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MULTIPLE SOLUTIONS FOR EQUATIONS OF

p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN

BOUNDARY CONDITION

Yun-Ho Kim and Kisoeb Park

Abstract. In this paper, we are concerned with the nonlinear elliptic
equations of the p(x)-Laplace type

{

−div(a(x,∇u)) + |u|p(x)−2u = λf(x, u) in Ω

a(x,∇u) ∂u
∂n

= λθg(x, u) on ∂Ω,

which is subject to nonlinear Neumann boundary condition. Here the
function a(x, v) is of type |v|p(x)−2v with continuous function p : Ω →

(1,∞) and the functions f, g satisfy a Carathéodory condition. The main
purpose of this paper is to establish the existence of at least three solutions
for the above problem by applying three critical points theory due to
Ricceri. Furthermore, we localize three critical points interval for the
given problem as applications of the theorem introduced by Arcoya and
Carmona.

1. Introduction

Recently, the study of differential equations and variational problems in-
volving p(x)-growth conditions have been extensively investigated and received
much attention because they can be presented as models for many physical phe-
nomena which arouse in the study of elastic mechanics, electro-rheological fluid
dynamics and image processing, etc. We refer the readers to [20, 25] and the ref-
erences therein. In the case of p(x) which becomes p-Laplacian when p(x) ≡ p
(a constant), there are a bunch of papers, for instance, [1, 14, 17, 19, 21] and
the references therein.
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In the present paper, we are concerned with multiple solutions for equations
of p(x)-Laplace type with nonlinear Neumann boundary condition

(N)

{
−div(a(x,∇u)) + |u|p(x)−2u = λf(x, u) in Ω

a(x,∇u) ∂u
∂n

= λθg(x, u) on ∂Ω,

where Ω is a bounded domain in R
N with Lipschitz boundary ∂Ω, ∂u

∂n
de-

notes the outer normal derivative of u with respect to ∂Ω, the function a(x, v)
is of type |v|p(x)−2v with continuous function p : Ω → (1,∞), the functions
f, g satisfy a Carathéodory condition, and λ, θ are real parameters. The exis-
tence of nontrivial solutions to nonlinear elliptic boundary value problems has
been extensively studied by many researchers; see [7, 8, 13, 26, 27, 28, 31] and
references therein. Motivated by the pioneer work of A. Ambrosetti and P.
Rabinowitz in [1], J. Yao [28] showed the existence of nontrivial solutions for
the inhomogeneous and nonlinear Neumann boundary value problems involv-
ing the p(x)-Laplacian; see [7] for p(x)-Laplace type operator. The purpose
of this paper is to establish the existence of at least three solutions for prob-
lem (N) as applications of an abstract three critical points theorem [3] which
is the extension of the famous result of B. Ricceri [23]. The study about the
existence of at least three solutions for elliptic equations has been an interest-
ing topic; see [2, 6, 4, 9, 18, 21, 23, 24]. J. Liu and X. Shi [18] treated the
existence of three solutions for a class of quasilinear elliptic systems involving
the (p(x), q(x))-Laplacian. Some existence and multiplicity results for nonlin-
ear elliptic equations of the p(x)-Laplacian in the whole space R

N have been
established in [2]. It is well known that B. Ricceri’s theorems in [21, 22, 23]
gave no accurate information on the location and size of an interval of the pa-
rameter λ in R for the existence of at least three critical points. The authors
in [9] localized the interval for the existence of three solutions for equations of
p-Laplace type with various boundary conditions (for example, homogeneous
Dirichlet and inhomogeneous Robin problems) which were motivated by the
study of D. Arcoya and J. Carmona [3]. Recently, J.-H. Bae, Y.-H. Kim, and
C. Zhang [4] established the existence of at least three solutions for equations of
p(x)-Laplace type and localized a three critical points interval for this problem
which was based on the works of [6, 9]. In this respect, we determine precisely
the intervals of λ’s for which problem (N) admits only the trivial solution and
for which problem (N) admits at least two nontrivial solutions by applying the
three critical points theorems given in [3].

This paper is organized as follows. We first state some basic results for
the variable exponent Lebesgue-Sobolev spaces and present some properties
of integral operators associated with the problem (N). Second, we observe
multiple solutions for equations of p(x)-Laplace type with nonlinear Neumann
boundary condition using abstract three critical points theory introduced by
B. Ricceri [23]. And finally we determine precisely the intervals of λ’s for which
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problem (N) admits only the trivial solution and for which problem (N) has at
least two nontrivial solutions.

2. Preliminaries

We introduce some definitions and basic properties of the variable exponent
Lebesgue space Lp(·)(Ω) and the variable exponent Lebesgue-Sobolev space
W 1,p(·)(Ω).

We set

C+(Ω) =

{
h ∈ C(Ω) : min

x∈Ω
h(x) > 1

}

and, for any h ∈ C+(Ω), we denote

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p ∈ C+(Ω), we introduce the variable exponent Lebesgue space

Lp(·)(Ω) :=

{
u : u is a measurable real-valued function,

∫

Ω

|u(x)|p(x)dx < ∞

}
,

endowed with the Luxemburg norm

||u||Lp(·)(Ω) = inf

{
λ > 0 :

∫

Ω

∣∣∣u(x)
λ

∣∣∣
p(x)

dx ≤ 1

}
.

The variable exponent Sobolev space X := W 1,p(·)(Ω) is defined by

X =
{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
,

with the norm

(1) ||u||X = ||u||Lp(·)(Ω) + ||∇u||Lp(·)(Ω).

Throughout this paper, we assume that a function p : Ω → R is log-Hölder
continuous on Ω if there is a constant C0 such that

|p(x)− p(y)| ≤
C0

− log |x− y|

for every x, y ∈ Ω with |x− y| ≤ 1/2.

Lemma 2.1 ([15]). The space Lp(·)(Ω) is a separable, uniformly convex Banach

space, and its conjugate space is Lp′(·)(Ω) where 1/p(x)+ 1/p′(x) = 1. For any

u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have
∣∣∣
∫

Ω

uv dx
∣∣∣ ≤

(
1

p−
+

1

(p′)−

)
||u||Lp(·)(Ω)||v||Lp′(·)(Ω) ≤ 2||u||Lp(·)(Ω)||v||Lp′(·)(Ω).

Lemma 2.2 ([15]). Denote

ρ(u) =

∫

Ω

|u|p(x) dx

for all u ∈ Lp(·)(Ω). Then
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(1) ρ(u) > 1 (= 1; < 1) if and only if ||u||Lp(·)(Ω) > 1 (= 1; < 1),
respectively;

(2) if ||u||Lp(·)(Ω) > 1, then ||u||
p−

Lp(·)(Ω)
≤ ρ(u) ≤ ||u||

p+

Lp(·)(Ω)
;

(3) if ||u||Lp(·)(Ω) < 1, then ||u||
p+

Lp(·)(Ω)
≤ ρ(u) ≤ ||u||

p−

Lp(·)(Ω)
.

Remark 2.3. Denote

ρ(u) =

∫

Ω

(
|∇u|p(x) + |u|p(x)

)
dx

for all u ∈ X . Then

(1) ρ(u) > 1 (= 1; < 1) if and only if ||u||X > 1 (= 1; < 1), respectively;
(2) if ||u||X > 1, then ||u||

p−

X ≤ ρ(u) ≤ ||u||
p+

X ;
(3) if ||u||X < 1, then ||u||

p+

X ≤ ρ(u) ≤ ||u||
p−

X .

Lemma 2.4 ([10]). Let q ∈ L∞(Ω) be such that 1 ≤ p(x)q(x) ≤ ∞ for almost

all x ∈ Ω. If u ∈ Lq(·)(Ω) with u 6= 0, then

(1) if ||u||Lp(·)q(·)(Ω)>1, then ||u||
q−

Lp(·)q(·)(Ω)
≤|| |u|q(x) ||Lp(·)(Ω)≤||u||

q+

Lp(·)q(·)(Ω)
;

(2) if ||u||Lp(·)q(·)(Ω)<1, then ||u||
q+

Lp(·)q(·)(Ω)
≤|| |u|q(x) ||Lp(·)(Ω)≤||u||

q−

Lp(·)q(·)(Ω)
.

Lemma 2.5 ([12]). Let Ω be an open, bounded set with Lipschitz boundary and

let p ∈ C+(Ω) with 1 < p− ≤ p+ < ∞. If q ∈ C(Ω)) satisfies

q(x) ≤ p∗(x) :=

{
Np(x)
N−p(x) if N > p(x),

+∞ if N ≤ p(x),

then there is a continuous embedding

X →֒ Lq(·)(Ω)

and the embedding is compact if inf
x∈Ω

(p∗(x) − q(x)) > 0 for all x ∈ Ω.

Lemma 2.6 ([11]). Let Ω ⊂ R
N , N ≥ 2 be a bounded domain with smooth

boundary. Suppose that p ∈ C+(Ω) and r ∈ C(∂Ω) satisfy the condition

1 ≤ r(x) < p∂(x) :=

{
(N−1)p(x)
N−p(x) if N > p(x),

+∞ if N ≤ p(x)

for all x ∈ ∂Ω. Then the embedding X →֒ Lr(·)(∂Ω) is compact and continuous.

3. Existence of multiple solutions

Now we shall give the proof of the existence of at least three solutions for
problem (N), by applying the abstract three critical points theory and the basic
properties of the spaces Lp(·)(Ω) and X .

Definition. We say that u ∈ X is a weak solution of the problem (N) if
∫

Ω

a(x,∇u) · ∇v dx+

∫

Ω

|u|p(x)−2uv dx = λ

∫

Ω

f(x, u)v dx+ λθ

∫

∂Ω

g(x, u)v dS
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for all v ∈ X , where dS is the measure on the boundary.

We assume that a : Ω×R
N → R

N is a continuous function with the continu-
ous derivative with respect to v of the mapping J0 : Ω×R

N → R, J0 = J0(x, v),
that is, a(x, v) = d

dv
J0(x, v). Suppose that a and J0 satisfy the following as-

sumptions:

(J1) The equality

J0(x,0) = 0

holds for all x ∈ Ω.
(J2) There are a function b ∈ Lp′(·)(Ω) and a nonnegative constant b1 such

that

|a(x, v)| ≤ b(x) + b1|v|
p(x)−1

holds for almost all x ∈ Ω and for all v ∈ R
N .

(J3) J0(x, ·) is strictly convex in R
N for all v ∈ R

N , where p ∈ C+(Ω) with
1 < p− ≤ p+ < ∞.

(J4) There exists a positive constant c∗ such that the relations

c∗|v|
p(x) ≤ a(x, v) · v and c∗|v|

p(x) ≤ p+J0(x, v)

hold for all x ∈ Ω and v ∈ R
N .

Let us define the functional J : X → R by

(2) J(u) =

∫

Ω

J0(x,∇u) dx +

∫

Ω

1

p(x)
|u|p(x) dx.

We define an operator J ′ : X → X∗ by

(3) 〈J ′(u), ϕ〉 =

∫

Ω

〈a(x,∇u),∇ϕ〉 dx+

∫

Ω

|u|p(x)−2
uϕdx

for any ϕ ∈ X where 〈·, ·〉 denotes the pairing of X and its dual X∗ and the
Euclidean scalar product on R

N , respectively.

The fact that the operator J ′ is a mapping of type (S+) plays an important
role in obtaining our main results. The proof is essentially the same as the one
in [16]; see also [17].

Lemma 3.1. Assume that (J1)–(J4) hold. Then the functional J : X →
R is convex and weakly lower semicontinuous on X. Moreover, the oper-

ator J ′ is a mapping of type (S+), i.e., if un ⇀ u in X as n → ∞ and

lim supn→∞ 〈J ′(un)− J ′(u), un − u〉 ≤ 0, then un → u in X as n → ∞.

Corollary 3.2. Assume that (J1)–(J4) hold. Then the operator J ′ : X → X∗

is strictly monotone, coercive and hemicontinuous on X. Furthermore, the

operator J ′ is homeomorphism onto X∗.

Proof. It is immediate that the operator J ′ is strictly monotone, coercive and
hemicontinuous on X . By the Browder-Minty theorem, the inverse operator
(J ′)−1 exists (see Theorem 26.A in [30]). If we apply Lemma 3.1, then the
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proof of continuity of the inverse operator (J ′)−1 is similar to that in the case
of a constant exponent and is omitted here. �

In order to deal with our main results, we need the following assumptions

for f and g. Denoting F (x, t) =
∫ t

0 f(x, s) ds and G(x, t) =
∫ t

0 g(x, s) ds, then
we assume that

(H1) p ∈ C+(Ω) and 1 < p− ≤ p+ < p∗(x) for all x ∈ Ω.
(F1) f : Ω×R → R satisfies the Carathéodory condition and there exist two

nonnegative functions ρ1, σ1 ∈ L∞(Ω) such that

|f(x, s)| ≤ ρ1(x) + σ1(x) |s|
γ1(x)−1

for all (x, s) ∈ Ω× R, where γ1 ∈ C+(Ω) and (γ1)+ < p−.
(F2) There exist a real number s0 and a positive constant r0 so small that

∫

BN (x0,r0)

F (x, |s0|) dx > 0 and F (x, t) ≥ 0

for almost all x ∈ BN (x0, r0) \ BN (x0, σr0) with σ ∈ (0, 1) and for all
0 ≤ t ≤ |s0|, where BN (x0, r0) = {x ∈ Ω : |x− x0| ≤ r0} ⊂ Ω.

(F3) lim sups→0

(
ess supx∈Ω

|F (x,s)|

|s|κ(x)

)
< +∞, where κ ∈ C+(Ω) is such that

p+ < κ− ≤ κ(x) < p∗(x) for all x ∈ Ω.
(G1) g : ∂Ω × R → R satisfies the Carathéodory condition and there exist

two nonnegative functions ρ2, σ2 ∈ L∞(∂Ω)

|g(x, s)| ≤ ρ2(x) + σ2(x) |s|
γ2(x)−1

for all (x, s) ∈ ∂Ω× R, where γ2 ∈ C+(∂Ω) and (γ2)+ < p−.

Define the functionals Ψ, H : X → R by

(4) Ψ(u) = −

∫

Ω

F (x, u) dx, H(u) = −

∫

∂Ω

G(x, u) dS.

Then it is easy to check that Ψ, H ∈ C1(X,R) and their Fréchet derivatives
are

(5) 〈Ψ′(u), v〉 = −

∫

Ω

f(x, u)v dx and 〈H ′(u), v〉 = −

∫

∂Ω

g(x, u)v dS

for any u, v ∈ X .

Lemma 3.3 ([23]). Let X be a reflexive real Banach space; I ⊂ R an interval;
J : X → R a sequentially weakly lower semicontinuous C1-functional whose

derivative admits a continuous inverse on X∗; Ψ : X → R a C1-functional

with compact derivative. In addition, let J be bounded on each bounded subset

of X. Assume that

lim
||u||X→∞

(J(u) + λΨ(u)) = +∞
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for all λ ∈ I and there exists ρ ∈ R such that

(6) sup
λ∈I

inf
u∈X

(J(u) + λ(Ψ(u) + ρ)) < inf
u∈X

sup
λ∈I

(J(u) + λ(Ψ(u) + ρ)) .

Then there exist a nonempty open set Λ ⊂ I and a positive real number R > 0
with the following property: for every λ ∈ Λ and every C1-functional H : X →
R with compact derivative, there exists δ > 0 such that for each θ ∈ [0, δ], the
equation

J ′(u) + λ (Ψ′(u) + θH ′(u)) = 0

has at least three solutions in X whose norms are less than R.

Lemma 3.4. Assume that (H1), (J1)–(J4), (F1), and (G1) hold. Then

lim
||u||X→∞

{J(u) + λ(Ψ(u) + θH(u))} = +∞

for all λ, θ ∈ R.

Proof. For ||u||X large enough and for all λ, θ ∈ R, it follows from Lemmas 2.5
and 2.6 that

J(u) + λ(Ψ(u) + θH(u))

=

∫

Ω

J0(x,∇u) dx+

∫

Ω

1

p(x)
|u|p(x) dx− λ

∫

Ω

F (x, u) dx− λθ

∫

∂Ω

G(x, u) dS

≥
c∗
p+

∫

Ω

|∇u|p(x) dx+

∫

Ω

1

p(x)
|u|p(x) dx

− |λ|

∫

Ω

|ρ1(x)| |u| dx− |λ|

∫

Ω

1

γ1(x)
|σ1(x)| |u|

γ1(x) dx

− |λ| |θ|

∫

∂Ω

|ρ2(x)| |u| dS − |λ| |θ|

∫

∂Ω

1

γ2(x)
|σ2(x)| |u|

γ2(x) dS

≥
c∗
p+

∫

Ω

|∇u|p(x) dx+
1

p+

∫

Ω

|u|p(x) dx

− |λ| ||ρ1||L∞(Ω)||u||L1(Ω) −
|λ|

(γ1)−
||σ1||L∞(Ω)|| |u|

γ1(·) ||L1(Ω)

− |λ| |θ| ||ρ2||L∞(∂Ω)||u||L1(∂Ω) −
|λ| |θ|

(γ2)−
||σ2||L∞(∂Ω)|| |u|

γ2(·) ||L1(∂Ω)

≥
min{c∗, 1}

p+

(∫

Ω

|∇u|p(x) dx+

∫

Ω

|u|p(x) dx

)

− |λ|C1||u||X −
|λ|C2

(γ1)−
||u||

(γ1)+
Lγ1(·)(Ω)

− |λ| |θ|C3||u||X −
|λ| |θ|C4

(γ2)−
||u||

(γ2)+
Lγ2(·)(∂Ω)

≥
min{c∗, 1}

p+
||u||

p−

X − |λ|C1||u||X −
|λ|C5

(γ1)−
||u||

(γ1)+
X

− |λ| |θ|C3||u||X −
|λ| |θ|C6

(γ2)−
||u||

(γ2)+
X
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for some positive constants Ci(i = 1, . . . , 6). Since p− > (γ1)+ > 1 and p− >
(γ2)+ > 1, we deduce

lim
||u||X→∞

{J(u) + λ(Ψ(u) + θH(u))} = +∞

for all λ, θ ∈ R. �

The following lemma is crucial to obtain the assumption (6) of Lemma 3.3.

Lemma 3.5 ([21]). Let X be a nonempty set and J,Ψ two real functionals on

X. Assume that there are µ > 0 and u0, u1 ∈ X such that

J(u0) = −Ψ(u0) = 0, J(u1) > µ,

sup
u∈J−1((−∞,µ])

−Ψ(u) < µ
−Ψ(u1)

J(u1)
.(7)

Then, for each ρ satisfying

sup
u∈J−1((−∞,µ])

−Ψ(u) < ρ < µ
−Ψ(u1)

J(u1)
,

one has

sup
λ≥0

inf
u∈X

(J(u) + λ(ρ+Ψ(u))) < inf
u∈X

sup
λ≥0

(J(u) + λ(ρ+Ψ(u))) .

The following consequence for the existence of at least three solutions for
problem (N) can be established by applying Lemma 3.3.

Theorem 3.6. Assume that (J1)–(J4), (H1), (F1)–(F3), and (G1) hold. Then

there exist a nonempty open set Λ ⊂ [0,+∞) and a positive real number R > 0
with the following property: for every λ ∈ Λ and every Carathéodory function

g satisfying the condition (G1), there exists δ > 0 such that for each θ ∈ [0, δ],
the equation (N) has at least three solutions in X whose norms are less then

R.

Proof. By Lemma 3.1, the functional J : X → R is sequentially weakly lower
semicontinuous C1-functional. Moreover, it is bounded on each bounded subset
of X . Using Corollary 3.2, the operator J ′ is homeomorphism onto X∗, that is,

there exists a continuous inverse operator (J ′)
−1

: X∗ → X . Moreover, with
the aid of Lemmas 2.5 and 2.6, the modification of the proof of Proposition
3.1 in [7] yields that the operators Ψ′, H ′ : X → X∗ are compact. Applying
Lemma 3.4 when the parameter θ is zero, we know

lim
||u||X→∞

(J(u) + λΨ(u)) = +∞

for all u ∈ X and all λ ∈ R.
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To check all assumptions in Lemma 3.3, we verify the assumption (6). Let
s0 6= 0 be from (F2). For ̺ ∈ (0, 1), define

(8) u̺(x) =





0 if x ∈ Ω \BN (x0, r0)

|s0| if x ∈ BN (x0, ̺r0)
|s0|

r0(1−̺) (r0 − |x− x0|) if x ∈ BN (x0, r0) \BN (x0, ̺r0).

It is clear that 0 ≤ u̺(x) ≤ |s0| for all x ∈ Ω, and so u̺ ∈ X . Moreover, the

fact that (see Theorem 2.8 of [19]) Lp(x)(Ω) →֒ Lp−(Ω) implies

||u̺||
α0

X ≥ ||∇u̺||
α0

Lp(x)(Ω)
≥ C7

∫

Ω

|∇u̺|
p− dx =

C7|s0|
p−(1− ̺N )

(1 − ̺)p−

r
N−p−

0 ωN > 0

for a positive constant C7, where α0 is either p+ or p− and ωN is the volume
of BN (0, 1). Also, by using assumption (F2), we get

−Ψ(u̺) =

∫

BN (x0,̺r0)

F (x, |s0|) dx

+

∫

BN (x0,r0)\BN (x0,̺r0)

F (x,
|s0|

r0(1− ̺)
(r0 − |x− x0|)) dx > 0.

By condition (F3), there exist positive constants η ∈ (0, 1] and C8 such that

(9) F (x, s) < C8 |s|
κ(x)

< C8 |s|
κ−

for almost all x ∈ Ω and for all s ∈ [−η, η]. Let us consider two positive
constants M1 and M2 given by

M1 = sup
|s|>1

C(|s|+ |s|γ+)

|s|κ−
and M2 = sup

η<|s|<1

C(|s|+ |s|γ−)

|s|κ−

for some positive constant C. Then it follows from (9) and (F1) that

F (x, s) < M |s|κ−

for almost all x ∈ Ω and for all s ∈ R, where M = max {C8,M1,M2}. Fix
a real number µ such that 0 < µ < 1. When α1||u||

p+

X ≤ µ < 1, where
α1 = min{c∗, 1}/p+ and c∗ is the positive constant from (J4), then by Lemma
2.2, we have

(10) −Ψ(u) =

∫

Ω

F (x, u) dx < M

∫

Ω

|u|κ− dx ≤ C9||u||
κ−

X ≤ C10µ
κ
−

p+

for some positive constants C9 and C10. Since κ− > p+, the relation (10)
implies that

(11) lim
µ→0+

sup
α1||u||

p+

X
≤µ

−Ψ(u)

µ
= 0.

Let us check the assumption (7) in Lemma 3.5. Fix a real number µ0 such that

0 < µ < µ0 < α1 min
{
||u̺||

p+

X , ||u̺||
p−

X , 1
}
≤ α1,
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where u̺ was defined in (8). By Lemma 2.2 and (J5), we have

J(u̺) =

∫

Ω

J0(x,∇u̺) dx+

∫

Ω

1

p(x)
|u̺|

p(x)
dx

≥

∫

Ω

c∗
p+

|∇u̺|
p(x)

dx+

∫

Ω

1

p+
|u̺|

p(x)
dx ≥ α1||u̺||

p+

X ≥ µ0 > µ

for ||u̺||X < 1 and

J(u̺) =

∫

Ω

J0(x,∇u̺) dx+

∫

Ω

1

p(x)
|u̺|

p(x)
dx

≥

∫

Ω

c∗
p+

|∇u̺|
p(x)

dx+

∫

Ω

1

p+
|u̺|

p(x)
dx ≥ α1||u̺||

p−

X ≥ µ0 > µ

for ||u̺||X > 1. From (11), we obtain

(12) sup
α1||u||

p+

X
≤µ

−Ψ(u) ≤
µ

2

−Ψ(u̺)

J(u̺)
< µ

−Ψ(u̺)

J(uσ)
.

For any u ∈ J−1((−∞, µ]), we obtain that J(u) ≤ µ and so

c∗
p+

∫

Ω

|∇u|p(x) dx+

∫

Ω

1

p+
|u|p(x) dx

≤

∫

Ω

J0(x,∇u) dx +

∫

Ω

1

p(x)
|u|p(x) dx = J(u) ≤ µ.

Hence we deduce∫

Ω

(|∇u|p(x) + |u|p(x)) dx ≤
1

α1
µ <

1

α1
µ0 < 1.

This inequality implies that ||u||X < 1. It follows that

α1||u||
p+

X <

∫

Ω

J0(x,∇u) dx+

∫

Ω

1

p(x)
|u|p(x) dx = J(u) ≤ µ.

So we can get

J−1((−∞, µ]) ⊂
{
u ∈ X : α1||u||

p+

X ≤ µ
}
.

Then

sup
u∈J−1((−∞,µ])

−Ψ(u) ≤ sup
α1||u||

p+

X
≤µ

−Ψ(u) < µ
−Ψ(u̺)

J(u̺)
,

that is,

sup
u∈J−1((−∞,µ])

−Ψ(u) < µ
−Ψ(u̺)

J(u̺)
.

Thus we can choose µ > 0, u0 = 0, and u1 = u̺ such that relations J(u̺) ≤ µ
and (7) are satisfied. Also there exists ρ such that

sup
u∈J−1((−∞,µ])

−Ψ(u) < ρ < µ
−Ψ(u̺)

J(u̺)
.
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Set I = [0,+∞). According to Lemma 3.5, we obtain that

sup
λ≥0

inf
u∈X

(J(u) + λ(Ψ(u) + ρ)) < inf
u∈X

sup
λ≥0

(J(u) + λ(Ψ(u) + ρ)) .

Therefore, J and Ψ satisfy all the assumptions of Lemma 3.3. This completes
the proof. �

Theorem 3.6 gives no further information on the size and location of the open
set Λ. Hence we will investigate the localization of the interval for the existence
of at least three solutions for problem (N) by applying the three critical points
theorems given in [9]. To do this, we consider the following eigenvalue problem:

(E)

{
−div(|∇u|p(x)−2∇u) + |u|p(x)−2u = λm(x) |u|p(x)−2

u in Ω
∂u
∂n

= 0 on ∂Ω,

Under some conditions, we show the positivity of the infimum of all eigenval-
ues for problem (E). From the analogous argument as in the proof of Theorem
4.1 in [9], we get the following result.

Proposition 3.7. Assume that (H1) holds. Moreover, suppose that

(H2) m ∈ L∞(Ω) and m(x) > 0 for almost all x ∈ Ω.

Denote the quantity

(13) λ∗ = inf
u∈X\{0}

∫
Ω
|∇u|p(x) dx+

∫
Ω
|u|p(x) dx

∫
Ωm(x) |u|p(x) dx

.

Then λ∗ is a positive eigenvalue of problem (E), that is there is u1 ∈ X with∫
Ω
m(x)|u1|p(x) dx = 1 such that realizes the infimum in (13) and represents an

eigenfunction for λ∗. In particular,

(14) λ∗

∫

Ω

m(x) |u|p(x) dx ≤

∫

Ω

|∇u|p(x) dx+

∫

Ω

|u|p(x) dx

for every u ∈ X.

Proof. In view of Lemma 2.5 with the assumption (H2), we get λ∗ > 0. Denote

the functional J̃0, Ψ̃0 : X → R by

J̃0(u) =

∫

Ω

|∇u|p(x) dx+

∫

Ω

|u|p(x) dx and Ψ̃0(u) =

∫

Ω

m(x)|u|p(x) dx

for any u ∈ X . Then these functionals are continuously Gáteaux differentiable,
convex in X , and obviously J̃ ′

0(0) = Ψ̃′
0(0) = 0. Moreover, J̃ ′

0(u) = 0 implies

u = 0. By Lemma 3.1, J̃0 is weakly lower semicontinuous on X . From the
convexity of Ψ̃0, we deduce that Ψ̃0 is weakly lower semicontinuous on X .
Note that any C1 functional on X with compact derivative is sequentially
weakly continuous on X (see Corollary 41.9 in [29]). As seen in the proof of

Theorem 3.6, Ψ̃0 is sequentially weakly continuous on X . Since J̃0 is coercive
in X , it follows from an easy contradiction argument that J̃0 is coercive in
{u ∈ X : Ψ̃0(u) ≤ 1}. Consequently all the assumptions of Theorem 6.3.2 in



1816 Y.-H. KIM AND K. PARK

[5] are verified and thus λ∗ is attained in {u ∈ X : Ψ̃0(u) = 1}. In other words,
there is an element u in X with

∫
Ω
m(x)|u|p(x) dx = 1 such that realizes the

infimum in (13) and represents an eigenfunction for (E) corresponding to λ∗.
Therefore (14) holds. �

In addition, we assume that

(F4) lim sups→0
|f(x,s)|

m(x)|s|ξ1(x)−1
< +∞ uniformly for almost all x ∈ Ω, where

ξ1 ∈ C+(Ω) with p(x) < ξ1(x) < p∗(x) for all x ∈ Ω.

(G2) lim sups→0
|g(x,s)|

|s|ξ2(x)−1
< +∞ uniformly for almost all x ∈ ∂Ω, where

ξ2 ∈ C+(∂Ω) with p(x) < ξ2(x) < p∂(x) for all x ∈ ∂Ω.

Let us introduce two functions

χ1(r) = inf
u∈Ψ−1((−∞,r))

infv∈Ψ−1(r) J(v)− J(u)

Ψ(u)− r
,

χ2(r) = sup
u∈Ψ−1((r,+∞))

infv∈Ψ−1(r) J(v)− J(u)

Ψ(u)− r

for every r ∈ (infu∈X Ψ(u), supu∈X Ψ(u)). Denote the crucial values

Cf = ess sup
s6=0,x∈Ω

|f(x, s)|

m(x) |s|p(x)−1
and Cg = ess sup

s6=0,x∈∂Ω

|g(x, s)|

|s|p(x)−1
.

Then the same arguments in [9] imply that Cf and Cg are well defined, positive
constants, and furthermore the following relations hold:

(15) ess sup
s6=0,x∈Ω

|F (x, s)|

m(x) |s|p(x)
=

Cf
p−

and ess sup
s6=0,x∈∂Ω

|G(x, s)|

|s|p(x)
=

Cg
p−

.

The next result represents the differentiable version of the Arcoya and Car-
mona; see Theorem 3.10 in [3].

Lemma 3.8. Let J , Ψ be two functionals on X which are weakly lower semi-

continuous and continuously Gâteaux differentiable in X. Let Ψ be nonconstant

and H be continuously Gâteaux differentiable with compact derivative H ′. Let

also J ′ : X → X∗ be a mapping of type (S+) and Ψ′ be a compact operator.

Assume that there exist an interval I ⊂ R and a number τ > 0 such that for

every λ ∈ I and every θ ∈ [−τ, τ ] the functional Iλ,θ = J + λ(Ψ + θH) is

coercive in X. If there exists

(16) r ∈

(
inf
u∈X

Ψ(u), sup
u∈X

Ψ(u)

)
such that χ1(r) < χ2(r)

and (χ1(r), χ2(r)) ∩ I 6= ∅, then for every compact interval [a, b] with [a, b] ⊂
(χ1(r), χ2(r)) ∩ I, there exists γ ∈ (0, τ) with |θ| < γ such that the functional

Iλ,θ admits at least three critical points for every λ ∈ [a, b].

By applying Lemma 3.8, we can obtain the following assertion.
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Theorem 3.9. Assume (J1)–(J4), (H1)–(H3), (F1)–(F2), and (G1)–(G2)
hold. Then we have

(i) For every θ ∈ R, there exists ℓ∗ = min{1, c∗}λ∗/(Cf+C11λ∗ |θ| Cg) such
that problem (N) has only the trivial solution for all λ ∈ [0, ℓ∗), where
c∗ is a positive constant from (J4), C11 is a positive constant, and λ∗

is a positive real number in (13).
(ii) If furthermore f satisfies (F4), then for some positive constant ℓ∗ with

ℓ∗ ≥ ℓ∗ and for any compact interval [a, b] with [a, b] ⊂ (ℓ∗,+∞), there
exists τ > 0 such that problem (N) has at least two nontrivial solutions

for every λ ∈ [a, b] and θ ∈ (−τ, τ).

Proof. To apply Lemma 3.8, let us denote the operators J , Ψ, and H by (2) and
(4), respectively. Under the assumptions (J1)–(J4), (H1), (F1)–(F2), and (G1),
all of the assumptions in Lemma 3.8 except the condition (16) are satisfied.

Now we prove the assertion (i). Let u ∈ X be a nontrivial weak solution of
problem (N). Then it is clear that
∫

Ω

a(x,∇u) · ∇v dx+

∫

Ω

|u|p(x)−2uv dx = λ

∫

Ω

f(x, u)v dx+ λθ

∫

∂Ω

g(x, u)v dS

for all v ∈ X . If we put v = u, then it follows from (J4), (14), and the
definitions of Cf and Cg that

min{1, c∗}λ∗

(∫

Ω

|∇u|p(x) dx+

∫

Ω

|u|p(x) dx

)

≤ λ∗

(∫

Ω

a(x,∇u) · ∇u dx+

∫

Ω

|u|p(x) dx

)

= λ∗λ

(∫

Ω

f(x, u)udx + θ

∫

∂Ω

g(x, u)u dS

)

≤ λ∗λ

(∫

Ω

f(x, u)

m(x) |u|p(x)−1
m(x) |u|p(x) dx+ θ

∫

∂Ω

g(x, u)

|u|p(x)−1
|u|p(x) dS

)

≤ λCf

(∫

Ω

|∇u|p(x) dx+

∫

Ω

|u|p(x) dx

)
+ λ∗λ |θ| Cg

∫

∂Ω

|u|p(x) dS

≤ λ(Cf + C11λ∗ |θ| Cg)

(∫

Ω

|∇u|p(x) dx+

∫

Ω

|u|p(x) dx

)
.

Thus if u is a nontrivial weak solution of problem (N), then necessarily λ ≥
ℓ∗ = min{1, c∗}λ∗/(Cf +C11λ∗ |θ| Cg) for C11 is a positive constant, as claimed.

Next, we show the assertion (ii). As shown in the proof of Theorem 3.6,
there exists u̺ in X , which is defined in (8), such that Ψ(u̺) < 0. Then the
crucial number

ℓ∗ = χ1(0) = inf
u∈Ψ−1((−∞,0))

(
−
J(u)

Ψ(u)

)
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is well defined. Let u be in X with u 6≡ 0. From the assumption (J4) and
relation (15), we obtain

J(u)

|Ψ(u)|
=

∫
Ω
J0(x,∇u) dx +

∫
Ω

1
p(x) |u|

p(x)
dx

∫
Ω
F (x, u) dx

≥

c∗
p+

∫
Ω
|∇u|p(x) dx+ 1

p+

∫
Ω
|u|p(x) dx

∫
Ω

|F (x,u)|

m(x)|u|p(x)
m(x) |u|p(x) dx

≥

min{1,c∗}
p+

(∫
Ω
|∇u|p(x) dx+

∫
Ω
|u|p(x) dx

)

Cf

p−

∫
Ω
m(x) |u|p(x) dx

≥
min{1, c∗}p−

Cfp+
λ∗ ≥

min{1, c∗}λ∗

Cf

≥
min{1, c∗}λ∗

(Cf + C11λ∗ |θ| Cg)
= ℓ∗.

Hence we have ℓ∗ ≥ ℓ∗. Now we claim that there exists a real number r
satisfying the condition (16). For any u ∈ Ψ−1((−∞, 0)), we deduce that

χ1(r) = inf
u∈Ψ−1((−∞,r))

infv∈Ψ−1(r) J(v)− J(u)

Ψ(u)− r

≤
infv∈Ψ−1(r) J(v) − J(u)

Ψ(u)− r
≤

J(u)

r −Ψ(u)

for all r ∈ (Ψ(u), 0). It implies that

lim sup
r→0−

χ1(r) ≤ −
J(u)

Ψ(u)

for all u ∈ Ψ−1((−∞, 0)). Hence we have

lim sup
r→0−

χ1(r) ≤ χ1(0) = ℓ∗.

By the assumption (F4), there exists a positive real number M∗ such that

(17) |F (x, s)| ≤ M∗m(x) |s|ξ1(x)

for almost all x ∈ Ω and for all s ∈ R. In fact, denote

M3 = lim sup
s→0

|F (x, s)|

m(x) |s|ξ1(x)
.

Then there exists δ > 0 such that |F (x, s)| ≤ (M3 + 1)m(x) |s|ξ1(x) for almost
all x ∈ Ω and for all s ∈ R with |s| < δ. Let s be fixed with |s| ≥ δ. It follows
from (15) that

|F (x, s)| ≤
Cf
p−

|s|p(x)−ξ1(x)m(x) |s|ξ1(x)
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≤
Cf (δp−−(ξ1)+ + δp+−(ξ1)−)

p−
m(x) |s|ξ1(x)

for almost all x ∈ Ω. Hence the relation (17) holds, where

M∗ = max
{
M3 + 1, Cf(δ

p−−(ξ1)+ + δp+−(ξ1)−)/p−

}
.

Then the relation (17) implies that

|Ψ(u)| ≤

∫

Ω

M∗m(x) |u|ξ1(x) dx ≤ 2C12M∗||m||L∞(Ω)||u||
α
X

for a positive constant C12 and for all u ∈ X , where α is either (ξ1)+ or (ξ1)−.
If r < 0 and v ∈ Ψ−1(r), then it follows from the assumption (J5) that

r = Ψ(v) ≥ −2C11M∗||m||L∞(Ω)||v||
α
X

≥ −2C11M∗||m||L∞(Ω) (max{1, p+/c∗}J(v))
α

β ,

where β is either p+ or p−. Since u = 0 ∈ Ψ−1((r,+∞)), we get

χ2(r) ≥
1

|r|
inf

v∈Ψ−1(r)
J(v) ≥

|r|
β

α
−1

(2C11M∗)
β

α ||m||
β

α

L∞(Ω)

1

max{1, p+/c∗}
,

and then limr→0− χ2(r) = +∞ because α > β. Then we deduce that

lim sup
r→0−

χ1(r) ≤ χ1(0) = ℓ∗ < lim
r→0−

χ2(r) = +∞.

This confirms that for all integers n ≥ n∗ = 2 + [ℓ∗], there exists a negative
sequence {rn} such that rn → 0 as n → ∞ with χ1(rn) < ℓ∗ + 1/n < n <
χ2(rn). By Lemma 3.4, we set I = R. In conclusion, since u ≡ 0 is a critical
point of Iλ,θ, according to Lemma 3.8, for every compact interval [a, b] with

[a, b] ⊂ (ℓ∗,+∞) =

∞⋃

n=n∗

[
ℓ∗ +

1

n
, n

]
⊂

∞⋃

n=n∗

(χ1(rn), χ2(rn)),

there exists τ > 0 such that problem (N) admits at least two nontrivial solutions
for all λ ∈ [a, b] and θ ∈ (−τ, τ). This completes the proof. �
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