• Title/Summary/Keyword: operator spaces

Search Result 404, Processing Time 0.026 seconds

STRONG CONVERGENCE OF GENERAL ITERATIVE ALGORITHMS FOR NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Jung, Jong Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.1031-1047
    • /
    • 2017
  • In this paper, we introduce two general iterative algorithms (one implicit algorithm and other explicit algorithm) for nonexpansive mappings in a reflexive Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm. Strong convergence theorems for the sequences generated by the proposed algorithms are established.

REPRODUCING KERNEL KREIN SPACES

  • Yang, Mee-Hyea
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.659-668
    • /
    • 2001
  • Let S(z) be a power series with operator coefficients such that multiplication by S(z) is an everywhere defined transformation in the square summable power series C(z). In this paper we show that there exists a reproducing kernel Krein space which is state space of extended canonical linear system with transfer function S(z). Also we characterize the reproducing kernel function of the state space of a linear system.

ENLARGING THE BALL OF CONVERGENCE OF SECANT-LIKE METHODS FOR NON-DIFFERENTIABLE OPERATORS

  • Argyros, Ioannis K.;Ren, Hongmin
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.17-28
    • /
    • 2018
  • In this paper, we enlarge the ball of convergence of a uniparametric family of secant-like methods for solving non-differentiable operators equations in Banach spaces via using ${\omega}$-condition and centered-like ${\omega}$-condition meantime as well as some fine techniques such as the affine invariant form. Numerical examples are also provided.

CONSTRUCTION OF SOME PROCESSES ON THE WIENER SPACE ASSOCIATED TO SECOND ORDER OPERATORS

  • Cruzeiro, A.B.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.311-319
    • /
    • 2001
  • We show that it is possible to associate diffusion processes to second order perturbations of the Ornstein-Uhlenbeck operator L on the Wiener space of the form L = L + 1/2∑L$^2$(sub)ξ(sub)$\kappa$ where the ξ(sub)$\kappa$ are "tangent processes" (i.e., semimartingales with antisymmetric diffusion coefficients).

  • PDF

ON A SEQUENCE OF KANTOROVICH TYPE OPERATORS VIA RIEMANN TYPE q-INTEGRAL

  • Bascanbaz-Tunca, Gulen;Erencin, Aysegul;Tasdelen, Fatma
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.303-315
    • /
    • 2014
  • In this work, we construct Kantorovich type generalization of a class of linear positive operators via Riemann type q-integral. We obtain estimations for the rate of convergence by means of modulus of continuity and the elements of Lipschitz class and also investigate weighted approximation properties.

INVARIANTS WITH RESPECT TO ALL ADMISSIBLE POLAR TOPOLOGIES

  • Cho, Min-Hyung;Hwang, Hong Taek
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.45-51
    • /
    • 1999
  • Let X and Y be topological vector spaces. For a sequence {$T_j$} of bounded operators from X into Y the $c_0$-multiplier convergence of ${\sum}T_j$ is an invariant on topologies which are stronger (need not strictly) than the topology of pointwise convergence on X but are weaker (need not strictly) than the topology of uniform convergence on bounded subsets of X.

  • PDF

A NOTE OF WEIGHTED COMPOSITION OPERATORS ON BLOCH-TYPE SPACES

  • LI, SONGXIAO;ZHOU, JIZHEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1711-1719
    • /
    • 2015
  • We obtain a new criterion for the boundedness and compactness of the weighted composition operators ${\psi}C_{\varphi}$ from ${\ss}^{{\alpha}}$(0 < ${\alpha}$ < 1) to ${\ss}^{{\beta}}$ in terms of the sequence $\{{\psi}{\varphi}^n\}$. An estimate for the essential norm of ${\psi}C_{\varphi}$ is also given.

WEIGHTED ESTIMATES FOR CERTAIN ROUGH SINGULAR INTEGRALS

  • Zhang, Chunjie
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1561-1576
    • /
    • 2008
  • In this paper we shall prove some weighted norm inequalities of the form $${\int}_{R^n}\;|Tf(x)|^pu(x)dx\;{\leq}\;C_p\;{\int}_{R^n}\;|f(x)|^pNu(x)dx$$ for certain rough singular integral T and maximal singular integral $T^*$. Here u is a nonnegative measurable function on $R^n$ and N denotes some maximal operator. As a consequence, some vector valued inequalities for both T and $T^*$ are obtained. We shall also get a boundedness result of T on the Triebel-Lizorkin spaces.

On M-ideal properties of certain spaces of compact operators

  • Cho, Chong-Man;Kim, Beom-Sool
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.673-680
    • /
    • 1996
  • It is proved that $K(c_0,Y)$ is an M-ideal in $L(c_0,Y)$ if Y is a closed subspace of $c_0$. And a new direct proof of the fact that $K(L_1[0,1],\ell_1)$ is not an M-ideal in $L(L_1[0,1],\ell_1)$ is given.

  • PDF

GENERALIZED RELAXED PROXIMAL POINT ALGORITHMS INVOLVING RELATIVE MAXIMAL ACCRETIVE MODELS WITH APPLICATIONS IN BANACH SPACES

  • Verma, Ram U.
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.313-325
    • /
    • 2010
  • General models for the relaxed proximal point algorithm using the notion of relative maximal accretiveness (RMA) are developed, and then the convergence analysis for these models in the context of solving a general class of nonlinear inclusion problems differs significantly than that of Rockafellar (1976), where the local Lipschitz continuity at zero is adopted instead. Moreover, our approach not only generalizes convergence results to real Banach space settings, but also provides a suitable alternative to other problems arising from other related fields.