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ON A SEQUENCE OF KANTOROVICH TYPE OPERATORS

VIA RIEMANN TYPE q-INTEGRAL

Gülen Başcanbaz-Tunca, Ayşegül Erençin, and Fatma Taşdelen

Abstract. In this work, we construct Kantorovich type generalization
of a class of linear positive operators via Riemann type q-integral. We
obtain estimations for the rate of convergence by means of modulus of con-
tinuity and the elements of Lipschitz class and also investigate weighted
approximation properties.

1. Introduction

The classical Meyer-König and Zeller (MKZ) [24] operators are defined by

Mn(f ;x) =











(1− x)n+1

∞
∑

k=0

f

(

k

n+ k + 1

)(

n+ k

k

)

xk , x ∈ [0, 1)

f(x) , x = 1.

In order to give the monotonicity properties, Cheney and Sharma [8] introduced
the slight modification of the MKZ operators

M∗

n(f ;x) =











(1− x)n+1

∞
∑

k=0

f

(

k

n+ k

)(

n+ k

k

)

xk , x ∈ [0, 1)

f(x) , x = 1.

In many papers (see, for instance [1, 4, 7, 11, 13, 16, 21]) the authors studied
these operators and some new generalizations of them.

Rempulska and Skorupka [27] extended the definition of MKZ operators on
an unbounded set as follows:
(1.1)

Mn(f, bn;x) =











(

1− x
bn

)n+1 ∞
∑

k=0

f

(

k

n+ k
bn

)(

n+ k

k

)(

x

bn

)k

, x ∈ [0, bn)

f(x) , x ≥ bn
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where bn ≥ 1 is an increasing sequence of real numbers having the properties

lim
n→∞

bn = ∞, lim
n→∞

bn

n
= 0.

By introducing a generalization of these operators for differentiable functions
the authors investigated some approximation properties in polynomial weighted
spaces.

In order to give further detail, let us recall some basic concepts and defini-
tions in q-calculus. For any fixed real number q > 0 and nonnegative integer
r, the q-integer [r]q, the q-factorial [r]q ! and q-binomial coefficients are defined
by (see [5])

[r]q =







1− qr

1− q
, if q 6= 1

r, if q = 1,

[r]q ! =

{

[1]q[2]q · · · [r]q, if r ≥ 1

1, if r = 0,

and
[

n

r

]

q

=
[n]q!

[r]q![n− r]q!
, n ≥ r ≥ 0,

respectively.
Now suppose that 0 < a < b, 0 < q < 1 and f is a real-valued function. The

q-Jackson integral of f over the interval [0, b] and a general interval [a, b] are
defined by (see [19])

∫ b

0

f(x)dqx = (1− q)b

∞
∑

j=0

f
(

bqj
)

qj

and
∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx,

respectively, provided the series converge.
As mentioned in [9], because of the q-Jackson integral of f over an interval

[a, b] includes two infinite sums, some problems are encountered in deriving the
q-analogues of some well-known integral inequalities which are used to compute
order of approximation of linear positive operators containing q-Jackson inte-
gral. To solve this problem Marinković et al. (see [23]) defined the Riemann
type q-integral as

Rq(f ; a, b) =

∫ b

a

f(x)dRq x = (1 − q)(b− a)

∞
∑

j=0

f
(

a+ (b− a)qj
)

qj

which contains only points within the interval of integral.
Dalmanoǧlu and Doǧru [9] showed that Riemann type q-integral is a linear
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positive operator and satisfies the Hölder inequality

(1.2) Rq(|fg|; a, b) ≤ (Rq(|f |m; a, b))
1
m (Rq(|g|n; a, b))

1
n

with 1
m

+ 1
n
= 1.

The study of approximation by linear positive operators based on q-integers
was firstly carried out in 1987 by Lupaş [22] and, ten years later, by Phillips [26]
(see, e.g., [25]). Thereafter many authors studied q-generalization of classical
linear positive operators (see, for instance [2, 3, 9, 10, 12, 14, 17, 18, 20, 28, 30]).
We now mention some works related to generalization of MKZ operators based
on q-integers. In 2000, Trif [30] introduced q-MKZ operators and investigated
the approximation and monotonicity properties of these operators. But, it
was impossible to give an explicit expression for the second moment of q-MKZ
operators, Doǧru and Duman [12] constructed another kind q-MKZ operators
and investigated their statistical approximation properties. Then, Heping [18]
derived an explicit formula in terms of q-hypergeometric series for the second
moment of the q-MKZ operators defined by Trif, and discussed further approxi-
mating properties of these operators. Recently, in [3] Özarslan and Duman pre-
sented a new generalization of MKZ operators based on q-integers and obtained
a Korovkin type approximation theorem for them. Very recently, Sharma [28]
introduced q-MKZ Durrmeyer operators with the help of the q-Jackson integral
and obtained their rate of convergence and weighted statistical approximation
properties. Gupta and Sharma [17] constructed the q-MKZ Kantorovich op-
erators by q-Jackson integral and investigated statistical approximation prop-
erties. In [10], the authors defined the Kantorovich type q-MKZ operators by
means of Riemann type q-integral and studied the statistical Korovkin type
approximation properties of such operators.

In [14], for q ∈ (0, 1) and every n ∈ N we proposed the following q-generali-
zation of the operators Mn(f, bn;x) given by (1.1),

(1.3) L∗

n,q(f ;x) = Pn,q(x)

∞
∑

k=0

f

(

[k]q
[n+ k]q

bn

)[

n+ k

k

]

q

(

x

bn

)k

, x ∈ [0, bn)

where

(1.4) Pn,q(x) =

n
∏

s=0

(

1− qs
x

bn

)

and bn ≥ 1 is an increasing sequence of positive numbers such that

lim
n→∞

bn = ∞.

It is clear that from the first condition, the interval [0, bn) expands infinity as
n → ∞. So, we investigated some approximation properties of these operators
in weighted spaces of continuous functions on positive semi-axis with the help of
weighted Korovkin type theorem proved by Gadjiev in [15]. We also introduced
a Stancu type remainder and an application to differential equations related to
q-derivatives.
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2. Construction of operators

Observe that throughout this work we shall assume q ∈ (0, 1).
In this paper, for every n ∈ N we consider the Kantorovich type generaliza-

tion by means of Riemann type q-integral of the operators defined by (1.3) as
follows:
(2.1)

Ln,q(f ;x)

= Pn,q(x)

∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k

Cn,k(q, bn)

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

f (t) dRq t, x ∈ [0, bn)

with

Cn,k(q, bn) =
[n+ k]q[n+ k + 1]q

qk[n]qbn
.

In (2.1), bn ≥ 1 is an increasing sequence of positive real numbers such
that limn→∞ bn = ∞, Pn,q(x) defined as in (1.4) and f is a Riemann type

q-integrable function over the interval
[

[k]q
[n+k]q

bn,
[k+1]q

[n+k+1]q
bn

]

.

By using the definition of Riemann type q-integral, it is easily verified that

(2.2)

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

dRq t =
1

Cn,k(q, bn)
,

(2.3)

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

tdRq t =
1

Cn,k(q, bn)

[k]q
[n+ k]q

bn +
1

[2]q

1

C2
n,k(q, bn)

,

(2.4)

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

t2dRq t =
1

Cn,k(q, bn)

[k]2q
[n+ k]2q

b2n +
2

[2]q

1

C2
n,k(q, bn)

[k]q
[n+ k]q

bn

+
1

[3]q

1

C3
n,k(q, bn)

.

In [14], we proved that

L∗

n,q(e0;x) = 1,

L∗

n,q(e1;x) = x,

x2 ≤ L∗

n,q(e2;x) ≤ qx2 +
bn

[n]q
x,

where eυ(t) = tυ, υ = 0, 1, 2.
Now we can state the following lemma.

Lemma 1. The operator Ln,q defined by (2.1) satisfies

(2.5) Ln,q(e0;x) = 1,
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(2.6) |Ln,q(e1;x)− x| ≤ 1

[2]q

bn

[n+ 1]q
,

(2.7)
∣

∣Ln,q(e2;x)− x2
∣

∣ ≤ (1− q)x2 +

(

bn

[n]q
+

2

[2]q

bn

[n+ 1]q

)

x+
1

[3]q

b2n
[n+ 1]2q

for each x ∈ [0, bn).

Proof. By means of (2.2), we immediately see that

Ln,q(e0;x) = Pn,q(x)

∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k

= L∗

n,q(e0;x)

= 1.

Taking into consideration (2.3), one has

Ln,q(e1;x)− x

= Pn,q(x)
∞
∑

k=0

[k]q
[n+ k]q

bn

[

n+ k

k

]

q

(

x

bn

)k

− x

+
bn

[2]q
Pn,q(x)

∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k
qk[n]q

[n+ k]q[n+ k + 1]q

= L∗

n,q(e1;x)− x+
bn

[2]q
Pn,q(x)

∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k
qk[n]q

[n+ k]q[n+ k + 1]q

which gives

|Ln,q(e1;x)− x|

≤
∣

∣L∗

n,q(e1;x)− x
∣

∣+
bn

[2]q
Pn,q(x)

∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k
qk[n]q

[n+ k]q[n+ k + 1]q
.

Since qk ≤ 1,
[n]q

[n+k]q [n+k+1]q
≤ 1

[n+1]q
for 0 < q < 1, k = 0, 1, . . ., n ∈ N, we

may write

|Ln,q(e1;x)− x| ≤
∣

∣L∗

n,q(e1;x)− x
∣

∣ +
1

[2]q

bn

[n+ 1]q
L∗

n,q(e0;x).

Use of the facts L∗

n,q(e0;x) = 1 and L∗

n,q(e1;x)− x = 0 yields

|Ln,q(e1;x)− x| ≤ 1

[2]q

bn

[n+ 1]q
.

Now we prove (2.7). By means of (2.4), we have

Ln,q(e2;x)− x2

= Pn,q(x)

∞
∑

k=0

[k]2q
[n+ k]2q

b2n

[

n+ k

k

]

q

(

x

bn

)k

− x2
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+
2

[2]q
bnPn,q(x)

∞
∑

k=0

[k]q
[n+ k]q

bn

[

n+ k

k

]

q

(

x

bn

)k
qk[n]q

[n+ k]q[n+ k + 1]q

+
b2n
[3]q

Pn,q(x)

∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k (
qk[n]q

[n+ k]q[n+ k + 1]q

)2

= L∗

n,q(e2;x)− x2

+
2

[2]q
bnPn,q(x)

∞
∑

k=0

[k]q
[n+ k]q

bn

[

n+ k

k

]

q

(

x

bn

)k
qk[n]q

[n+ k]q[n+ k + 1]q

+
b2n
[3]q

Pn,q(x)
∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k (
qk[n]q

[n+ k]q[n+ k + 1]q

)2

and so
∣

∣Ln,q(e2;x)− x2
∣

∣

≤
∣

∣L∗

n,q(e2;x)− x2
∣

∣

+
2

[2]q
bnPn,q(x)

∞
∑

k=0

[k]q
[n+ k]q

bn

[

n+ k

k

]

q

(

x

bn

)k
qk[n]q

[n+ k]q[n+ k + 1]q

+
b2n
[3]q

Pn,q(x)

∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k (
qk[n]q

[n+ k]q[n+ k + 1]q

)2

.

Again using the inequalities qk ≤ 1,
[n]q

[n+k]q [n+k+1]q
≤ 1

[n+1]q
for 0 < q < 1,

k = 0, 1, . . ., n ∈ N, we get
∣

∣Ln,q(e2;x)− x2
∣

∣

≤
∣

∣L∗

n,q(e2;x)− x2
∣

∣+
2

[2]q

bn

[n+ 1]q
L∗

n,q(e1;x) +
1

[3]q

b2n
[n+ 1]2q

L∗

n,q(e0;x).

Finally, by means of the facts L∗

n,q(e0;x) = 1, L∗

n,q(e1;x) = x and
∣

∣L∗

n,q(e2;x)

−x2
∣

∣ ≤ (1− q)x2 + bn
[n]q

x, we arrive at the desired result. �

Lemma 2. The operator Ln,q defined by (2.1) satisfies

(2.8) Ln,q((e1 − x)2;x) ≤ (1− q)x2 +

(

bn

[n]q
+

4

[2]q

bn

[n+ 1]q

)

x+
1

[3]q

b2n
[n+ 1]2q

for each x ∈ [0, bn).

Proof. From the linearity and positivity of Ln,q, one has

Ln,q((e1 − x)2;x) =
(

Ln,q(e2;x)− x2
)

− 2x (Ln,q(e1;x)− x)
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and

(2.9) Ln,q((e1 − x)2;x) ≤
∣

∣Ln,q(e2;x)− x2
∣

∣+ 2x |Ln,q(e1;x)− x| .
Hence using the inequalities (2.6) and (2.7) into (2.9), we obtain the desired
result. �

From the inequalities (2.6) and (2.7), it is seen that for a fixed value q with
0 < q < 1 the sequence of the operator Ln,q does not satisfy the conditions of
Korovkin’s theorem. In order to guarantee its convergence we shall replace q by
a sequence qn such that limn→∞ qn = 1 and limn→∞

bn
[n]qn

= 0. For instance,

if we choose qn = e−
1
n and bn =

√
n, these conditions are satisfied. Hence,

noting that 1
[2]qn

= 1
1+qn

, 1
[3]qn

= 1
1+qn+q2n

and 0 < bn
[n+1]qn

< bn
[n]qn

we can state

the following theorem.

Theorem 1. Let qn be a sequence such that limn→∞ qn = 1 for 0 < qn < 1.
If limn→∞

bn
[n]qn

= 0, then for f ∈ C[0,∞), the sequence of the linear positive

operator Ln,qn defined by (2.1) converges uniformly to f(x) on each closed finite

interval [0, a] where a is a fixed positive real number.

3. Rate of convergence

In this part, we compute the rate of convergence by means of the modulus
of continuity and the elements of Lipschitz class.

By CB[0,∞), we denote the class of real-valued functions f which are
bounded and continuous on [0,∞).

Theorem 2. Let qn be a sequence such that limn→∞ qn = 1 for 0 < qn < 1. If
limn→∞

bn
[n]qn

= 0, then for f ∈ CB[0,∞) and x ∈ [0, bn) we have

|Ln,qn(f ;x)− f(x)| ≤ 2ω (f, δn,qn(x)) ,

where ω(f, δ) is the usual modulus of continuity of f and

δn,qn(x) =

√

(1− qn)x2 +

(

bn

[n]qn
+

4

[2]qn

bn

[n+ 1]qn

)

x+
1

[3]qn

b2n
[n+ 1]2qn

.

Proof. By the definition of Riemann type q-integral, it is easily seen that

(3.1) |Rq(f ; a, b)| ≤ Rq(|f |; a, b)
and

(3.2) Rq(f ; a, b) ≤ Rq(g; a, b) for f ≤ g.

Then using (3.1), (3.2) and the following inequality (see [6])

|f(t)− f(x)| ≤
(

1 +
(t− x)2

δ2

)

ω(f, δ), δ > 0

respectively, we may write

|Ln,q(f ;x)− f(x)|
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= Pn,q(x)
∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k

Cn,k(q, bn)

∣

∣

∣

∣

∣

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

(f (t)− f(x)) dRq t

∣

∣

∣

∣

∣

≤ Pn,q(x)

∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k

Cn,k(q, bn)

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

|f(t)− f(x)| dRq t

≤ Pn,q(x)

∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k

Cn,k(q, bn)

×
∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

(

1 +
(t− x)2

δ2

)

ω(f, δ)dRq t

=

(

Ln,q(e0;x) +
1

δ2
Ln,q((e1 − x)2;x)

)

ω(f, δ).

Now with the help of (2.5) and (2.8), one gets

|Ln,q(f ;x)− f(x)|

≤
{

1 +
1

δ2

(

(1− q)x2 +

(

bn

[n]q
+

4

[2]q

bn

[n+ 1]q

)

x+
1

[3]q

b2n
[n+ 1]2q

)}

ω(f, δ).

Consequently, choosing

δ = δn,q(x) =

√

(1− q)x2 +

(

bn

[n]q
+

4

[2]q

bn

[n+ 1]q

)

x+
1

[3]q

b2n
[n+ 1]2q

and then replacing q by qn we complete the proof. �

Note that for each x ∈ [0, bn), it is not guarantee that δn,qn(x) → 0 as

n → ∞. Really, for x = bn
4 we have

δn,qn

(

bn

4

)

=

√

(1 − qn)
b2n
16

+
1

4

b2n
[n]qn

+
1

[2]qn

b2n
[n+ 1]qn

+
1

[3]q

b2n
[n+ 1]2q

which may not converge to 0 as n → ∞. A similar situation occurs in q-
Chlodovsky operators (see [20]). Therefore we introduce the following rate of
convergence theorems for the operator Ln,qn on any closed finite interval [0, a].

Theorem 3. Let qn be a sequence such that limn→∞ qn = 1 for 0 < qn < 1. If
limn→∞

bn
[n]qn

= 0, then for f ∈ C[0,∞) and x ∈ [0, a] we have

|Ln,qn(f ;x)− f(x)| ≤ 2ω (f, δn,qn) ,

where ω(f, δ) is the usual modulus of continuity of f on [0, a] and

δn,qn =

√

(1− qn)a2 +

(

bn

[n]qn
+

4

[2]qn

bn

[n+ 1]qn

)

a+
1

[3]qn

b2n
[n+ 1]2qn

.

It can be proved in a similar way that of the proof of Theorem 2.
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Theorem 4. Let qn be a sequence such that limn→∞ qn = 1 for 0 < qn < 1. If
limn→∞

bn
[n]qn

= 0, then for f ∈ C[0,∞) which has continuous first derivative

on [0, a] and x ∈ [0, a], we have

|Ln,qn(f ;x)− f(x)| ≤ ||f ′||C[0,a]
1

[2]qn

bn

[n+ 1]qn
+ 2δn,qnω(f

′, δn,qn),

where ω(f ′, δ) is the usual modulus of continuity of f ′ on [0, a], || · ||C[0,a] is the

standard supremum norm on the space C[0, a] and δn,qn defined as in Theorem

3.

Proof. Using the fact Ln,qn(e0;x) = 1, from the well-known result of Shisha
and Mond [29], it follows that

|Ln,qn(f ;x)− f(x)|
≤ |f(x)||Ln,qn(e0;x)− 1|+ |f ′(x)||Ln,qn(e1;x)− x|

+
√

Ln,qn((e1 − x)2;x)

{

√

Ln,qn(e0;x) +
1

δ

√

Ln,qn((e1 − x)2;x)

}

ω(f ′, δ)

≤ ||f ′||C[0,a]|Ln,qn(e1;x)− x|

+
√

Ln,qn((e1 − x)2;x)

{

1 +
1

δ

√

Ln,qn((e1 − x)2;x)

}

ω(f ′, δ).

By means of (2.6) and (2.8), this shows that for x ∈ [0, a]

|Ln,qn(f ;x)− f(x)| ≤ ||f ′||C[0,a]
1

[2]qn

bn

[n+ 1]qn
+ 2δn,qnω(f

′, δn,qn).

Thus the proof is completed. �

Theorem 5. Let qn be a sequence such that limn→∞ qn = 1 for 0 < qn < 1. If
limn→∞

bn
[n]qn

= 0, then for f ∈ LipM(α) with 0 < α ≤ 1, M > 0 on [0, a] and

x ∈ [0, a] we have

|Ln,qn(f ;x)− f(x)| ≤ Mδαn,qn ,

where δn,qn defined as in Theorem 3.

Proof. In a similar way that of the proof of Theorem 2, we have

(3.3)

|Ln,q(f ;x)− f(x)|

≤ Pn,q(x)
∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k

Cn,k(q, bn)

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

|f(t)− f(x)| dRq t

≤ MPn,q(x)

∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k

Cn,k(q, bn)

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

|t− x|α dRq t.
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Now using the Hölder inequality for Riemann type q-integral given by (1.2)
with m = 2

α
and n = 2

2−α
and (2.2), one gets

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

|t− x|α dRq t

≤
(

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

(t− x)
2
dRq t

)

α
2
(

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

dRq t

)

2−α
2

=

(

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

(t− x)
2
dRq t

)

α
2 (

1

Cn,k(q, bn)

)

2−α
2

.

Substitution of this result into (3.3) leads to

|Ln,q(f ;x)− f(x)|

≤ MPn,q(x)
∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k
(

Cn,k(q, bn)

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

(t− x)2 dRq t

)

α
2

= M

∞
∑

k=0

(

Pn,q(x)

[

n+ k

k

]

q

(

x

bn

)k

Cn,k(q, bn)

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

(t− x)
2
dRq t

)

α
2

×
(

Pn,q(x)

[

n+ k

k

]

q

(

x

bn

)k
)

2−α
2

.

Applying the Hölder inequality for sums, the last inequality takes the form

|Ln,q(f ;x)− f(x)|

≤ M

(

Pn,q(x)

∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k

Cn,k(q, bn)

∫

[k+1]q
[n+k+1]q

bn

[k]q
[n+k]q

bn

(t− x)
2
dRq t

)

α
2

×
(

Pn,q(x)
∞
∑

k=0

[

n+ k

k

]

q

(

x

bn

)k
)

2−α
2

= M
(

Ln,q((e1 − x)2;x)
)

α
2
(

L∗

n,q(e0;x)
)

2−α
2 .

Therefore, if we use the fact L∗

n,q(e0;x) = 1 and the inequality (2.8) and replace
q by qn then the proof is completed. �

4. Weighted approximation

In this part, we introduce approximation properties of the operator Ln,qn in
weighted spaces of continuous functions on positive semi-axis with the help of
weighted Korovkin type theorem proved by Gadjiev in [15]. For this purpose,
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let us recall the notations and result of [15].
Bρ[0,∞) : The space of all functions satisfying the condition

|f(x)| ≤ Mfρ(x),

where x ∈ [0,∞), Mf is a positive constant depending only on f and ρ(x) =
1 + x2.

Cρ[0,∞) : The space of all continuous functions in the space Bρ[0,∞).
C0

ρ [0,∞) : The subspace of all functions f ∈ Cρ[0,∞) for which

lim
x→∞

|f(x)|
ρ(x)

< ∞.

The space Bρ[0,∞) is a linear normed space with the following norm:

||f ||ρ = sup
x∈[0,∞)

|f(x)|
ρ(x)

.

Theorem A ([15]). Let An be a sequence of positive linear operators acting

from Cρ[0,∞) to Bρ[0,∞) satisfying the conditions

lim
n→∞

||An(eν ;x)− xν ||ρ = 0, ν = 0, 1, 2.

Then for any function f ∈ C0
ρ [0,∞) we have

lim
n→∞

||An(f ;x)− f(x)||ρ = 0,

where ρ(x) = 1 + x2.

Theorem 6. Let qn be a sequence such that limn→∞ qn = 1 for 0 < qn < 1. If
limn→∞

bn
[n]qn

= 0, then for each f ∈C0
ρ [0,∞) we have

lim
n→∞

sup
x∈[0,bn)

|Ln,qn(f ;x)− f(x)|
1 + x2

= 0.

Proof. It is easily verified that Ln,qn acts from Cρ[0,∞) to Bρ[0,∞) for all
n ∈ N. So if we apply Theorem A to the operators An(f ;x) defined by

An(f ;x) =

{

Ln,qn(f ;x), if x ∈ [0, bn)

f(x), if x ≥ bn,

then to complete the proof it is enough to show that the conditions

(4.1) lim
n→∞

sup
x∈[0,bn)

|Ln,qn(eν ;x)− xν |
1 + x2

= 0, ν = 0, 1, 2

hold.
Since Ln,qn(e0;x) = 1, (4.1) is valid for ν = 0.
From (2.6), we have

sup
x∈[0,bn)

|Ln,qn(e1;x)− x|
1 + x2

≤ 1

[2]qn

bn

[n+ 1]qn
.
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This implies that

lim
n→∞

sup
x∈[0,bn)

|Ln,qn(e1;x)− x|
1 + x2

= 0.

By using (2.7), one gets

sup
x∈[0,bn)

|Ln,qn(e2;x)− x2|
1 + x2

≤ 1− qn +
bn

[n]qn
+

2

[2]qn

bn

[n+ 1]qn
+

1

[3]qn

b2n
[n+ 1]2qn

which gives

lim
n→∞

sup
x∈[0,bn)

|Ln,qn(e2;x)− x2|
1 + x2

= 0.

Thus the proof is completed. �
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