Browse > Article
http://dx.doi.org/10.4134/CKMS.2010.25.2.313

GENERALIZED RELAXED PROXIMAL POINT ALGORITHMS INVOLVING RELATIVE MAXIMAL ACCRETIVE MODELS WITH APPLICATIONS IN BANACH SPACES  

Verma, Ram U. (FLORIDA INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATHEMATICAL SCIENCES, INTERNATIONAL PUBLICATIONS (USA))
Publication Information
Communications of the Korean Mathematical Society / v.25, no.2, 2010 , pp. 313-325 More about this Journal
Abstract
General models for the relaxed proximal point algorithm using the notion of relative maximal accretiveness (RMA) are developed, and then the convergence analysis for these models in the context of solving a general class of nonlinear inclusion problems differs significantly than that of Rockafellar (1976), where the local Lipschitz continuity at zero is adopted instead. Moreover, our approach not only generalizes convergence results to real Banach space settings, but also provides a suitable alternative to other problems arising from other related fields.
Keywords
variational inclusions; maximal relaxed accretive mapping; relative maximal accretive mapping; generalized resolvent operator;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127-1138.   DOI   ScienceOn
2 E. Zeidler, Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York, 1986.
3 E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New York, 1990.
4 E. Zeidler, Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, New York, 1990.
5 E. Zeidler, Nonlinear Functional Analysis and its Applications III, Springer-Verlag, New York, New York, 1984
6 R. P. Agarwal and R. U. Verma, Role of relative A-maximal monotonicity in overrelaxed proximal-point algorithms with applications, J. Optim. Theory Appl. 143 (2009), no. 1, 1-15; doi 10.1017/s10957-009-9554-z.   DOI
7 J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming 55 (1992), no. 3, Ser. A, 293-318.   DOI
8 B. Martinet, Regularisation d’inequations variationnelles par approximations successives, Rev. Francaise Inform. Rech. Oper. Ser. R-3 4 (1970), 154-158.
9 A. Moudafi, Mixed equilibrium problems: sensitivity analysis and algorithmic aspect, Comput. Math. Appl. 44 (2002), no. 8-9, 1099-1108.   DOI   ScienceOn
10 S. M. Robinson, Composition duality and maximal monotonicity, Math. Program. 85 (1999), no. 1, Ser. A, 1-13.   DOI
11 R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization 14 (1976), no. 5, 877-898.   DOI   ScienceOn
12 R. U. Verma, General system of A-monotone nonlinear variational inclusion problems with applications, J. Optim. Theory Appl. 131 (2006), no. 1, 151-157.   DOI
13 R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res. 1 (1976), no. 2, 97-116.   DOI
14 R. T. Rockafellar and R. J.-B.Wets, Variational Analysis, Springer-Verlag, Berlin, 2004.
15 P. Tseng, Alternating projection-proximal methods for convex programming and variational inequalities, SIAM J. Optim. 7 (1997), no. 4, 951-965.   DOI   ScienceOn
16 R. U. Verma, A-monotone nonlinear relaxed cocoercive variational inclusions, Cent. Eur. J. Math. 5 (2007), no. 2, 386-396.   DOI   ScienceOn
17 R. U. Verma, General system of $(A,{\eta})$-monotone variational inclusion problems based on generalized hybrid iterative algorithm, Nonlinear Anal. Hybrid Syst. 1 (2007), no. 3, 326-335.   DOI   ScienceOn
18 R. U. Verma, Averaging techniques and cocoercively monotone mappings, Math. Sci. Res. J. 10 (2006), no. 3, 79-82.
19 R. U. Verma, Approximation solvability of a class of nonlinear set-valued variational inclusions involving $(A,{\eta})$- monotone mappings, J. Math. Anal. Appl. 337 (2008), no. 2, 969-975.   DOI   ScienceOn
20 R. U. Verma, On a class of nonlinear variational inequalities involving partially relaxed monotone and partially strongly monotone mappings, Math. Sci. Res. Hot-Line 4 (2000), no. 2, 57-65.
21 Y. P. Fang and N. J. Huang, H-monotone operators and system of variational inclusions, Comm. Appl. Nonlinear Anal. 11 (2004), no. 1, 93-101.
22 M. Fukushima, The primal Douglas-Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem, Math. Programming 72 (1996), no. 1, Ser. A, 1-15.   DOI   ScienceOn
23 R. Glowinski and P. Le Tellec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.
24 H. Y. Lan, J. H. Kim, and Y. J. Cho, On a new system of nonlinear A-monotone multivalued variational inclusions, J. Math. Anal. Appl. 327 (2007), no. 1, 481-493.   DOI   ScienceOn
25 R. U. Verma, Generalized first-order nonlinear evolution equations and generalized Yosida approximations based on H-maximal monotonicity frameworks, Electron. J. Differential Equations 2009 (2009), No. 85, 16 pp.
26 R. U. Verma, A new relaxed proximal point procedure and applications to nonlinear variational inclusions, Comput. Math. Appl. 58 (2009), no. 8, 1631-1635.   DOI   ScienceOn
27 P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2000), no. 2, 431-446.   DOI   ScienceOn
28 R. U. Verma, General class of implicit inclusion problems based on A-maximal relaxed monotone models with applications, Journal of Numerical Mathematics and Stochastics 1 (2009), no. 1, 24-32.
29 R. U. Verma, The generalized relaxed proximal point algorithm involving A-maximal relaxed accretive mappings with applications to Banach spaces, Mathematical and Computer Modelling 50 (2009), no. 7-8, 1026-1032.   DOI   ScienceOn
30 H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002), no. 1, 240-256.   DOI
31 R. U. Verma, Rockafellar’s theorem on linear convergence and A-proximal point algorithm, DCDIS: Dynamics of Continuous, Discrete and Impulsive Systems (in press).
32 U. Verma, Sensitivity analysis for generalized strongly monotone variational inclusions based on the $(A,{\eta})$-resolvent operator technique, Appl. Math. Lett. 19 (2006), no. 12, 1409-1413.   DOI   ScienceOn
33 R. U. Verma, A-monotonicity and its role in nonlinear variational inclusions, J. Optim. Theory Appl. 129 (2006), no. 3, 457-467.   DOI
34 R. U. Verma, Generalized maximal monotonicity models and their applications to nonlinear variational inclusion problems and beyond, Int. J. Optim. Theory Methods Appl. 1 (2009), no. 2, 182-206.
35 R. U. Verma, Rockafellar’s celebrated theorem based on A-maximal monotonicity design, Appl. Math. Lett. 21 (2008), no. 4, 355-360.   DOI   ScienceOn
36 R. U. Verma, On the generalized proximal point algorithm with applications to inclusion problems, J. Ind. Manag. Optim. 5 (2009), no. 2, 381-390.   DOI
37 R. U. Verma, General implicit variational inclusion problems involving A-maximal relaxed accretive mappings in Banach spaces, Archivum Mathematicum 45 (2009), no. 3, 171-177.
38 R. U. Verma, New proximal point algorithms based on RMM models for nonlinear variational inclusion problems, Adv. Nonlinear Var. Inequal. 12 (2009), no. 2, 91-102.