives

which is given by Definition 2.2, u ∈ Rn, W ∈ C1([0, T ]×Rn,R) and ∇W (t, u)
is the gradient of W (t, u) at u, which has been generalized in recent papers
[16,26–28,31–33].

Note that the α-order Riemann-Liouville fractional derivatives at time t is
not defined locally, it relies on the total effects of the commonly used integer
derivative on the interval [0, t]. So it can be used to describe the variation of
a system in which the instantaneous change rate depends on the past state,
which is called the “memory” effect in a visualized manner [2]. In addition,
as indicated in [3, 23–25] the fractional theory has been applied to almost all
fields of science including viscoelasticity and rheology, medicine and biology.

In this paper we want to contribute with the development of this new area
on fractional differential equations theory. More precisely, the purpose of this
work is to investigate the following fractional nonlinear Dirichlet problem

(Pλ)


tD

α
T

(
|0Dα

t (u(t))|p−20Dα
t u(t)

)
= ∇W (t, u(t)) + λg(t)|u(t)|q−2u(t), t ∈ (0, T )

u(0) = u(T ) = 0,

where ∇W (t, u) is the gradient of W (t, u) at u and W ∈ C([0, T ] × Rn,R) is
homogeneous of degree r, λ is a positive parameter, g ∈ C([0, T ]), 1 < r < p < q
and 1

p < α < 1. We assume the following hypothesis:
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(H1) W : [0, T ]× Rn −→ R is homogeneous of degree r that is

W (t, su) = srW (t, u) (s > 0) for all t ∈ [0, T ], u ∈ Rn;

(H2) W±(t, u) = max(±W (t, u), 0) 6= 0 for all u 6= 0.

Note that, from (H1), W (t, u) leads to the so-called Euler identity

(1.1) u∇W (x, u) = rW (x, u),

and

(1.2) |W (x, u)| ≤ K|u|r for some constant K > 0.

Our main result is the following.

Theorem 1.1. Let 1
p < α < 1, 1 < r < p < q and assume that W (t, u)

satisfies the conditions (H1)-(H2). Then there exists λ0 > 0 such that for all
λ ∈ (0, λ0), (Pλ) has at least two nontrivial solutions.

Remark 1.2. Recently, for λ = 0, the authors in [7, 8] studied the existence
and multiplicity of solutions for (Pλ) (i.e., (P0)) when the potential W (t, u)
is superquadratic or subquadratic at infinity. In our Theorem 1.1, we focus
our attention on the case that the potential is of the form a combination of
superquadratic term and subquadratic term. In addition, we do not need any
assumption on the sign of the potential. Therefore, the recent related results
are generalized and improved significantly.

2. Preliminaries

In this section, we give some background theory on the fractional calcu-
lus, in particular the Riemann-Liouville operators and results which will used
throughout this paper. Let us start by introducing the definition of the frac-
tional integral in the sense of Riemann-Liouville. We refer the reader to [15,19]
or other texts on basic fraction calculus.

Definition 2.1. Let α > 0 and u be a function defined a.e. on (a, b) ⊂ R with
values in R. The left (resp. right) fractional integral in the sense of Riemann-
Liouville with inferior limit a (resp. superior limit b) of order α of u is given
by

aI
α
t u(t) =

1

Γ(α)

∫ t

a

(t− s)α−1u(s)ds, t ∈ [a, b]

respectively

tI
α
b u(t) =

1

Γ(α)

∫ b

t

(t− s)α−1u(s)ds, t ∈ [a, b],

provided the right side is point-wise defined on [a, b], where Γ denotes Euler’s
Gamma function. If u ∈ L1(a, b), then aI

α
t u and tI

α
b u are defined a.e. on (a, b).

Now, we define the fractional derivative in the sense of Riemann-Liouville
as follows.
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Definition 2.2. Let 0 < α < 1. Then, the left (resp. right) fractional deriva-
tive in the sense of Riemann-Liouville with inferior limit a (resp. superior limit
b) of order α of u is given by

aD
α
t u(t) =

d

dt

(
aI

1−α
t u

)
(t), ∀ t ∈ [a, b],

respectively

tD
α
b u(t) =

d

dt

(
tI

1−α
b u

)
(t), ∀ t ∈ [a, b],

provided that the right-hand side is point-wise defined.

Remark 2.3. From [15], if u is an absolutely continuous function in [a, b], then

aD
α
t u and tD

α
b u are defined a.e. on (a, b) and satisfy

(2.1) aD
α
t u(t) = aI

1−α
t u′(t) +

u(a)

(t− a)αΓ(1− α)

and

(2.2) tD
α
b u(t) = −tI1−αb u′(t) +

u(b)

(b− t)αΓ(1− α)
.

Moreover, if u(a) = u(b) = 0, then aD
α
t u(t) = aI

1−α
t u′(t) and tD

α
b u(t) =

−tI1−αb u′(t). So in this case we have the equality of Riemann-Liouville frac-
tional derivative and Caputo derivative defined by

c
aD

α
t u(t) = aI

1−α
t u′(t)

and
c
tD

α
b u(t) = −tI1−αb u′(t).

Consequently, one gets

aD
α
t u(t) = c

aD
α
t u(t) +

u(a)

(t− a)αΓ(1− α)
,

and

tD
α
b u(t) = c

tD
α
b u(t) +

u(b)

(b− t)αΓ(1− α)
.

Next, we provide some properties concerning the left fractional operators of
Riemann-Liouville. For more details we refer the reader to [5].

Proposition 2.4. For any α, β > 0 and any u ∈ L1(a, b), the following
equality holds

aI
α
t ◦ aI

β
t u = aI

α+β
t .

From Proposition 2.4 and the equations (2.1) and (2.2), it is simple to deduce
the following results concerning the composition between fractional integral and
fractional derivative. That is, for any 0 < α < 1, if u ∈ L1(a, b) we have

aD
α
t ◦ aI

α
t u = u,
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and if u is absolutely continuous such that u(a) = 0, then, one has

aI
α
t ◦ aD

α
t u = u.

Now, we presented an important result on the boundedness of the left fractional
integral from Lp(a, b) to Lp(a, b).

Proposition 2.5. For any α > 0 and p ≥ 1, aI
α
t is linear and continuous

from Lp(a, b) to Lp(a, b). Moreover for all u ∈ Lp(a, b), we have

‖aIαt u‖p ≤
(b− a)α

Γ(1 + α)
‖u‖p.

In the same way, we give another classical result on the boundedness of the
left fractional integral from Lp(a, b) to Ca(a, b) which completes Proposition
2.5 in the case 1

p < α < 1, where Ca(a, b) := {u ∈ C(a, b) : limt→a+ u(t) = 0}.

Proposition 2.6. Let 0 < 1
p < α < 1 and p′ = p

p−1 (the conjugate exponent

of p). Then, for any u ∈ Lp(a, b), aI
α
t u is Hölder continuous on (a, b] with

exponent α− 1
p > 0, moreover, limt→a+ aIt

αu(t) = 0. Consequently, aI
α
t u can

be continuously extended by 0 in t = a. Finally, aI
α
t u ∈ Ca(a, b), and

(2.3) ‖aIαt u‖∞ ≤
(b− a)α−

1
p

Γ(α) ((a− 1)p′ + 1)
1
p′
‖u‖p.

Also, we will need the following formula for integration by parts, see (7) and
(8) in [13].

Proposition 2.7. Let 0 < α < 1 and p, q are such that

p ≥ 1, q ≥ 1 and
1

p
+

1

q
< 1 + α or p 6= 1, q 6= 1 and

1

p
+

1

q
= 1 + α.

Then, for all u ∈ Lp(a, b) and all v ∈ Lq(a, b), one has

(2.4)

∫ b

a

v(t)aI
α
t u(t)dt =

∫ b

a

u(t)aI
α
t v(t)dt,

and

(2.5)

∫ b

a

u(t)caD
α
t v(t)dt = v(t)tI

1−α
b u(t)|

t=b

t=a +

∫ b

a

v(t)aD
α
t u(t)dt.

Moreover, if v(a) = v(b) = 0, then, one gets

(2.6)

∫ b

a

u(t)aD
α
t v(t)dt =

∫ b

a

v(t)caD
α
t u(t)dt.
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3. Variational setting and main result

To show the existence of solutions to (Pλ), we will use Nehari manifold and
fibering maps theory. For this purpose we introduce some basic notations and
results which are used in the proof of our main result.

As we say in Section 1, to deal with the existence of solutions for (Pλ) or some
simpler case for the nonlinear terms (for example, (FBVP)), the pioneer work
is completed on some function space using the variational methods and critical
point theory in [14]. Unfortunately, the authors in the recent work [8] pointed
out that the fractional derivatives space Eα,p0 defined in [14] is problematic.
Therefore, we choose the fractional Sobolev space Eα,p0 constructed in [8] (the
same symbol as usual) in the sense of weak fractional derivatives.

For this purpose, we recall the definitions of left and right weak fractional
derivatives.

Definition 3.1. Let 0 < α ≤ 1, u, v ∈ L1([0, T ],R), if∫ T

0

ψ(t)v(t)dt =

∫ T

0

u(t)(tD
α
Tψ)(t)dt, ∀ψ ∈ C∞0 ([0, T ],R),

then v is called as the left weak fractional derivative, and denoted by 0Ḋ
α
t u; if∫ T

0

ψ(t)v(t)dt =

∫ T

0

u(t)(tD
α
t ψ)(t)dt, ∀ψ ∈ C∞0 ([0, T ],R),

then v is called as the right weak fractional derivative, and denoted by 0Ḋ
α
Tu.

Based on Definition 3.1, we can introduce the appropriate function space
corresponding to (Pλ). In fact, we only use the definition of left weak fractional
derivative. For the simplicity and to be consistent with the classical notation,
we still denote by 0D

α
t u the left weak fractional derivative of u in what follows.

The set of all functions u ∈ C∞([0, T ],R) with u(0) = u(T ) = 0 is denoted by
C∞0 ([0, T ],R). For α > 0 we define the weak fractional derivative space Eα,p0

as the closure of C∞0 ([0, T ],R) under the norm

(3.1) ‖u‖α,p =
(
‖u‖pp + ‖0Dα

t u‖pp
) 1
p .

Note that, as pointed out in [8], if we define the space Eα,p0 as in [14], taking a
Cauchy sequence {un} ⊂ C∞0 ([0, T ],R) with respect to the norm ‖ · ‖α,p, one
has

un → u0, 0D
α
t un → v0 in Lp([0, T ],R).

Unfortunately, 0D
α
t u0 may not exist. Even if 0D

α
t u0 exists, 0D

α
t u0 may not be

equal to v0. That is, if we define the space as in [14], the space is not complete.
Therefore, we could not choose it as our variational space. To fix this gap, the
authors in [8] introduced the definition of weak fractional derivative operator
(see [8] for the details). In other words, they optimized the completeness of the
fractional derivative space. Thus, we can define the variational framework in
the space chosen in our paper for the problem (Pλ).
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Lemma 3.2 ([8, Corollary 3.6 and Remark 3.10]). Let 0 < α ≤ 1 and 1 < p <
∞. For all u ∈ Eα,p0 , we have

(3.2) ‖u‖p ≤
Tα

Γ(α+ 1)
‖0Dα

t u‖p.

Moreover, if α > 1
p and 1

p + 1
p′ = 1, then

(3.3) ‖u‖∞ ≤
Tα−

1
p

Γ(α) ((α− 1)p′ + 1)
1
p′
‖0Dα

t u‖p.

According to (3.2), we can consider Eα,p0 with respect to the equivalent norm

(3.4) ‖u‖ = ‖0Dα
t u‖p.

Lemma 3.3 ([8, Theorem 3.11]). Let 0 < α ≤ 1, and 1 < p < ∞. Assume
that α > 1

p and the sequence {un} ⇀ u weakly in Eα,p0 . Then, {un} → u in

C([0, T ],R), that is
‖un − u‖∞ → 0 as n→∞.

We say that u ∈ Eα,p0 is a solution to the problem (Pλ), if u satisfies the
following equality∫ T

0

|0Dα
t u(t)|p−2(0D

α
t u(t), 0D

α
t v(t))dt−

∫ T

0

(∇W (t, u(t)), v(t)) dt

−λ
∫ T

0

g(t)|u(t)|q−2(u(t), v(t))dt = 0 for any v ∈ Eα,p0 .

Therefore, associated to the problem (Pλ), we define the functional

(3.5) Jλ(u) =
1

p
‖u‖p − 1

r

∫ T

0

W (t, u(t))dt− λ

q

∫ T

0

g(t)|u|qdt.

We need to show that the following lemma holds.

Lemma 3.4. (i) The functional Jλ is well defined on Eα,p0 .
(ii) The functional Jλ is of class C1(Eα,p0 ,R) and for all u, v ∈ Eα,p0 we have

〈J ′λ(u), v〉 =

∫ T

0

|0Dα
t u(t)|p−2(0D

α
t u(t), 0D

α
t v(t))dt

−
∫ T

0

(∇W (t, u(t)), v(t)) dt− λ
∫ T

0

g(t)|u(t)|q−2(u(t), v(t))dt.(3.6)

Proof. (i) From the continuous embedding and the Hölder inequality, we have

Jλ(u) ≤ 1

p
‖u‖p +

1

r

∫ T

0

W (t, u(t))dt+
λ

q

∫ T

0

g(t)|u|qdt

≤ 1

p
‖u‖p − K

r
‖u‖rr −

λ‖g‖∞
q
‖u‖qq

≤ 1

p
‖u‖p + c1‖u‖r + c2‖u‖q,
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which implies that Jλ is well defined on Eα,p0 .
(ii) Put G(u) = 1

p |0D
α
t u|p − 1

rW (t, u(t)) − λ
q g(t)|u|q. Then, we can easily

show that for all u, v ∈ Eα,p0 and for almost every t ∈ [0, T ]

lim
s→0

G(u(t) + sv(t))−G(u(t))

s

= |0Dα
t u(t)|p−2(0D

α
t u(t), 0D

α
t v(t))− (∇W (t, u(t)), v(t))

− λg(t)|u(t)|q−2(u(t), v(t)).

So, from the Lagrange mean value theorem, (1.1) and (1.2), there exists a real
number θ such that |θ| ≤ |s| and

G(u(t) + sv(t))−G(u(t))

s

(3.7)

= |0Dα
t (u(t) + θv(t))|p−2(0D

α
t (u(t) + θv(t)), 0D

α
t v(t))

−(∇W (t, (u(t)+θv(t))), v(t))−λg(t)|(u(t)+θv(t))|q−2(u(t)+θv(t), v(t))

≤ |0Dα
t (u(t) + θv(t))|p−1|0Dα

t v(t)|
+rK|u(t) + θv(t)|r−1|v(t)|+ λ|g(t)||(u(t) + θv(t))|q−1|v(t)|

≤ |0Dα
t u(t)|p−1|0Dα

t v(t)|+ |0Dα
t v(t)|p

+rK|u(t)|r−1|v(t)|+rK|v(t)|r+λ|g(t)||u(t)|q−1|v(t)|+λ|g(t)||v(t)|q−1.

On the other hand, from the Hölder inequality, we get∫ T

0

|0Dα
t u(t)|p−1|0Dα

t v(t)|dt ≤ ‖|0Dα
t u|p−1‖ p

p−1
‖0Dα

t v‖p,

and ∫ T

0

|u(t)|σ−1 |v(t)|dt ≤ ‖|u|σ−1‖ σ
σ−1
‖v‖σ for σ = r or q.

Since g is bounded, then, from the above inequalities, one concludes that the
expression 3.7 is in L1([0, T ]). Therefore, by the dominated convergence theo-
rem, we have

lim
s→0

Jλ(u+ sv)− Jλ(u)

s

=

∫ T

0

|0Dα
t (u(t)|p−2(0D

α
t u(t), 0D

α
t v(t))dt

−
∫ T

0

(∇W (t, u(t)), v(t))− λg(t)|u(t)|q−2(u(t), v(t))dt.

That is, Jλ is Gâteaux differentiable.
In what follows, it is sufficient to prove that the Gâteaux derivative of Jλ is

continuous. It is similar to the one in Avci et al. [3], therefore we omit it. �
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We deduce from Lemma 3.4 and equation (1.1) that

〈J ′λ(u), u〉 =

∫ T

0

|0Dα
t u(t)|pdt−

∫ T

0

W (t, u(t))dt− λ
∫ T

0

g(t)|u(t)|qdt.

It is easy to see that the energy functional Jλ is not bounded below on the
space Eα,p0 , but it is bounded below on a suitable subset of Eα,p0 . In order to
investigate the problem (Pλ), we define the constraint set

Nλ := {u ∈ Eα,p0 \ {0} : 〈J ′λ(u), u〉 = 0} .

Note that Nλ contains every nonzero solution of (Pλ), and u ∈ Nλ if and only
if

(3.8) ‖u‖p −
∫ T

0

W (t, u(t))dt− λ
∫ T

0

g(t)|u(t)|qdt = 0.

To obtain the existence of solutions, we splitNλ into three parts: corresponding
to local minima, local maxima and points of inflection, are measurable sets
defined as follows:

N+
λ =

{
u ∈ Nλ : (p− 1)‖u‖p − (r − 1)

∫ T

0

W (t, u(t))dt− λ(q − 1)

∫ T

0

g(t)|u|qdt > 0

}
,

N−λ =

{
u ∈ Nλ : (p− 1)‖u‖p − (r − 1)

∫ T

0

W (t, u(t))dt− λ(q − 1)

∫ T

0

g(t)|u|qdt < 0

}
,

N 0
λ =

{
u ∈ Nλ : (p− 1)‖u‖p − (r − 1)

∫ T

0

W (t, u(t))dt− λ(q − 1)

∫ T

0

g(t)|u|qdt = 0

}
.

Next, we present some important properties of N+
λ , N

−
λ and N 0

λ . Let p be
such that 1

p + 1
p = 1 and put

µ0 =
(p− r) (Γ(α))

q
((α− 1)p+ 1)

q
p

(q − r)‖g‖∞T 1+q(α− 1
p )

(
(q − p) (Γ(α))

r
((α− 1)p+ 1)

r
p

K(q − r)T 1+r(α− 1
p )

) q−p
p−r

.

Then, we have the following crucial result.

Lemma 3.5. If λ ∈ (0, µ0), then N 0
λ = ∅.

Proof. We proceed by contradiction to prove that N 0
λ = ∅ for all λ ∈ (0, µ0).

Let us suppose that there exists u0 ∈ N 0
λ . Then, from (3.8) we obtain

(3.9) (p− r)‖u0‖p − λ(q − r)
∫ T

0

g(t)|u0|qdt = 0,

and

(3.10) (q − p)‖u0‖p − (q − r)
∫ T

0

W (t, u0(t))dt = 0.
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From (3.3) and (3.9), one has

(3.11) ‖u0‖ ≥

(
(p− r) (Γ(α))

q
((α− 1)p+ 1)

q
p

λ(q − r)‖g‖∞T 1+q(α− 1
p )

) 1
q−p

.

On the other hand, from (1.2), (3.3) and (3.10), one has

(3.12) ‖u0‖ ≤

(
K(q − r)T 1+r(α− 1

p )

(q − p) (Γ(α))
r

((α− 1)p+ 1)
r
p

) 1
p−r

.

Combining (3.11) and (3.12) we obtain λ ≥ µ0, which gives a contradiction.
This completes the proof of Lemma 3.5. �

Lemma 3.6. If λ ∈ (0, µ0), then Jλ is coercive and bounded below on Nλ.

Proof. Let u ∈ Nλ. Then, using (1.2) and (3.3), we obtain

(3.13)

∫ T

0

W (t, u(t))dt ≤ K
∫ T

0

|u(t)|rdt ≤ KT 1+r(α− 1
p )

(Γ(α))
r

((α− 1)p+ 1)
r
p
‖u‖r.

Consequently, from (3.8), we obtain

Jλ(u) =
q − p
qp
‖u‖p − q − r

rq

∫ T

0

W (t, u(t))dt

≥ q − p
qp
‖u‖p − K(q − r)T 1+r(α− 1

p )

qr (Γ(α))
r

((α− 1)p+ 1)
r
p
‖u‖r.

Since r < p < q, Jλ is coercive and bounded below on Nλ. The proof of
Lemma 3.6 is now completed. �

Now as we know that the Nehari manifold is closely related to the behavior
of the functions Φu : [0,∞)→ R defined as

Φu(s) = Jλ(su).

Such maps are called fibering maps and were introduced by Drabek and Po-
hozaev in [9]. For u ∈ Eα,p0 , we define

Φu(s) =
sp

p
‖u‖p − sr

r

∫ T

0

W (t, u(t))dt− λs
q

q

∫ T

0

g(t)|u(t)|qdt,

then, we have

Φ′u(s) = sp−1‖u‖p − sr−1
∫ T

0

W (t, u(t))dt− λsq−1
∫ T

0

g(t)|u(t)|qdt,

and

(3.14)

Φ′′u(s) = (p− 1)sp−2‖u‖p − (r − 1)sr−2
∫ T

0

W (t, u(t))dt

− λ(q − 1)sq−2
∫ T

0

g(t)|u(t)|qdt.
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Then, it is easy to see that su ∈ Nλ if and only if Φ′u(s) = 0 and in particular,
u ∈ Nλ if and only if Φ′u(1) = 0.

Before studying the behavior of Nehari manifold using fibering maps, we
introduce some notations

W± = {u ∈ Eα,p0 \ {0} :

∫ T

0

W (t, u(t))dt ≷ 0},

W0 = {u ∈ Eα,p0 \ {0} :

∫ T

0

W (t, u(t))dt = 0},

G± = {u ∈ Eα,p0 \ {0} :

∫ T

0

g(t)|u(t)|qdt ≷ 0},

and

G0 = {u ∈ Eα,p0 \ {0} :

∫ T

0

g(t)|u(t)|qdt = 0}.

In what follows, we study the fibering map Φu according to the sign of∫ T
0
g(t)|u(t)|qdt and

∫ T
0
∇W (t, u(t))dt. For this purpose, we define mu : [0,∞)

→ R by

(3.15) mu(s) = sp−r‖u‖p − λsq−r
∫ T

0

g(t)|u(t)|qdt.

Then, for s > 0 we have

(3.16)

Φ′u(s) = sp−1‖u‖p − sr−1
∫ T

0

W (t, u(t))dt− λsq−1
∫ T

0

g(t)|u(t)|qdt,

= sr−1

(
mu(s)−

∫ T

0

W (t, u(t))dt

)
,

which implies that su ∈ Nλ if and only if s is a solution of the following equation

mu(s) =

∫ T

0

W (t, u(t))dt.

Moreover, it is obvious that mu(0) = 0 and

(3.17) m′u(s) = (p− r)sp−r−1‖u‖p − λ(q − r)sq−r−1
∫ T

0

g(t)|u(t)|qdt.

Lemma 3.7. If u ∈ W0 ∩ G0, then Φu has no critical point.

Proof. In this case Φu(0) = 0 and Φ′u(s) > 0, ∀s > 0 which implies that Φu is
strictly increasing and hence has no critical point. �

Lemma 3.8. If u ∈ W0 ∩ G+, then Φu has a unique critical point which
corresponds to a global maximum point. Moreover, there exists s0 > 0 such
that s0u ∈ N+

λ and Jλ(s0u) < 0.
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Proof. In this case, there exists a unique s̄ ∈ (0,∞) such that m′u(s̄) = 0.
In addition, m′u(s) > 0 for s ∈ (0, s̄) and m′u(s) < 0 for s ∈ (s̄,∞). Note
that mu(0) = 0 and mu(s) → −∞ as s → ∞. So, for u ∈ W−, there exists

a unique s0 such that mu(s0) =
∫ T
0
W (t, u(t))dt. Consequently, according to

(3.16), we have Φ′u(s) > 0 for 0 < s < s0, and Φ′u(s) < 0 for s > s0. That is,
Φu is increasing on (0, s0), decreasing on (s0,∞). Therefore, Φu has exactly
one critical point at s0, which is a global maximum point. Thus, by (3.14),
s0u ∈ N−λ . �

Lemma 3.9. If u ∈ W+ ∩ G0, then Φu has a unique critical point which
correspond to a global minimum point. Moreover, there exists s1 > 0 such that
s1u ∈ N+

λ and Jλ(s1u) < 0.

Proof. In this case, it is easy to see that mu(0) = 0 and m′u(s) > 0, ∀s > 0,
which implies that mu is strictly increasing. Since u ∈ W+, there exists a

unique s1 > 0 such that mu(s1) =
∫ T
0
W (t, u(t))dt. This implies that Φu

is decreasing on (0, s1), increasing on (s1,∞) and Φ′u(s1) = 0. Thus, Φu
has exactly one critical point corresponding to global minimum point. Hence
s1u ∈ N+

λ . Moreover, since Jλ(0) = 0, then we have Jλ(s1u) < 0. �

Lemma 3.10. If u ∈ W+ ∩ G+, then there exists µ1 > 0 such that for λ ∈
(0, µ1), Φu have a positive value and Φu has exactly two critical points which
correspond to the local minimum and local maximum. Moreover, there exists
s2 > 0 such that s2u ∈ N+

λ and Jλ(s2u) < 0.

Proof. Let u ∈ Eα,p0 . As in above, we define

Mu(s) =
sp

p
‖u‖p − λs

q

q

∫ T

0

g(t)|u(t)|qdt.

Then,

M ′u(s) = sp−1‖u‖p − λsq−1
∫ T

0

g(t)|u(t)|qdt.

It is clear that Mu attains its maximum value at s̃ =
(

‖u‖p

λ
∫ T
0
g(t)|u(t)|qdt

) 1
q−p

.

Moreover,

Mu(s̃) =

(
1

p
− 1

q

)(
‖u‖q

λ
∫ T
0
g(t)|u(t)|qdt

) p
q−p

and

M ′′u (s̃) = (p− q) ‖u‖
p(q−2)
q−p(

λ
∫ T
0
g(t)|u(t)|qdt

) p−2
q−p

< 0.

From (3.3), we deduce that

(3.18) Mu(s̃) ≥ q − p
qp

(
(Γ(α))

r
((α− 1)p+ 1)

r
p

λ‖g‖∞T 1+q(α−α 1
p )

) p
q−p

:= δ,
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which is independent of u. We now show that there exists µ1 > 0 such that
Φu(s̃) > 0. Using (1.2) and (3.3), we get

s̃r

r

∫ 1

0

W (t, u(t))dt ≤ KT 1+r(α− 1
p )||u||r

r (Γ(α))
r

((α− 1)p+ 1)
r
p
s̃r

=
KT 1+r(α− 1

p )

r (Γ(α))
r

((α− 1)p+ 1)
r
p
||u||r

(
||u||p

λ
∫ T
0
g(t)|u(t)|qdt

) r
q−p

=
KT 1+r(α− 1

p )

r (Γ(α))
r

((α− 1)p+ 1)
r
p

(
||u||q

λ
∫ T
0
g(t)|u(t)|qdt

) r
q−p

=
KT 1+r(α− 1

p )

r (Γ(α))
r

((α− 1)p+ 1)
r
p

(
pq

q − p

) r
p

(Mu(s̃))
r
p .

Thus

Φu(s̃) = Mu(s̃)− s̃r

r

∫ T

0

W (t, u(t))dt

≥Mu(s̃)− KT 1+r(α− 1
p )

r (Γ(α))
r

((α− 1)p+ 1)
r
p

(
pq

q − p

) r
p

(Mu(s̃))
r
p

≥ δ
r
p

(
δ
p−r
p − KT 1+r(α− 1

p )

r (Γ(α))
r

((α− 1)p+ 1)
r
p

(
pq

q − p

) r
p

)
> 0

for 0 < λ < µ1, where δ is the constant given in (3.18) and

µ1 =
(q − p) (Γ(α))

r
((α− 1)p+ 1)

r
p

qp‖g‖∞T 1+q(α− 1
p )

(
r (Γ(α))

r
((α− 1)p+ 1)

r
p

KT 1+r(α− 1
p )

(
q − p
qp

)
r
p

) q−p
p−r

.

The same arguments used in the proof of Lemma 3.8 show that Φu has exactly
two critical points which correspond to the local minimum and local maximum.
Moreover, there exists s2 > 0 such that s2u ∈ N+

λ and Jλ(s2u) < 0. The proof
of Lemma 3.10 is now completed. �

Remark 3.11. In what follows, let us define λ0 as

(3.19) λ0 = min(µ0, µ1).

Note that if 0 < λ < λ0, then all the above Lemmas hold true.

Lemma 3.12. Let u be a local minimizer for Jλ on subset N+
λ or N−λ of Nλ

such that u 6∈ N 0
λ . Then u is a critical point of Jλ.

Proof. Since u is a minimizer for Jλ under the constraint

Iλ(u) := 〈J ′λ(u), u〉 = 0.

Then, applying the theory of Lagrange multipliers, we get the existence of
µ ∈ R such that

J ′λ(u) = µI ′λ(u).
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So, we get
〈J ′λ(u), u〉 = µ〈I ′λ(u), u〉 = µΦ′′u(1) = 0,

but u 6∈ N 0
λ and so Φ′′u(1) 6= 0. Hence, µ = 0, which gives the proof of

Lemma 3.12. �

4. Proof of Theorem 1.1

Throughout this section, we assume that 1
2 < α < 1 and 1 < r < p < q. Let

λ0 be the constant given by (3.19). Then the proof of Theorem 1.1 is based on
the following two Propositions.

Proposition 4.1. Assume that hypothesis of Theorem 1.1 are satisfied. Then,
for all 0 < λ < λ0, Jλ achieves its minimum on N+

λ .

Proof. Since Jλ is bounded below on Nλ and also on N+
λ , there exists a mini-

mizing sequence {uk} ⊂ N+
λ such that

lim
k→∞

Jλ(uk) = inf
u∈N+

λ

Jλ(u).

As Jλ is coercive on Nλ, {uk} is a bounded sequence in Eα,p0 up to a sub-
sequence, there exists uλ ∈ Eα,p0 such that

uk ⇀ uλ weakly in Eα,p0 .

Let u ∈ Eα,p0 such that
∫ T
0
W (t, u(t))dt > 0. Then, from Lemma 3.9 and

Lemma 3.10, there exists s1 > 0 such that s1u ∈ N+
λ and Jλ(s1u) < 0. Hence,

inf
u∈N+

λ

Jλ(u) < 0.

Since {uk} ⊂ Nλ, we get

Jλ(uk) = (
1

p
− 1

r
)||uk||p − (

1

r
− 1

q
)

∫ T

0

W (t, uk(t))dt,

which yields that

(
1

r
− 1

q
)

∫ T

0

W (t, uk(t))dt = (
1

p
− 1

q
)||uk||p − Jλ(uk).

Let k go to infinity in the above equation, we get

(4.1)

∫ T

0

W (t, uλ(t))dt > 0.

Now, we claim that uk → uλ strongly in Eα,p0 . Otherwise, we have

(4.2) ||uλ||p < lim inf
k→∞

||uk||p.

Since Φ′uλ(s1) = 0 it follows from (4.2) that Φ′uk(s1) > 0 for sufficiently large

k. So, we must have s1 > 1. However, s1uλ ∈ N+
λ and so

Jλ(s1uλ) < Jλ(uλ) ≤ lim
k→∞

Jλ(uk) = inf
u∈N+

λ

Jλ(u),
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which gives a contradiction. Thus,

uk → uλ strongly in Eα,p0 ,

which implies that uλ ∈ Nλ = N+
λ ∪ N 0

λ . In addition, it is easy to check

by contradiction that uλ ∈ N+
λ . Consequently, from (4.1), uλ is a nontrivial

solution of (Pλ). �

Proposition 4.2. Assume that hypothesis of Theorem 1.1 are satisfied. Then,
for all 0 < λ < λ0, Jλ achieves its minimum on N−λ .

Proof. Let u ∈ N−λ . Therefore, using the result in Lemma 3.10, we have the
existence of µ1 > 0 such that Jλ(u) ≥ µ1. So, there exists a minimizing
sequence {vk} ⊂ N−λ such that

(4.3) lim
k→∞

Jλ(vk) = inf
u∈N−λ

Jλ(u) > 0.

Moreover, since Jλ is coercive, {vk} is a bounded sequence in Eα,p0 up to a
sub-sequence, there exists vλ ∈ Eα,p0 such that

vk ⇀ vλ weakly in Eα,p0 .

Since vk ∈ Nλ, then we have

(4.4) Jλ(vk) + (
1

q
− 1

p
)||vk||p + λ(

1

q
− 1

r
)

∫ 1

0

g(t)|vk(t)|qdt.

Let k go to infinity in (4.4), it follows from (4.3) that

(4.5)

∫ 1

0

g(t)|vλ(t)|qdt > 0.

Hence, vλ ∈ G+ and so Φvλ has a global maximum at some point s̃. Conse-
quently, s̃vλ ∈ N−λ . On the other hand, vk ∈ N−λ implies that 1 is a global
maximum point for Φvk , i.e.,

(4.6) Jλ(s̃vk) = Φvk(s̃) ≤ Φvk(1) = Jλ(vk).

Now, as in the step 1, we claim that vk → vλ. Assume it is not true, then

||vλ||p < lim inf
k→∞

||vk||p,

it follows from (4.6) that

Jλ(s̃vλ) =
s̃p

p
||vλ||p −

s̃r

r

∫ 1

0

W (t, vλ(t))dt− λs̃
q

q

∫ 1

0

g(t)|vλ(t)|qdt

< inf
k→∞

(
s̃p

p
||vk||p −

s̃r

r

∫ 1

0

W (t, vk(t))dt− λs̃
q

q

∫ 1

0

g(t)|vk(t)|qdt
)

≤ lim
k→∞

Jλ(s̃vk) ≤ lim
k→∞

Jλ(vk) = inf
u∈N−λ

Jλ(u),

which gives a contradiction. Hence, vk → vλ and so vλ ∈ N−λ ∪ N 0
λ , since

N 0
λ = ∅, then, vλ is a minimizer for Jλ on N−λ . On the other hand, from (4.5),
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vλ is a nontrivial solution of problem (Pλ). Finally, since N−λ ∩ N
+
λ = ∅, uλ

and vλ are distinct. That is the result of Theorem 1.1 holds true. �
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