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GENERALIZED RELAXED PROXIMAL POINT
ALGORITHMS INVOLVING RELATIVE

MAXIMAL ACCRETIVE MODELS WITH
APPLICATIONS IN BANACH SPACES

Ram U. Verma

Abstract. General models for the relaxed proximal point algorithm us-
ing the notion of relative maximal accretiveness (RMA) are developed,
and then the convergence analysis for these models in the context of solv-
ing a general class of nonlinear inclusion problems differs significantly
than that of Rockafellar (1976), where the local Lipschitz continuity at
zero is adopted instead. Moreover, our approach not only generalizes con-
vergence results to real Banach space settings, but also provides a suitable
alternative to other problems arising from other related fields.

1. Introduction

Let X be a real Banach space with X∗, the dual space of X. Let ‖ · ‖ denote
the norm on X and X∗, and let 〈·, ·〉 denote the duality pairing between X and
X∗. We consider the inclusion problem: find a solution to

(1) 0 ∈ M(g(x)),

where M : X → 2X is a set-valued mapping on X, and g : X → X is a
single-valued mapping on X such that range(g) ∩ dom(M) 6= ∅.

Just recently, the author [15] based on the work of Eckstein and Bertsekas [2]
generalized the relaxed version of the proximal point algorithm and has shown
that the sequence converges linearly to a solution of (1). On applying a local
Lipschitz condition on the mapping M−1 and with a more strengthened error
tolerance, a convergence rate was obtained for the ordinary proximal point al-
gorithm by Rockafellar [10], while Eckstein and Bertsekas [2] introduced a more
relaxed version of the proximal point algorithm and applied the obtained re-
sults to the Douglas-Rachford splitting method for finding the zero of the sum
of two monotone operators. Motivated by these algorithmic developments, we
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generalize the relaxed proximal point algorithm based on the notion of rela-
tive maximal accretiveness [1] for solving general inclusion problems in Banach
space settings. This notion generalizes the general theory of maximal accretive
set-valued mappings in a Banach space setting. In order to achieve local con-
vergence, our approach differs significantly than that of Rockafellar [10], where
the local Lipschitz type condition on the mapping M−1 is imposed to derive
the convergence rate estimate.

In this communication, our aim is to introduce relative maximal accretive-
ness (RMA) models and then apply them to approximation solvability of varia-
tional inclusion problems of the form (1) in a real Banach space setting. Unlike
other existing notions, RMA models are applicable to other problems arising
from several other fields, such as equilibria problems in economics, applied
optimization and control theory, operations research, mathematical finance,
management and decision sciences, and mathematical programming. For more
details on the resolvent operator technique and its applications, and further
developments, we refer the reader [1-38].

2. Relative maximal accretiveness (RMA)

In this section we discuss some results based on the basic properties and
auxiliary results on relative maximal accretiveness. Let X be a real Banach
space and X∗ be the dual space of X. Let ‖ · ‖ denote the norm on X and X∗,
and let 〈·, ·〉 denote the duality pairing between X and X∗. Let M : X → 2X

be a multivalued mapping on X. We shall denote both the map M and its
graph by M, that is, the set {(x, y) : y ∈ M(x)}. This is equivalent to stating
that a mapping is any subset M of X × X, and M(x) = {y : (x, y) ∈ M}. If
M is single-valued, we shall still use M(x) to represent the unique y such that
(x, y) ∈ M rather than the singleton set {y}. This interpretation shall much
depend on the context. The domain of a map M is defined (as its projection
onto the first argument) by

D(M) = {x ∈ X : ∃ y ∈ X : (x, y) ∈ M} = {x ∈ X : M(x) 6= ∅}.
D(M) = X, shall denote the full domain of M, and the range of M is defined
by

R(M) = {y ∈ X : ∃x ∈ X : (x, y) ∈ M}.
The inverse M−1 of M is {(y, x) : (x, y) ∈ M}. For a real number ρ and a
mapping M, let ρM = {x, ρy) : (x, y) ∈ M}. If L and M are any mappings, we
define

L + M = {(x, y + z) : (x, y) ∈ L, (x, z) ∈ M}.
As we prepare for basic notions, we start with the generalized duality map-

ping Jq : X → 2X∗

Jq(x) = {f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖q, ‖f∗‖ = ‖x‖q−1} ∀x ∈ X,
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where q > 1. As a special case, J2 is the normalized duality mapping, and
Jq(x) = ‖x‖q−2J2(x) for x 6= 0. Next, as we head to uniformly smooth Banach
spaces, we define the modulus of smoothness ρX : [0,∞) → [0,∞) by

ρX(t) = sup
{

1
2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach space X is uniformly smooth if

lim
t→0

ρX(t)
t

= 0,

and X is q-uniformly smooth if there is a positive constant c such that

ρX(t) ≤ c tq, q > 1.

Note that Jq is single-valued if X is uniformly smooth. In this context, we
state the following lemma from Xu [34].

Lemma 2.1 ([34]). Let X be a uniformly smooth Banach space. Then X is
q-uniformly smooth if there exists a positive constant cq such that

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q,

where q > 1.

Lemma 2.2. For any two nonnegative real numbers a and b, we have

(a + b)q ≤ 2q(aq + bq) for q > 1.

Definition 2.1. Let M : X → 2X be a multivalued mapping on X and q > 1.
The map M is said to be:

(i) accretive if

〈u∗ − v∗, Jq(u− v)〉 ≥ 0 ∀ (u, u∗), (v, v∗) ∈ M.

(ii) (r)-strongly accretive if there exists a positive constant r such that

〈u∗ − v∗, Jq(u− v)〉 ≥ r‖u− v‖q ∀ (u, u∗), (v, v∗) ∈ M.

(iii) (m)-relaxed accretive if there exists a positive constant m such that

〈u∗ − v∗, Jq(u− v)〉 ≥ (−m)‖u− v‖q ∀ (u, u∗), (v, v∗) ∈ M.

(iv) (c)-cocoercively accretive if there exists a positive constant c such that

〈u∗ − v∗, Jq(u− v)〉 ≥ c‖u∗ − v∗‖q ∀ (u, u∗), (v, v∗) ∈ M.

Definition 2.2. Let A,B : X → X be single-valued mappings on X and q > 1.
The map A is said to be:

(i) (γ)-cocoercively accretive with respect to B if there exists a positive
constant γ such that

〈B(u)−B(v), Jq(A(u)−A(v))〉 ≥ γ‖A(u)−A(v)‖q ∀u, v ∈ X.

(ii) cocoercively accretive with respect to B if

〈B(u)−B(v), Jq(A(u)−A(v))〉 ≥ ‖A(u)−A(v)‖q ∀u, v ∈ X.
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(iii) (γ)-cocoercively accretive if

〈u− v, Jq(A(u)−A(v))〉 ≥ γ‖A(u)−A(v)‖q ∀u, v ∈ X.

(iv) cocoercively accretive if

〈u− v, Jq(A(u)−A(v))〉 ≥ ‖A(u)−A(v)‖q ∀u, v ∈ X.

Definition 2.3. Let A : X → X be a single-valued mapping. The map
M : X → 2X is said to be relative maximal accretive if

(i) M is relative accretive (with respect to A), that is,

〈u∗ − v∗, Jq(A(u)−A(v))〉 ≥ 0 ∀ (u, u∗), (v, v∗) ∈ M.

(ii) R(I + ρM) = X for ρ > 0.

Example 2.1. Let X = (−∞,+∞), M(x) = −x and A(x) = − 1
2x. Then M

is relative monotone (with respect to A) but not monotone.

Example 2.2. Let X be a real Hilbert space, and let M : X → 2X be a
maximal monotone mapping on X. Let Mρ = ρ−1(I −RM

ρ ) denote the Yosida
approximation of M , and RM

ρ = (I+ρM)−1 denote the corresponding resolvent
of M. Then for all u, v ∈ X,

Mρ(u) ∈ M(RM
ρ (u)) and Mρ(v) ∈ M(RM

ρ (v)).

Since M is maximal monotone, we have

〈Mρ(u)−Mρ(v), RM
ρ (u)−RM

ρ (v)〉 ≥ 0 for ρ > 0.

Thus, Mρ is relative monotone (with respect to RM
ρ ).

Definition 2.4. Let A : X → X be an (r)-strongly accretive mapping and
let M : X → 2X be a relative maximal accretive mapping. Then the relative
resolvent operator JM

ρ,A : X → X is defined by

JM
ρ,A(u) = (I + ρM)−1(u) for ρ > 0.

Proposition 2.1. Let A : X → X be an (r)-strongly monotone mapping and
let M : X → 2X be a relative maximal monotone mapping. Then the operator
(I + ρM)−1 is single-valued.

3. Generalized relaxed proximal point algorithm

This section deals with an introduction of a generalized version of the relaxed
proximal point algorithm and its applications to approximation solvability of
the inclusion problem (1) based on the relative maximal accretiveness.

Lemma 3.1. Let X be a real Banach space, let A : X → X be (r)-strongly
accretive, and let M : X → 2X be relative maximal accretive. In addition, if
we suppose that

〈JM
ρ,A(u)−JM

ρ,A(v), Jq(A(JM
ρ,A(u))−A(JM

ρ,A(v)))〉 ≥ ‖A(JM
ρ,A(u))−A(JM

ρ,A(v))‖q,
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then the corresponding resolvent operator associated with M and defined by

JM
ρ,A(u) = (I + ρM)−1(u) ∀u ∈ X,

is ( 1
r )-Lipschitz continuous, where q > 1.

Proof. The proof follows from the definition of the resolvent operator

JM
ρ,A(u) = (I + ρM)−1.

For any elements u, v ∈ X, we have

ρ−1[u− JM
ρ,A(u)] ∈ M(JM

ρ,A(u))

and
ρ−1[v − JM

ρ,A(v)] ∈ M(JM
ρ,A(v)).

Since M is relative maximal accretive (with respect to A), we have

〈u− v − (JM
ρ,A(u)− JM

ρ,A(v)), Jq(A(JM
ρ,A(u))−A(JM

ρ,A(v)))〉 ≥ 0.

It follows that

〈u− v, Jq(A(JM
ρ,A(u))−A(JM

ρ,A(v)))〉
≥ 〈JM

ρ,A(u)− JM
ρ,A(v), Jq(A(JM

ρ,A(u))−A(JM
ρ,A(v)))〉

≥ ‖A(JM
ρ,A(u))−A(JM

ρ,A(v))‖q. ¤

Lemma 3.2. Let X be a real Banach space, let A : X → X be (r)-strongly
accretive, and let M : X → 2X be relative maximal accretive. In addition,
suppose that

〈JM
ρ,A(u)− JM

ρ,A(v), Jq(A(JM
ρ,A(u))−A(JM

ρ,A(v)))〉
≥ γ‖A(JM

ρ,A(u))−A(JM
ρ,A(v))‖q for γ > 0,

where q > 1. Then the generalized resolvent operator associated with M and
defined by

JM
ρ,A(u) = (I + ρM)−1(u) ∀u ∈ X,

satisfies

‖JM
ρ,A(u)− JM

ρ,A(v)‖ ≤ 1
γr
‖u− v‖,

where γ > 0.

Proof. The proofs is quite similar to that of Lemma 3.1. Since A is (r)-strongly
accretive (and hence ‖A(u)−A(v)‖ ≥ r‖u− v‖), we have

‖u− v‖ ≥ γ‖A(JM
ρ,A(u))−A(JM

ρ,A(v))‖,
or

‖u− v‖ ≥ γr‖JM
ρ,A(u)− JM

ρ,A(v)‖. ¤
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Remark 3.1. Note that this is a new class of mappings that satisfies

〈JM
ρ,A(u)− JM

ρ,A(v), Jq(A(JM
ρ,A(u))−A(JM

ρ,A(v)))〉
≥ γ‖A(JM

ρ,A(u))−A(JM
ρ,A(v))‖q for γ > 0,

in a Banach space setting, but it coincides with the notions of the relative
cocoercivity or just cocoercivity in a Hilbert space setting, for example, in
following Lemmas 3.3 and 3.4.

Lemma 3.3. Let X be a real Hilbert space, let A : X → X be (r)-strongly
monotone and (γ)-cocoercive, that is,

〈A(u)−A(v), u− v〉 ≥ γ‖A(u)−A(v)‖2 for u, v ∈ X,

and let M : X → 2X be relative maximal monotone. Then the generalized
resolvent operator associated with M and defined by

JM
ρ,A(u) = (I + ρM)−1(u) ∀u ∈ X,

satisfies

‖JM
ρ,A(u)− JM

ρ,A(v)‖ ≤ 1
γr
‖u− v‖,

where γ > 0.

Proof. The proof follows from the definition of the resolvent operator

JM
ρ,A(u) = (I + ρM)−1.

For any elements u, v ∈ X, we have

ρ−1[u− JM
ρ,A(u)] ∈ M(JM

ρ,A(u))

and
ρ−1[v − JM

ρ,A(v)] ∈ M(JM
ρ,A(v)).

Since M is relative maximal monotone (with respect to A), we have

〈u− v − (JM
ρ,A(u)− JM

ρ,A(v)), A(JM
ρ,A(u))−A(JM

ρ,A(v))〉 ≥ 0.

It follows that

〈u− v,A(JM
ρ,A(u))−A(JM

ρ,A(v))〉
≥ 〈JM

ρ,A(u)− JM
ρ,A(v), A(JM

ρ,A(u))−A(JM
ρ,A(v))〉

≥ γ‖A(JM
ρ,A(u))−A(JM

ρ,A(v))‖2. ¤

Lemma 3.4. Let X be a real Hilbert space, and let M : X → 2X be maximal
monotone. Then the resolvent operator associated with M and defined by

RM
ρ (u) = (I + ρM)−1(u) ∀u ∈ X,

satisfies
‖RM

ρ (u)−RM
ρ (v)‖ ≤ ‖u− v‖,

where ρ > 0.
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Now we focus our attention to establish the main results on the relative
maximal accretivity (RMA) relating to the approximation solvability of (1).

Theorem 3.1. Let X be a real Banach space, let A : X → X be (r)-strongly
accretive, and let M : X → 2X be relative maximal accretive. Let g : X → X
be a map on X. Then the following statements are equivalent:

(i) An element u ∈ X is a solution to (1).
(ii) For an u ∈ X, we have

g(u) = JM
ρ,A(g(u)),

where
JM

ρ,A(u) = (I + ρM)−1(u) for ρ > 0.

In the following theorem, we apply the generalized relaxed proximal point
algorithm to approximate the solution of (1), and as a result, we achieve linear
convergence.

Theorem 3.2. Let X be a real q-uniformly smooth Banach space, let A : X →
X be (r)-strongly accretive, let g : X → X be (c)-strongly accretive, and let
M : X → 2X be relative maximal accretive (RMA). Furthermore, suppose that

〈JM
ρ,A(g(u))− JM

ρ,A(g(v)), Jq(A(JM
ρ,A(g(u)))−A(JM

ρ,A(g(v))))〉
≥ γ‖A(JM

ρ,A(g(u)))−A(JM
ρ,A(g(v)))‖q for γ > 0,

where q > 1.
For an arbitrarily chosen initial point x0, suppose that the sequence {g(xk)}

is generated by the generalized proximal point algorithm

(2) g(xk+1) = (1− αk)g(xk) + αkyk ∀k ≥ 0,

and yk satisfies
‖yk − JM

ρ,A(g(xk))‖ ≤ δk‖yk − g(xk)‖,
where

JM
ρ,A = (I + ρM)−1

and
{δk}, {αk} ⊆ [0,∞)

are scalar sequences. Then the sequence {xk} converges linearly to a solution
of (1) with the convergence rate

lim sup
θk + δk

1− δk
= lim sup θk = [1−4(1− 1

γr
)] < 1,

where γr > 1,
∑∞

k=0 δk < ∞, δk → 0, αk ≤ 1, 4 = inf αk > 0, and α =
lim supk→∞ αk.
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Proof. Suppose that x∗ is a zero of M. From Theorem 3.1, it follows that any
solution to (1) is a fixed point of JM

ρ,A. Since A is (r)-strongly accretive (and
hence ‖A(u) − A(v)‖ ≥ r‖u − v‖) and using Lemma 3.2, we have a crucial
inequality

(3) ‖JM
ρ,A(g(xk))− JM

ρ,A(g(x∗))‖ ≤ 1
γr
‖g(xk)− g(x∗)‖.

Next, for all k ≥ 0, we express

g(zk+1) = (1− αk)g(xk) + αkJM
ρ,A(g(xk)).

Then we find the estimate using (3) that

‖g(zk+1)− g(x∗)‖ = ‖(1− αk)g(xk) + αkJM
ρ,A(g(xk))− g(x∗)‖

= ‖(1− αk)(g(xk)− g(x∗)) + αk(JM
ρ,A(g(xk))− JM

ρ,A(g(x∗)))‖
≤ (1− αk)‖g(xk)− g(x∗)‖+ αk‖JM

ρ,A(g(xk))− JM
ρ,A(g(x∗))‖

≤ [(1− αk) +
αk

γr
]‖g(xk)− g(x∗)‖

= [1− αk(1− 1
γr

)]‖g(xk)− g(x∗)‖

≤ [1−4(1− 1
γr

)]‖g(xk)− g(x∗)‖

= θk‖g(xk)− g(x∗)‖,
where θk = [1−4(1− 1

γr )] and γr > 1. Thus, we have

(4) ‖g(zk+1)− g(x∗)‖ ≤ θk‖g(xk)− g(x∗)‖.
Since g(xk+1) = (1− αk)g(xk) + αkyk, we have

g(xk+1)− g(xk) = αk(yk − g(xk)).

On the other hand, we have

‖g(xk+1)− g(zk+1)‖
= ‖(1− αk)g(xk) + αkyk − [(1− αk)g(xk) + αkJM

ρ,A(g(xk))]‖
= ‖αk(yk − JM

ρ,A(g(xk)))‖
≤ αkδk‖yk − g(xk)‖.

Finally, we estimate using the above arguments that

‖g(xk+1)− g(x∗)‖
≤ ‖g(zk+1)− g(x∗)‖+ ‖g(xk+1)− g(zk+1)‖
≤ ‖g(zk+1)− g(x∗)‖+ αkδk‖yk − g(xk)‖
≤ ‖g(zk+1)− g(x∗)‖+ δk‖g(xk+1)− g(xk)‖
≤ ‖g(zk+1)− g(x∗)‖+ δk‖g(xk+1)− g(x∗)‖+ δk‖g(xk)− g(x∗)‖.(5)
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Thus, we conclude that

(1− δk)‖g(xk+1)− g(x∗)‖
≤ ‖g(zk+1)− g(x∗)‖+ δk‖g(xk)− g(x∗)‖
≤ θk‖g(xk)− g(x∗)‖+ δk‖g(xk)− g(x∗)‖
= (θk + δk)‖g(xk)− g(x∗)‖,(6)

so we have

(7) ‖g(xk+1)− g(x∗)‖ ≤ θk + δk

1− δk
‖g(xk)− g(x∗)‖.

Hence, {g(xk)} converges to g(x∗).
Finally, since g is (c)-strongly accretive (and hence, ‖g(x)−g(y)‖ ≥ c‖x−y‖),

we conclude that the sequence {xk} converges to x∗. ¤

For γ=1 in Theorem 3.2, we have:

Theorem 3.3. Let X be a real q-uniformly smooth Banach space, let A :
X → X be (r)-strongly accretive, and let M : X → 2X be RMA. Furthermore,
suppose

〈JM
ρ,A(u)− JM

ρ,A(v), Jq(A(JM
ρ,A(u))−A(JM

ρ,A(v)))〉
≥ ‖A(JM

ρ,A(u))−A(JM
ρ,A(v))‖q for γ > 0,

where q > 1.
For an arbitrarily chosen initial point x0, suppose that the sequence {xk} is

generated by the generalized proximal point algorithm

(8) g(xk+1) = (1− αk)g(xk) + αkyk ∀k ≥ 0,

and yk satisfies
‖yk − JM

ρ,A(g(xk))‖ ≤ δk‖yk − g(xk)‖,
where

JM
ρk

= (I + ρM)−1

and
{δk}, {αk} ⊆ [0,∞)

are scalar sequences. Then the sequence {xk} converges linearly to a solution
of (1) with the convergence rate

θk = [1−4(1− 1
r
)] < 1,

where r > 1,
∑∞

k=0 δk < ∞, δk → 0, 4 = inf αk > 0, and α = lim supk→∞ αk.

When g = I, Theorem 3.2 reduces to the approximation solvability of the
inclusion problem: determine a solution to

(9) 0 ∈ M(x).
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Theorem 3.4. Let X be a real q-uniformly smooth Banach space, let A : X →
X be (r)-strongly accretive, and let M : X → 2X be relative maximal accretive
(RMA). Furthermore, suppose that

〈JM
ρ,A(u)− JM

ρ,A(v), Jq(A(JM
ρ,A(u))−A(JM

ρ,A(v)))〉
≥ γ‖A(JM

ρ,A(u))−A(JM
ρ,A(v))‖q for γ > 0,

where q > 1.
For an arbitrarily chosen initial point x0, suppose that the sequence {xk} is

generated by the generalized proximal point algorithm

(10) xk+1 = (1− αk)xk + αkyk ∀k ≥ 0,

and yk satisfies
‖yk − JM

ρ,A(xk)‖ ≤ δk‖yk − xk‖,
where

JM
ρ,A = (I + ρM)−1

and
{δk}, {αk} ⊆ [0,∞)

are scalar sequences. Then the sequence {xk} converges linearly to a solution
of (9) with the convergence rate

θk = [1−4(1− 1
γr

)] < 1,

where γr > 1,
∑∞

k=0 δk < ∞, δk → 0, αk ≤ 1, 4 = inf αk > 0, and α =
lim supk→∞ αk.

Proof. Suppose that x∗ is a zero of M. From Theorem 3.1, it follows that any
solution to (9) is a fixed point of JM

ρ,A. Since A is (r)-strongly accretive (and
hence ‖A(u)−A(v)‖ ≥ r‖u−v‖) and using Lemma 3.2, we have the inequality

(11) ‖JM
ρ,A(xk)− JM

ρ,A(x∗)‖ ≤ 1
γr
‖xk − x∗‖.

Next, for all k ≥ 0, we express

zk+1 = (1− αk)xk + αkJM
ρ,A(xk).

Then we find the estimate using (11) that

‖zk+1 − x∗‖ = ‖(1− αk)xk + αkJM
ρ,A(xk)− x∗‖

= ‖(1− αk)(xk − x∗) + αk(JM
ρ,A(xk)− JM

ρ,A(x∗))‖
≤ (1− αk)‖xk − x∗‖+ αk‖JM

ρ,A(xk)− JM
ρ,A(x∗)‖

≤ [(1− αk) +
αk

γr
]‖xk − x∗‖

= [1− αk(1− 1
γr

)]‖xk − x∗‖
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≤ [1−4(1− 1
γr

)]‖xk − x∗‖

= θk‖xk − x∗‖,
where θk = [1−4(1− 1

γr )] and γr > 1. Thus, we have

(12) ‖zk+1 − x∗‖ ≤ θk‖xk − x∗‖.
Since xk+1 = (1− αk)xk + αkyk, we have xk+1 − xk = αk(yk − xk).

On the other hand, we have

‖xk+1 − zk+1‖
= ‖(1− αk)xk + αkyk − [(1− αk)xk + αkJM

ρ,A(xk)]‖
= ‖αk(yk − JM

ρ,A(xk))‖
≤ αkδk‖yk − xk‖.

It follows that

‖xk+1 − x∗‖
≤ ‖zk+1 − x∗‖+ ‖xk+1 − zk+1‖
≤ ‖zk+1 − x∗‖+ αkδk‖yk − xk‖
≤ ‖zk+1 − x∗‖+ δk‖xk+1 − xk‖
≤ ‖zk+1 − x∗‖+ δk‖xk+1 − x∗‖+ δk‖xk − x∗‖.(13)

Thus, we conclude that

(1− δk)‖xk+1 − x∗‖
≤ ‖zk+1 − x∗‖+ δk‖xk − x∗‖
≤ θk‖xk − x∗‖+ δk‖xk − x∗‖
= (θk + δk)‖xk − x∗‖,(14)

so we have

(15) ‖xk+1 − x∗‖ ≤ θk + δk

1− δk
‖xk − x∗‖.

Hence, {xk} converges to x∗. ¤

4. An application

Let X be a real Banach space and let f : X → R be a locally Lipschitz
functional on X. We consider the inclusion problem: determine a solution to

(16) 0 ∈ ∂f(x),

where ∂f : X → 2X is a set-valued mapping on X. Then it turns out that I+∂f
is relative accretive if A : X → X is (r)-strongly accretive, and ∂f : X → 2X

is relative accretive. This is equivalent to stating that ∂f is relative maximal
accretive. Now all the conditions for Theorem 3.2 are satisfied, and one can
apply Theorem 3.2 to the solvability of (16).
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