ON M-IDEAL PROPERTIES OF CERTAIN SPACES OF COMPACT OPERATORS

CHONG-MAN CHO AND BEOM SOOL KIM

ABSTRACT. It is proved that $K(c_0, Y)$ is an M-ideal in $L(c_0, Y)$ if Y is a closed subspace of c_0 . And a new direct proof of the fact that $K(L_1[0,1],\ell_1)$ is not an M-ideal in $L(L_1[0,1],\ell_1)$ is given.

1. Introduction and Preliminary

A closed subspace J of a Banach space X is called an L-summand if there exists a closed subspace J' of X so that X is an algebraic direct sum of J and J', and if $j \in J$ and $j' \in J'$ then

$$||j + j'|| = ||j|| + ||j'||$$
.

A closed subspace J of a Banach space X is called an M-ideal in X if $J^{\perp} = \{x^* \in X^* : x^*(j) = 0 \text{ for all } j \in J\}$, the anihilator of J in X^* , is an L-summand in X^* .

Since the notion of an M-ideal in a Banach space was introduced by Alfsen and Effros [1], many authors have studied the problem determining those Banach spaces X and Y for which K(X,Y), the space of compact linear operators from X to Y, is an M-ideal in L(X,Y), the space of bounded linear operators from X to Y [3, 7, 8, 9, 11, 14, 15, 16]. It is well known that if X is a Hilbert space, ℓ_p $(1 or <math>c_0$, then K(X)(=K(X,X)) is an M-ideal in L(X)(=L(X,X)) [4, 7, 15] while $K(\ell_1)$ and $K(\ell_\infty)$ are not M-ideals in the corresponding space of operators [15]. Also several authors proved that $K(\ell_p,\ell_q)$ for $1 is an M-ideal in <math>L(\ell_p,\ell_q)$ [6, 11, 14] and $K(X,c_0)$ is an M-ideal in $L(X,c_0)$

Received January 22, 1996. Revised March 11, 1996.

¹⁹⁹¹ AMS Subject Classification: 46A32, 41A50.

Key words and phrases: compact operator, M-ideal, property (M).

This work was supported by Hanyang University, 1995.

for every Banach space X [14, 15]. However, in the case of $K(c_0, X)$ in $L(c_0, X)$ the situation is different. It is known that $K(c_0, \ell_{\infty})$ is not an M-ideal in $L(c_0, \ell_{\infty})$ [14] and as we will see presently $K(c_0, Y)$ is an M-ideal in $L(c_0, Y)$ for some Banach space Y.

The aim of this article is to formulate a necessary and sufficient condition for $K(c_0, Y)$ to be an M-ideal in $L(c_0, Y)$ for a Banach space Y (Theorem 2.1) and prove that $K(c_0, Y)$ is an M-ideal in $L(c_0, Y)$ if Y is a closed subspace of c_0 (Corollary 2.2). We also give a new proof of the result of Cho [2] stating that $K(L_1[0,1], \ell_1)$ is not an M-ideal in $L(L_1[0,1], \ell_1)$ (Theorem 2.6).

Alfsen and Effros [1], and Lima [10] characterized an M-ideal by various intersection properties of balls. In particular, Lima [10, Theorem 6.17] proved the following useful theorem.

THEOREM 1.1. A closed subspace J of a Banach space X is an M-ideal in X if and only if for all $x \in X$ with $||x|| \le 1$, for all $y_1, y_2, y_3 \in J$ with $||y_j|| \le 1$ (j = 1, 2, 3), and all $\varepsilon > 0$, there exists $y \in J$ such that

$$||x + y_i - y|| < 1 + \varepsilon \quad (i = 1, 2, 3).$$

In 1993, Kalton and Werner [9] established a necessary and sufficient condition for K(X,Y) to be an M-ideal in L(X,Y) for Banach spaces X and Y. More specifically, they proved the following theorem.

THEOREM 1.2 [9]. Suppose that X is a Banach space such that there exists a sequence $\{K_n\}_{n=1}^{\infty}$ in K(X) satisfying

- (i) $K_n \to I_X$ strongly,
- (ii) $K_n^* \to I_{X^*}$ strongly,
- (iii) $||I_X 2K_n|| \to 1$,

where I_X and I_{X^*} denote the identity maps on X and X^* , respectively. If Y is a Banach space, then K(X,Y) is an M-ideal in L(X,Y) if and only if every $T \in L(X,Y)$ with $||T|| \leq 1$ has property (M).

According to Kalton and Werner [9] a continuous linear operator T with $||T|| \leq 1$ from a Banach space X to a Banach space Y is said to have property (M) if

$$\limsup_{n \to \infty} \|y + Tx_n\| \le \limsup_{n \to \infty} \|x + x_n\|$$

for all $x \in X$, $y \in Y$ with $||y|| \le ||x||$ and all weakly null sequences $\{x_n\}_{n=1}^{\infty}$ in X.

Dualizing property (M), we say that a contractive operator $T: X \to Y$ has property (M*) if

$$\limsup_{n \to \infty} \|x^* + T^* y_n^*\| \le \limsup_{n \to \infty} \|y^* + y_n^*\|$$

for all $x^* \in X^*$, $y^* \in Y^*$ with $||x^*|| \le ||y^*||$ and all weak* null sequence $\{y_n^*\}_{n=1}^{\infty}$ in Y^* .

2. Results

Kalton and Werner [9, Corollary 2.4] proved that for 1 and for a Banach space <math>Y every $T \in L(\ell_p, Y)$ with $||T|| \le 1$ has property (M) if and only if for every $y \in Y$ and every $T \in L(\ell_p, Y)$ the inequality

$$\limsup_{n \to \infty} ||y + Te_n|| \le (||y||^p + ||T||^p)^{1/p}$$

holds, where $\{e_n\}_{n=1}^{\infty}$ is the unit vector basis for ℓ_p .

In the case of $L(c_0, Y)$, we have an analogous result which is formulated in the following theorem. It is not hard to see that the Kalton-Werner's proof in $L(\ell_p, Y)$ case [9, Corollary 2.4] adapted to our case $L(c_0, Y)$ still works. However, for the completeness we include the proof in the theorem.

THEOREM 2.1. Suppose that Y is a Banach space. Then $K(c_0, Y)$ is an M-ideal in $L(c_0, Y)$ if and only if for every $y \in Y$ and every $T \in L(c_0, Y)$ the inequality

$$\limsup_{n\to\infty} \|y+Te_n\| \le \max\{\|y\|,\|T\|\}$$

holds, where $\{e_n\}_{n=1}^{\infty}$ is the unit vector basis of e_0 .

PROOF. In view of Theorem 1.2 it suffices to show that every contractive operator in $L(c_0, Y)$ has property (M) if and only if every $T \in L(c_0, Y)$ satisfies the inequality (*).

Suppose that every contraction in $L(c_0,Y)$ has property (M). Let $x \in c_0$, $y \in Y$ with ||x|| = ||y|| and let $T \in L(c_0,Y)$. Without loss of generality we may assume that ||T|| = 1 in (*). Since T has property (M) and $e_n \to 0$ weakly, we have

$$\lim_{n \to \infty} \sup \|y + Te_n\| \le \lim_{n \to \infty} \sup \|x + \varepsilon_n\|$$
$$= \max\{\|x\|, 1\}$$
$$= \max\{\|x\|, \|T\|\}.$$

Conversely, suppose that inequality (*) holds for every operator in $L(c_0, Y)$. If $T \in L(c_0, Y)$ with $||T|| \leq 1$ does not have property (M), then there exists a weakly null sequence $\{x_n\}_{n=1}^{\infty}$ in c_0 , and $x \in c_0$, $y \in Y$ with $||y|| \leq ||x||$ such that

$$\limsup_{n \to \infty} \|y + Tx_n\| > \limsup_{n \to \infty} \|x + x_n\|.$$

By passing to subsequences and by multiplying $\{x_n\}_{n=1}^{\infty}$ by a constant we may assume that $||x_n|| \to 1$ and

$$\alpha = \lim_{n \to \infty} \|y + Tx_n\| > \lim_{n \to \infty} \|x + x_n\| = \max\{\|x\|, 1\}.$$

Since $x_n \to 0$ weakly, by the gliding hump argument for every $\varepsilon > 0$ we can choose a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ and an isomorphism $\Phi: c_0 \to \overline{\operatorname{span}\{x_{n_k}\}_{k=1}^{\infty}}$ such that $\Phi(e_k) = x_{n_k}$ for all k and

$$(1 - \varepsilon) \|x\| \le \|\Phi(x)\| \le (1 + \varepsilon) \|x\|$$

for all $x \in c_0$.

Thus we have

$$\alpha = \lim_{k \to \infty} \|y + Tx_{n_k}\|$$

$$= \lim_{k \to \infty} \|y + (T\Phi)e_n\|$$

$$\leq \max\{\|y\|, 1 + \varepsilon\}$$

$$\leq \max\{\|x\|, 1 + \varepsilon\}.$$

Since $\max\{\|x\|,1\} < \alpha$ and $\varepsilon > 0$ is arbitrary, we arrive at a contradiction.

As easy and interesting applications of the above theorem we have the following corollaries.

COROLLARY 2.2. If Y is a closed subspace of c_0 , then $K(c_0, Y)$ is an M-ideal in $L(c_0, Y)$.

PROOF. Let $y \in Y$ and $T \in L(c_0, Y)$. Since $Te_n \to 0$ weakly in $Y \subseteq c_0$, we have

$$\begin{split} \limsup_{n \to \infty} \|y + Te_n\| &= \max \left\{ \|y\|, \limsup_{n \to \infty} \|Te_n\| \right\} \\ &\leq \max\{\|y\|, \|T\|\}. \end{split}$$

By Theorem 2.1, $K(c_0, Y)$ is an M-ideal in $L(c_0, Y)$.

The following corollary is a new simplified proof of the result of Saatkamp stating that $K(c_0, \ell_{\infty})$ is not an M-ideal in $L(c_0, \ell_{\infty})$ [14]. In his proof, Saatkamp used matrix representations of operators and some other facts. But our new proof is a direct consequence of Theorem 2.1.

COROLLARY 2.3. $K(c_0, \ell_{\infty})$ is not an M-ideal in $L(c_0, \ell_{\infty})$.

PROOF. Let $T: c_0 \to \ell_{\infty}$ be the canonical embedding. If $\{e_n\}_{n=1}^{\infty}$ is the unit vector basis of c_0 and $y = (1, 1, 1, \cdots)$, then

$$2 = \limsup_{n \to \infty} \|y + Te_n\| > \max\{\|y\|, \|T\|\} = 1.$$

Therefore, by Theorem 2.1 $K(c_0, \ell_{\infty})$ is not an M-ideal in $L(c_0, \ell_{\infty})$.

Recently, Cho [2] proved that $K(L_1[0,1], \ell_1)$ is not an M-ideal in $L(L_1[0,1], \ell_1)$ using a property (M^*) version of Theorem 1.2. The rest of this section is devoted to a new direct proof of the result of Cho.

LEMMA 2.4. There exists a norm one projection P on $L_1(=L_1[0,1])$ with the range $P(L_1)$ isometric to ℓ_1 .

PROOF. We consider the partition $\{I_n : n \in \mathbb{N}\}\$ of the interval [0,1), where

$$I_n = \left[\frac{2^{n-1}-1}{2^{n-1}}, \frac{2^n-1}{2^n}\right) \quad (n \ge 1).$$

For every f in L_1 we write $f = \sum_{n=1}^{\infty} f \chi_{I_n}$ and define a projection $P: L_1 \to L_1$ by

$$Pf = \sum_{n=1}^{\infty} P(f\chi_{I_n})$$
 and $P(f\chi_{I_n}) = \left(\frac{1}{m(I_n)} \int_{I_n} f\right) \chi_{I_n}$,

where χ_{I_n} is the characteristic function of I_n and $m(I_n)$ is the Lebesgue measure of I_n . Since $P(\chi_{I_n}) = \chi_{I_n}$ for each n and $||Pf|| \leq ||f||$ for all $f \in L_1$, P is a norm one projection.

Next to see that $P(L_1)$ is isometric to ℓ_1 we define a linear map ψ from $P(L_1)$ to ℓ_1 by linearly extending the map $\frac{1}{m(I_n)}\chi_{I_n}\mapsto e_n$, where $\{e_n\}_{n=1}^{\infty}$ is the unit vector basis of ℓ_1 . If $f\in L_1$, then $Pf=\sum_{n=1}^{\infty}P(f\chi_{I_n})$ and so $\psi(Pf)=\left\{\int_{I_n}f\right\}_{n=1}^{\infty}$. Since $\{P(f\chi_{I_n})\}_{n=1}^{\infty}$ is a sequence in L_1 with disjoint supports, we have

$$||Pf||_{L_{1}} = \sum_{n=1}^{\infty} ||P(f\chi_{I_{n}})||_{L_{1}}$$

$$= \sum_{n=1}^{\infty} |\int_{I_{n}} f|$$

$$= ||\{\int_{I_{n}} f\}_{n=1}^{\infty}||_{\ell_{1}}$$

$$= ||\psi(Pf)||_{\ell_{1}}.$$

Hence ψ is an isometry. If $\{a_n\}_{n=1}^{\infty} \in \ell_1$, then $f = \sum_{n=1}^{\infty} \frac{a_n}{m(I_n)} \chi_{I_n} \in L_1$ and $\psi(Pf) = \psi f = \{a_n\}_{n=1}^{\infty}$. Therefore, ψ is surjective and $P(L_1)$ is isometric to ℓ_1 .

LEMMA 2.5. There exists a norm one projection τ on $L(L_1, \ell_1)$ whose range is isometric to $L(P(L_1), \ell_1)$ ($\cong L(\ell_1)$).

PROOF. Let P and ψ be mappings constructed above. For each $T:L_1\to \ell_1,$ let $\tau(T)=TP.$ Then τ is a projection on $L(L_1,\ell_1).$ Since $\|\tau(T)\|\leq \|T\|$ for all $T\in L(L_1,\ell_1),$ $\tau(\psi P)=\psi P$ and $\|\psi P\|=\|P\|=1,$ $\|\tau\|=1$

Let ϕ be the linear map from the range $\tau(L(L_1,\ell_1))$ of τ to $L(P(L_1),\ell_1)$ defined by $\phi(TP) = TP|_{P(L_1)}$ for $T \in L(L_1,\ell_1)$. Since P is a norm one projection, ϕ is an isometry. If $S \in L(P(L_1),\ell_1)$, then $SP \in \tau(L(L_1,\ell_1))$ and $\phi(SP) = SP|_{P(L_1)} = S$. Hence ϕ is surjective. Therefore, the range $\tau(L(L_1,\ell_1))$ of τ is isometric to $L(P(L_1),\ell_1)$.

THEOREM 2.6. $K(L_1, \ell_1)$ is not an M-ideal in $L(L_1, \ell_1)$.

PROOF. We will use Lima's characterization of an M-ideal in Theorem 1.1. Assume that $K(L_1,\ell_1)$ is an M-ideal in $L(L_1,\ell_1)$. Let $S_i \in K(P(L_1),\ell_1)$ with $||S_i|| \le 1$ (i=1,2,3), $T \in L(P(L_1),\ell_1)$ with $||T|| \le 1$ and $\epsilon > 0$. Then $\widetilde{S}_i = S_i P \in K(L_1,\ell_1)$, $\widetilde{T} = TP \in L(L_1,\ell_1)$, $||\widetilde{S}_i|| \le 1$ (i=1,2,3) and $||\widetilde{T}|| \le 1$. By the assumption, there is $\widetilde{S} \in K(L_1,\ell_1)$ such that

$$\|\widetilde{S}_i + \widetilde{T} - \widetilde{S}\| < 1 + \epsilon \qquad (i = 1, 2, 3).$$

Then $S = \widetilde{S}P|_{P(L_1)} \in K(P(L_1), \ell_1)$ and

$$\begin{split} \|S_i + T - S\| &= \|(\widetilde{S}_i + \widetilde{T} - \widetilde{S})P|_{P(L_1)}\| \\ &\leq \|\widetilde{S}_i + \widetilde{T} - \widetilde{S}\| < 1 + \epsilon \qquad (i = 1, 2, 3). \end{split}$$

Hence $K(P(L_1), \ell_1)$ is an M-ideal in $L(P(L_1), \ell_1)$ and so $K(\ell_1)$ is an M-ideal in $L(\ell_1)$. This contradicts to the fact that $K(\ell_1)$ is not an M-ideal in $L(\ell_1)$ [15]. Therefore, $K(L_1, \ell_1)$ is not an M-ideal in $L(L_1, \ell_1)$.

References

- 1. E. M. Alfsen and E. G. Effros, Structure in real Banach spaces, Ann. of Math. 96 (1972), 98-173.
- 2. C.-M. Cho, Remarks on M-ideals of compact operators, to appear in Bull. Korean Math. Soc. 33 (1995).
- 3. C. -M. Cho and W. B. Johnson, A characterization of subspaces X of ℓ_p for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466-470.
- 4. J. Dixmier, Les fonctionnelles linéaires sur l'ensemble des opérateurs bornés d'un espace de Hilbert, Ann. of Math. 51 (1950), 387-408.

- 5. P. Harmand and A. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264.
- P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin-Heidelberg-New York, 1993.
- 7. J. Hennefeld, A decomposition for $B(X)^*$ and unique Hahn-Banach extensions, Pacific. J. Math. 46 (1973), 197-199.
- 8. N. J. Kalton, M-ideals of compact operators, Illinois J. Math. 37 (1993), 147-169.
- 9. N. J. Kalton and D. Werner, Property (M). M-ideals and almost isometric structure of Banach spaces, Preprint. (1993).
- A. Lima, Intersection properties of balls and subspace in Banach spaces, Trans. Amer. Math. Soc. 227 (1997), 1-62.
- 11. _____, M-ideals of compact operators in classical Banach spaces, Math. Scand. 44 (1979), 207-217.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin-Heidelberg-New York, 1977.
- 13. _____, Classical Banach Spaces II, Springer, Berlin-Heidelberg-New York, 1979.
- 14. K. Saatkamp, M-ideals of compact operatros, Math. Z. 158 (1978), 253-263.
- R. R. Smith and J. D. Ward, M-ideal structure in Banach algebras, J. Func. Anal. 27 (1978), 337-349.
- D. Werner, Remarks on M-ideals of compact operators, Quart. J. Math. Oxford (2). 41 (1990), 501-507.
- 17. _____, M-ideals and the 'basic inequality, J. Approx. Theory. 76 (1994), 21-30.

Department of Mathematics Hanyang University Seoul 133-791, Korea